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Abstract.    

U.S. landfalling tropical cyclone (TC) activity was projected for late 21st century using a two-step dynamical 
downscaling framework.  A regional atmospheric model, run for 27 seasons, generated tropical storm cases.  
Each storm case was re-simulated (up to 15 days) using the higher resolution GFDL hurricane model.   Thirteen 
CMIP3 or CMIP5 climate change scenarios were explored.   Robustness of projections was assessed using 
statistical significance tests and comparing changes across models.  The proportion of TCs making U.S. landfall 
increased for the warming scenarios, due in part to an increased percentage of TC genesis near the U.S. coast 
and a change in climatological steering flows favoring more U.S. landfall events.  The increased U.S. landfall 
proportion leads to an increase in U.S. landfalling category 4-5 hurricane frequency, averaging about +400% 
across the models; 10 of 13 models/ensembles project an increase (which is statistically significant in three of 13 
models).   We have only tentative confidence in this latter increase, which occurs despite a robust decrease in 
Atlantic basin category 1-5 hurricane frequency, no robust change in Atlantic basin Category 4-5 and U.S. 
landfalling Category 1-5 hurricane frequency, and no robust change in U.S. landfalling hurricane intensities.   
Rainfall rates, averaged within 100 km radius of the storms, are projected to increase by about 18% for U.S. 
landfalling TCs.  Important caveats to the study include low correlation (skill) for interannual variability of 
modeled vs. observed U.S. TC landfall frequency and model bias of excessive TC genesis near and east of the U.S. 
east coast in present-day simulations. 
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1. Introduction        
U.S. landfalling tropical cyclones (TCs, which include hurricanes and tropical storms) can cause major damage to 
coastal and inland infrastructure, and it is of great interest to better understand how landfallling TC activity may 
change under future anthropogenic climate change, with a particular focus on landfalling hurricanes.  Relatively 
long records (since at least about 1900) are available for tropical storm, hurricane, and major U.S. hurricane 
landfalls (e.g., Vecchi and Knutson 2008, 2011; Klotzbach et al. 2020; Vecchi et al. 2021); these time series do 
not show any significant increases since 1900.  This lack of a significant change contrasts with the case for global 
mean temperature, where a clear anthropogenic warming signal has been identified (IPCC AR5).  This indicates 
that U.S. landfalling TC frequency in the above regions is not a strongly detectable anthropogenically forced 
metric over the past century.   

A previous dynamical downscaling study of Atlantic TCs (Knutson et al. 2013, hereafter K13) explored the impact 
of global warming on several aspects of TCs, but focused mainly on the lifetime maximum intensity stage of TCs, 
by performing five-day high-resolution downscaling simulations of storms near their times of maximum 
intensity.  Thus, K13 did not focus on the U.S. landfalling stages, which often were outside of the 5-day window 
simulated with their downscaling model.  In the present study, we revisit K13, but focusing on U.S. landfalling 
storm activity.  To accomplish this, we integrate the higher-resolution hurricane model forward for 15 days for 
each storm case study.  Through this study, we aim to provide more societally relevant information about the 
potential damage impacts of the storms (in terms of intensity, frequency, rainfall at landfall) under various 
climate change scenarios.   

Previous studies on possible future changes in U.S. landfalling TCs have reported model projections including: 
changes in vertical shear and potential intensity near the U.S. coastline (Ting et al. 2019); reduced probability of 
TC landfall over the southeastern U.S. and increased probability over the northeastern U.S. (Murakami and 
Wang 2010); decreased TC occurrence over the southeastern U.S. (Liu et al. 2018); increased TC occurrence over 
most of the eastern US for a downscaled CMIP5 model ensemble, but slight decreases for CMIP3 (Wright et al. 
2015); reduced TC occurrence over the southern Gulf of Mexico and Caribbean (Colbert et al. 2013); increased 
average post-landfall TC rain rates over the eastern U.S. (Wright et al. 2015; Liu et al. 2018; Stansfield et al. 
2020); and increased likelihood of faster-moving landfalling TCs in the Texas region (Hassanzadeh et al., 2020).  
The last study result is qualitatively in contrast to an observed finding for historical TC behavior: a significant 
reduction in propagation speed over the U.S. land regions since 1900 (Kossin 2019).  This reduced propagation 
speed in observations over the 20th century was not reproduced in a historical forcing model simulation (Zhang 
et al. 2020) which covered most of the 20th century.  However, Gori et al.(2022) project that over the eastern US, 
decreased TC propagation speeds and increased TC intensity will intensify TC rainfall events and, along with sea 
level rise,  exacerbate US coastal flood risk by 2100.  Levin and Murakami (2019) found that historical increases 
in anthropogenic climate forcing led (qualitatively) to increased frequency of U.S. major hurricane landfall in 
their model, although a significant increase in U.S. major hurricane frequency is not seen in observations since 
1900 (Klotzbach et al. 2020) nor since the late 19th century (Vecchi et al. 2021).   

Our study uses a two-step dynamical downscaling framework, together with tropical climate change projections 
from multiple CMIP3 and CMIP5 climate models-- the same models as used in K13.   For the present-day 
simulations, the Zetac regional atmospheric model was run over 27 seasons in order to generate tropical storm 
genesis case studies.  Each storm case was then re-simulated using the higher resolution GFDL Hurricane Model.  
In addition to the present-day runs, 13 CMIP3 or CMIP5 climate change scenarios were explored. As discussed in 
K13, the Zetac model does simulate hurricanes but only with intensities of up to about 50 m s-1 surface wind 
speed.  For this reason, the second downscaling step using the higher-resolution GFDL hurricane model (with 
about 9 km spacing for the inner grid) was necessary.   
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2.  Methodology and Present-day Simulation Evaluation 

The methodology for our study is described in more detail in Supplemental Material.  Our methodology mostly 
follows that in K13, Knutson et al. (2007), and Bender et al. (2010), and is described in detail in those studies.   

 

2.1. Experimental Design for Present-day Hurricane Simulations 

We performed control (present-day) simulations for 27 August-October seasons (1980-2006), and 27 “warm-
climate” seasons based on modified versions of the 1980-2006 season boundary conditions. We first assess how 
well our two-step modeling system is able to simulate present-day Atlantic hurricane activity and its interannual 
variability using the time-evolving NCEP/NCAR Reanalysis I (Kalnay et al. 1996) to force the boundary and 
interior large-scale conditions.   To assess the interannual variability vs. observations, for the present-day runs 
we simulated an expanded set of 37 years (i.e., 1980-2016).  For reasons of computational expense we did not 
expand the climate changes runs to cover these additional years.     

Tropical storm cases are identified in these three-month simulations using the automated TC search procedure 
described in Knutson et al. (2007), including a requirement for warm-core structure, surface wind speeds for the 
storm of at least 17.5 m s-1, and total duration of tropical storm conditions of at least 48 hours (not necessarily 
consecutive).   

Each individual tropical storm case from the Zetac regional model was then re-run as an individual 15-day case 
study using the GFDL Hurricane Model, which is a triply nested moveable mesh system with grid-spacing as fine 
as about 9 km. Ocean coupling in the model allows the storm to generate a “cold wake” in the interactive SST 
field as it passes over the model ocean.  Each tropical storm case was initialized in the hurricane model 
beginning from the time it first reached tropical storm intensity in the Zetac model.    

2.2.  Evaluation of Present-Day Hurricane Simulations 

Figure 1 compares the observed Aug.-Oct. (IBTrACS, version 4, revision 0, Knapp et al. 2009) and model 
simulated tropical storm genesis density and tropical cyclone (tropical storms and hurricanes) track density from 
the GFDL Hurricane Model runs.  The observed tropical storm genesis points and tropical storm tracks from 
IBTrACS are based on the official Best Track data from the National Hurricane Center.  Model tropical storm 
genesis occurrences are determined from the Zetac regional model runs (except for storms which failed to run in 
the hurricane model), and are based on the tropical storm identification scheme described in the Supplemental 
Material.   

The comparison in Fig. 1 shows that the model framework generates more subtropical (higher latitude) genesis 
cases than observed, including along and near the U.S. East Coast.  Similarly the TC days (track density) 
comparison (Fig. 1 c vs. d) shows more subtropical occurrence (25o-35oN) in the hurricane model than in 
observations, including near the U.S. East Coast.  These model biases would be expected to affect US landfalling 
TC statistics.  While the tropical storm genesis events in the Zetac regional model were confirmed to have warm 
core (tropical) characteristics, the evolving downscaled storms in the GFDL Hurricane Model were not monitored 
for such characteristics.  Therefore it is possible that a small fraction of the simulated excess storm occurrence in 
the subtropical latitudes may be due to storms with extratropical or mixed tropical/extratropical characteristics.  
However, the GFDL Hurricane Model storms do not propagate poleward of about 38oN due to model boundary 
influences (Supplemental Material), which limits the likelihood of extratropical storm segments in our 
simulations.     

A further test of the performance of our two-step downscaling model framework is a comparison of the year-to-
year variability of August-October modeled storm counts with that from observations for tropical storms and 
different categories of hurricanes (Fig. 2).  The model was provided only time-varying Atlantic basin SSTs, lateral 
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boundary conditions, and large-scale atmospheric circulation, applied via large-scale interior spectral nudging.  If 
the model is still able to generate useful information about tropical storm, hurricane, and intense hurricane 
numbers and their year-to-year variation, this increases our confidence that the framework can translate 
information about atmospheric and SST variability and change (if reliable) into useful information about 
resulting hurricane activity. 

The time series in the left column of Fig. 2 show that our downscaling framework is useful for simulating Atlantic 
basin-wide hurricane activity given specified large-scale atmospheric, oceanic, and SST conditions.  Specifically, 
the system simulates the following correlations versus observations for 37 year series of Atlantic basin Aug-
October storm counts:  1) all TCs (tropical storms and hurricanes):  r = 0.77 (explained variance: 59%); 2) 
Category 1-5 hurricanes: r=0.68 (explained variance: 46%); 3) major (Category 3-5) hurricanes: r=0.56 (explained 
variance:  31%); 4) very intense (Category 4-5) hurricanes: r=0.31 (explained variance:  10%).   Assuming 
independence among years, correlations above 0.33 are significant at the 0.05 level, so for all cases except 
Category 4-5 hurricanes the results indicate significant correlation.  For the Category 4-5 hurricanes, which 
comprise a small number of cases compared to the other TC frequency metrics, the results are nearly 
statistically significant.  Our regional modeling framework is not the first model to show such skill at hindcasting 
Atlantic basin-wide TC activity and its interannual variability (e.g., Zhao et al. 2009, Chen and Lin 2013, 
Murakami et al. 2016, and others).  Ours is the highest resolution framework among these studies, which 
provides our study with some advantages in terms of simulating more realistic hurricane structure compared to 
coarser grid models.   

Rising trends are evident in many of the basin-wide time series in Fig. 2 (a, c, e, g).  The modeled trends are 
similar to observed trends, with the notable exception of basin-wide hurricane frequency (Fig. 2c) where the 
modeled trend is stronger than observed.  The cause of the observed rising trends remains an unanswered 
research question.  The time period (1980-2016) is relatively short for detection of a greenhouse gas warming 
influence, and both internal variability and changes in aerosol forcing are possible contributors to such TC-
related trends (e.g., Dunstone et al. 2013, Yan et al. 2017, Murakami et al. 2020).  Our simulations indicate only 
that changes in the large-scale environment (including SSTs) help to explain the observed rising trends but do 
not explain the causes of the environmental changes.  Nonetheless, we expect that the observed Atlantic 
hurricane trends and tropical Atlantic SST changes since 1980 have multiple causes; several studies suggest the 
TC frequency increases are likely not primarily a response to increasing greenhouse gases alone (e.g., Murakami 
et al. 2020).  Thus, the over-prediction of the observed trend in hurricane frequency (1980-2016) in our model 
does not invalidate the model’s potential use for greenhouse gas-driven warming scenarios.  Fig. 2 also shows 
that our model framework has a slight positive bias in basinwide TC frequency, hurricane frequency, and major 
hurricane frequency. 

The model framework’s performance is much less skillful for U.S. landfalling storm counts (right column in Fig. 
2).  None of the simulated time series of U.S. landfalling TC counts are significantly correlated with observed 
variations: 1) all TCs:  r = 0.21 (explained variance: 4%); 2) Category 1-5 hurricanes: r=0.15 (explained variance: 
2%); 3) major (Category 3-5) hurricanes: r=-0.07 (no explained variance).       

The above results provide an important caveat to our study.  While the two-step model framework is relatively 
skillful at reproducing the year-to-year variation of basin-wide tropical storm and hurricane counts, this skill 
does not carry through to U.S. landfalling counts.  Thus, while the basin-wide results provide model-based 
evidence that the year-to-year variability in the basin-wide numbers is not random “weather noise” but rather is 
controlled to a large extent by large-scale environmental conditions, the U.S. landfalling count variations seem 
much more difficult to capture using our modeling framework.  While we are not aware of many other modeling 
systems that can successfully simulate U.S. landfalling TC frequency, one exception is the HiFLOR model 
(Murakami et al. 2016), which has shown some skill in predicting seasonal U.S. landfalling TC frequency over the 
period 1980-2015, suggesting that there are large-scale controls on this metric that are not being well captured 
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in our two-step model framework.  We hypothesize two mechanisms that may be important for our model’s 
shortcoming with simulating U.S. landfalling TCs and their variation.  First, the model has a bias toward too much 
TC genesis and TC occurrence near the U.S. East Coast, compared to the Gulf Coast region.  This will degrade the 
model’s ability to simulate interannual variations reliably.  It is less likely that we have large issues with 
unrealistic steering flows, since we are nudging the large-scale winds and other variables toward realistic (NCEP 
Reanalysis) target in our modeling procedure.  Our second proposed explanation for the model’s shortcoming is 
that, U.S. landfalling activity is in general likely to be more difficult to hindcast skillfully using models compared 
to basinwide TC activity.  This is because basinwide activity is strongly correlated with--and therefore appears to 
be largely controlled by--relative SSTs and vertical wind shear in the Main Development Region (MDR) of the 
tropical Atlantic.  The MDR clearly has a relatively pronounced and correlated multidecadal variability in major 
hurricane frequency, SST, and wind shear (e.g., Yan et al. 2018).  On the other hand, Kossin (2017) has shown 
that vertical shear near the U.S. coast varies in opposition to that in the MDR such that when conditions are 
favorable in the MDR for TC development, they tend to be less favorable for TCs near the U.S. coast (i.e., high 
vertical wind shear).  This characteristic of the Atlantic basin climate suggests that the task of simulating the 
interannual variability of U.S. landfalling TCs will be inherently more complex than for basinwide variability, 
owing to the competing influence of conditions in the MDR vs. near the U.S. coast, which corrupts an otherwise 
simpler multidecadal signal.  

Despite the limitations of our framework at simulating interannual variability of U.S. landfalling TCs, we have still 
chosen to use our model explore future U.S. landfalling behavior under global warming in this study.  We justify 
this decision by recognizing the importance of the issue for stakeholders and the need to take advantage of our 
model’s high-resolution capability for simulating intense hurricanes and storm structure. 

2.3.  Specification of Climate Change Downscaling Simulations 

Following on the above present-day simulations, here we analyze similar sets of experiments under climate 
change conditions.  We focus here on 27 seasons (1980-2006) for computational efficiency.   

We first created a series of climate change “delta” fields for SST, surface pressure, air temperature, relative 
humidity, and winds, which we added to the NCEP/NCAR Reanalysis, to create a series of warm-climate 
perturbation experiments that use realistic conditions (i.e., the reanalysis) as the baseline case.   The warm-
climate conditions were for the CMIP3 models (ensemble mean or 10 individual models) based on years 2081-
2100 minus 2001-2020 of the Special Report on Emission Scenarios A1B (SRES A1B) scenario. We constructed 
two 18-model ensemble-mean CMIP5 model warm-climate scenarios using the 2016-2035 (early 21st century) 
or 2081-2100 (late 21st century) period of the CMIP5 RCP4.5 scenario versus a baseline period of 1986-2005.  
The global temperature difference between present-day and late 21st century warm-climate condition was 
1.69oC for the CMIP3 and 1.70oC for the CMIP5 ensemble means.  

 

3.  Results of Climate Change Downscaling Experiments 

In this section, we examine the results of our climate change downscaling experiments.  In the discussion below, 
we refer to the 13 sets of experiments as 13 different “models”, even though these can be based on an 
individual model, or on ensemble mean climate change from a set of CMIP3 or CMIP5 models.   

A number of TC metrics were examined for our 13 different sets of experiments (see Table 1 of Supplemental 
Material for a complete set).  To focus on results from our experiments where most models agree on the sign of 
the projected changes, we present the results for selected TC metrics in a summary form (Figs. 3 and 4) showing 
both the level of agreement across the models for projected changes for a given metrics, along with statistical 
significance test indicators for the individual model results.  Using this approach, Figs. 3 and 4 examine two 
distinct but important sources of uncertainty in projections:  modeling uncertainty as indicated by the 
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agreement in sign of the projected change for the 13 different models, and internal variability uncertainty, as 
assessed by the statistical significance tests.  Both U.S. landfalling TC frequencies (or surface wind intensities and 
precipitation rates at the time of landfall) and the basin-wide results are summarized in Figs. 3 and 4.  Basin-
wide results are based on either conditions at the time of maximum storm wind speed intensity for the storm, or 
on the entire lifecycle of each TC in each year for the case of accumulated activity metrics like duration, 
propagation speed, or the PDI (Power Dissipation Index).   The mechanisms behind the changes summarized in 
the Figs. 3 and 4 will be explored further in Section 4 (Discussion). 

3.1. TC Frequency Projections 

Figure 3 (a) indicates that a robust projection is a decrease in basin-wide hurricane frequency (Category 1-5).  A 
decrease is simulated in 12 of 13 models (statistically significant in 9 of 13 models), with an average decrease 
across all models of -34%.   Detailed data (in Supplemental Material) indicates this decrease is particularly robust 
for basin-wide frequency for: category 1 hurricanes (-42%), category 2 hurricanes (-45%), category 3 hurricanes 
(-43%), all tropical storms and hurricanes combined (-28%), all hurricanes combined (category 1-5; -34%), and 
major hurricanes (category 3-5; -25%).  In contrast, the most intense (Category 4-5) hurricanes show little 
consistent change in basin-wide frequency with warming (panel b), with seven (six) of 13 models projecting a 
positive (negative) change.   

This contrasting behavior of Atlantic basin hurricanes vs. intense hurricane frequency has been discussed 
previously (K13) and is related to the increase in the average intensity of the TCs in the model, as will be 
discussed further below.   Comparisons with other studies, for example, Knutson et al. (2020) show that the 
majority of published projections of Atlantic overall TC frequency (tropical storms plus hurricanes) indicate a 
decrease in frequency with climate warming, but an increase in the frequency of Category 4-5 TCs.  However, 
there is a wide variation in these projections across models for both all TC frequency and Category 4-5 TC 
frequency, with some disagreeing on even the sign of the change.  However, a relative increase of Category 4-5 
TC frequency compared to all-TC frequency is a consistent feature of the multi-model TC assessment in Knutson 
et al. (2020).  A recent attempt at better understanding the controls on TC frequency change in models has 
focused on the role of seed disturbances (Hsieh et al. 2020). 

U.S. landfalling TCs (Fig. 3 c,d) show a contrasting behavior to the highly significant and robust decreases seen 
for basin-wide TC frequency.  In particular, there is no robust increase or decrease for U.S. landfalling Category 
1-5 hurricane frequency (panel c).  On the other hand, for U.S. landfalling category 4-5 storms (panel d), the 
average change across models is +390%, with at least nominal increases for 10 of 13 models, and statistically 
significant increases for three of the 13 models.  No change was found for three models.  The projected increase 
in U.S. landfalling Category 4-5 hurricane frequency is noteworthy from a climate impacts perspective because 
these storms have historically caused almost 50% of normalized TC damage in the U.S., despite representing 
only 6% of historical TC occurrences (Pielke et al. 2008).  As a sensitivity test, we have assessed U.S. landfalling 
category 4-5 frequency based on surface pressure, rather the surface wind speed criteria (not shown)and found 
similar though slightly less statistically robust results   

To visually illustrate this relatively important finding in Fig. 3, Fig. 5 shows the tracks and intensities of the 
simulated U.S. landfalling hurricanes that are category 4 or 5 at landfall.  A clear tendency for an increase in 
these very intense landfalling cases is seen across downscaled storms from most of the  models, including the 
CMIP3 and CMIP5 late 21st century ensembles.   

The differing response of basin-wide vs. U.S. landfalling TC frequency to climate warming indicates that the 
proportion of TCs making U.S. landfall increases in the projections-- according to most models.  Figure 3 (e) 
shows, for example, that for all hurricanes (Category 1-5), the proportion making U.S. landfall is projected to 
increase by all 13 models, with an average increase of 64% above the control proportion value of 0.12.  Similarly, 
for Category 4-5 hurricanes, the proportion of such storms making U.S. at Category 4-5 intensity increases by 
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+350% over the control run fraction of 0.024, with an increase projected for 12 of 13 models.  Increases in U.S. 
landfalling proportion for other classes of TCs are shown in the Supplemental Material.  

3.2. TC Rain Rate Projections 

Climate change projections for several other TC metrics are summarized in Fig. 4.  Increasing TC precipitation 
rate with climate warming has been identified as among the most robust projections for TCs across different 
modeling studies (Knutson et al. 2020; Liu et al. 2018, 2019; Stansfield et al. 2020; Gori et al. 2022).  Fig. 4 (a) 
shows a robust increase for TC rainfall rates at (or just prior to) U.S. landfall (+18% on average across the 
models), based on rain rates averaged within 100 km of the storm center.    Eleven of 13 models show increases 
in this metric, while three of 13 show statistically significant increases.  For basin-wide TCs, a statistically more 
robust increase in TC rain rates is projected (Table 1, in Supplemental Material) with an average change of +19%, 
positive in 12 of 13 models, and statistically significant increases in seven of 13 models.  The more significant 
projected climate change signal in basin-wide TC rain rates (for roughly the same sized climate change signal) is 
probably due to the larger sample size available vs. the U.S. landfalling subset of storms.  

3.3. TC Intensity Projections 

Maximum lifetime hurricane intensity (based on modeled near-surface (10 m) wind speeds) is a metric which 
relatively higher resolution models have consistently projected to increase with climate warming (Knutson et al. 
2020).   Figure 4b shows that the hurricane (Category 1-5) intensity increases in our experiments are robust for 
the Atlantic basin as a whole, with all but one of 13 models showing an increase, significant for six of 13 models.  
For U.S. landfalling hurricanes (Fig. 4d), the projected intensity changes are more mixed, with seven of 13 
models showing an increase and only one being statistically significant.  The U.S. landfalling hurricane intensities 
are based on intensities in the model at or just prior to the time of landfall.   

The one outlier model for basin-wide hurricane intensity change is the CMIP3 HadGEM1 model, for which we 
simulate a significant decrease.  As discussed in K13, this particular model exhibits a much more enhanced 
warming of the upper tropical troposphere (compared to the surface warming) than other CMIP3 models.  Such 
amplified upper tropospheric warming has been shown to a detrimental factor for modeled TC intensification 
(Tuleya et al. 2016).   

The average TC intensity change across the 13 models is about +5%.  This result is relatively consistent with 
other high-resolution modeling studies (Knutson et al. 2020).  Interestingly, the increase is absent if one includes 
weaker (tropical storm-strength TCs) in the sample, but we consider the hurricane intensity result as the more 
relevant one for potential climate impacts.  In summary, despite the increase in basin-wide hurricane intensity, 
the average intensity of landfalling hurricanes shows little significant change, nominally averaging about +2%.   

 

3.4.  TC Translation Speed, Duration, and Power Dissipation Index Projections 

Figure 4 (c) indicates that the basin-wide TC translation speed tends to increase in the models, with 10 models 
projecting an increase (only two are significant) and three models projecting a decrease.  As will be illustrated 
later in this report, the two models with significant translation speed increases both have substantial increases 
in easterly steering flow in the central tropical Atlantic, which leads to faster westward propagation across that 
region.   Average TC duration (Fig. 4 e) shows a clear tendency to decrease by about 13% on average (decreasing 
in 12 of 13 models, with 8 of 13 models projecting a significant decrease).    The slight increase of translation 
speed may be one factor contributing to a decrease in duration, as the lifecycle of the storm over a given track 
would be shortened by the faster propagation speed.  Furthermore, the greater fraction of TCs making U.S. 
landfall in the warm climate runs means that more storms have truncated lifetimes as they dissipate after U.S. 
landfall as opposed to recurving out to sea without encountering land.  Also storms forming closer to the coast 
will tend to have shorter lifetimes before they dissipate over land compared to storms forming further away 
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from the coast.  However, we have not quantitatively diagnosed the reasons for the decreased duration under 
climate change in detail.  Duration of storms in the model (both control and warm climate cases) can also be 
artificially limited by the 15-day limit of the simulations and by the effective northern boundary near 38oN 
(Supplemental Material).   Finally, Fig. 4 (f) shows that the Power Dissipation Index (PDI, see Supplemental 
Material) has a robust projected decrease, with a decrease simulated in 11 of 13 models (averaging -28%), and 
with five models projecting a statistically significant decrease.   

 

4. Discussion 

In this section, we discuss mechanisms behind several key model projections, and provide some assessments of 
our confidence in the projections. 

4.1 Increase in Proportion of TCs Making U.S. landfall 

A potentially important finding in our study is the tendency for a greater fraction of TCs to make landfall over 
the U.S. in the warmer climate.  This is a key factor associated with the lack of significant change in the 
frequency of landfalling hurricanes despite the reduction in their basin-wide frequency; it also is associated with 
an increase in landfalling Category 4-5 hurricanes despite no significant increase in their basin-wide frequency.  
Thus the increase in fraction of landfalling TCs enhances damage risk for the U.S. according to our simulations.  
Another recent study (Garner et al. 2021) projected a relative shift in TC activity toward the U.S. in a warming 
climate. 

To explore potential mechanisms for this projected change in TC behavior, Fig. 6 depicts the difference (warm 
climate minus control) in percent of total TC occurrence days at each grid point.  Before computing this 
difference, the percent occurrence for either warm climate or control is found for each grid point, which sums to 
100% separately over both the warm climate and control run maps.  The U.S. and near-U.S. coastal regions in all 
the maps tend to be red-shaded, indicating a robust tendency for a greater fraction of TCs to occur in those 
areas, and consistent with the increase in the fraction of hurricanes or intense hurricane making U.S. landfall 
(Fig. 3 e, f).    

The above changes in Fig. 6 could be associated with a similar shift in TC genesis.  To investigate this, we show in 
Fig. 7 the difference (warm climate minus control) in the percentage of total TC genesis events occurring at each 
grid point.   This metric tends to show reddish colors near the US, meaning a tendency for TC genesis to occur 
closer to the U.S. in the warmer climate, but this is not seen in all models (e.g., CCSM3, CM2.0, CM2.1 and MRI 
show a mix of increases and decreases near the U.S. coast).  This particular projected change may be influenced 
by the TC genesis and track density bias in our modeling framework discussed earlier (Fig. 1).  That analysis 
showed that TC genesis and track density were both excessive off the U.S. East Coast in our control simulations 
compared to observations.  Such a bias is a caveat on further projected increases in such genesis and track 
density because the projected change has some of the same spatial structure as the bias. 

Another possible contributor to the relative increase in TC track density near the U.S. coast is a shift in TC tracks, 
as would occur with a change in steering flows, for example.  To explore this, Fig. 8 shows the change (warm 
climate minus control) in the vector winds averaged over the 300-850-mb layer.  We use this as an 
approximation for the climatological steering flow that intense TCs in general will experience on average (e.g., 
Velden and Leslie 1991).  The salient feature on these maps are wind anomalies directed from the open Atlantic 
back toward the U.S. East Coast.  This indicates a weakening of the westerly winds that act to recurve hurricanes 
and tropical storms out to sea and away from the U.S. before they make landfall.  Thus, such a change will tend 
to make U.S. landfalls more likely by weakening the recurvature effect of the westerlies.  These easterly 
anomalies off the U.S. East Coast are a relatively robust feature of the individual CMIP3 models and the CMIP3 
and CMIP5 ensembles we examined for the Aug-Oct. season.  We have relatively more confidence in this 
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steering influence than in the increased relative TC genesis near the U.S. East Coast with climate warming 
because of the robustness of the steering flow change in the CMIP models.   Related to these flow changes, 
projected reductions in vertical wind shear off the U.S. East Coast (K13, their Fig. 9; Ting et al. 2019) may also 
contribute to the increased TC frequency there. 

Returning to the issue of only two models (CMIP3 GFDL CM2.0 and CM2.1) showing statistically significant 
changes in TC propagation speed, Fig. 8 shows that those two models are distinguished by particularly 
pronounced easterly anomalies in 300-850 mb averaged vector winds across the tropical Atlantic (10o - 20oN).  
These anomalies  imply an increase in the easterly steering flow for TCs moving westward across the tropical 
Atlantic, which would contribute to increased average propagation speed, although the weakened westerlies at 
higher latitudes in these and other models would tend to decrease propagation speeds after recurvature.  

In short, we have only tentative confidence at this stage in the increase in proportion of TCs making U.S. landfall 
in our simulations, particularly since the changing TC genesis location factor is one where we have concerns 
about model biases, while for the steering flow influence we have more confidence based on relatively high 
model agreement on the wind changes in the climate models we examined.  

 

4.2. Insignificant Change in U.S. Landfalling Hurricane Intensity 

While the average maximum lifetime intensity of hurricanes increases for the Atlantic basin as a whole, the 
increase is not robust for U.S. landfalling hurricanes (Fig. 4 b, d) though the latter is a smaller sample in both 
space and time.  The increase in basin-wide hurricane intensity is consistent with other modeling studies 
(Knutson et al.  2020).  The key mechanism behind this change can be understood as the increase in 
environmental potential intensity due to greenhouse warming (e.g., Emanuel 1987).  In the GFDL Hurricane 
Model, Tuleya et al. (2016) have shown that the hurricane intensity increase with climate warming depends on a 
competition between intensification due to higher SSTs, and an offsetting reduction of intensity due to amplified 
warming of the upper troposphere compared to the surface.  They also documented the importance of 
environmental vertical wind shear for modeled hurricane intensity.  Here we review these potential 
environmental influences on our simulated hurricane intensities.  Maps of ensemble mean changes in potential 
intensity and vertical wind shear for the CMIP3 A1B, CMIP5 Early 21st century, and CMIP5 Late 21st century 
scenarios have been previously shown in Fig. 9 of K13.   Those maps show generally increased potential intensity 
near the U.S. TC landfalling regions but also increased vertical shear, especially in the Caribbean region, with 
decreased shear in some regions off the U.S. East Coast.  The increased vertical shear would, in a climatological 
sense, have negative impact on intensities for hurricanes traversing westward toward the U.S. across the 
western Caribbean and Gulf of Mexico.  Ting et al. (2019) have also examined the changes in projected vertical 
shear and potential intensity near the U.S., noting the reduced vertical shear along the East Coast and enhanced 
shear in the Caribbean region, the latter being a weakening influence on future Gulf Coast landfalling TCs.  We 
interpret the lack of robust projected change in the intensity of U.S. landfalling TCs overall in our study as 
resulting from several competing effects, including  increased potential intensity and regional-scale changes in 
vertical shear (which appear particularly important for limiting intensification in Gulf Coast region).    Another 
factor which can influence TC intensity is the change in ocean thermal structure (Huang et al. 2015), although 
this is currently thought to be of only secondary importance as discussed by Emanuel (2015) and Tuleya et al. 
(2016). 

In summary, we have only tentative confidence that there will be little change in average intensity of U.S. 
landfalling TCs, owing to the complexity of the problem and the competing influences of several important 
regionally dependent factors.  

4.3. Increase in Frequency of U.S. Landfalling Category 4-5 Hurricanes 
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The projected increase in U.S. landfalling Category 4-5 hurricane frequency (Fig. 3d) is potentially important for 
societal impacts, yet the statistical evidence in our experiments is not decisive (with three of 13 models 
indicating a statistically significant increase and ten of 13 models indicating at least a nominal increase).   In 
addition, only one landfalling Category 4-5 hurricane occurred in our control run (27 seasons) compared with 
three in observations--a bias which makes the projected increase in the model more difficult to interpret 
statistically.  Yet clearly there in a projected increase in our warm climate runs relative to the control.  This 
results from a number of competing factors.  For example, there is a decrease in the basin-wide number of 
hurricanes, but no significant change in the basin-wide number of Category 4-5 hurricanes.  This contrast at the 
basin-wide scale is presumably due to increased average TC intensity over the basin (K13), and it also implies 
that the probability of a given hurricane reaching Category 4-5 is projected to increase.   However, there is not a 
robust increase in the average intensity of U.S. landfalling hurricanes (Fig. 4d), nor is there an increase in the 
total number of U.S. landfalling hurricanes.  Apparently, the combined influence of the increase in proportion of 
hurricanes making U.S. landfall (and the proportion of Category 4-5 hurricanes making U.S. landfall) leads to an 
increase in total number of U.S. landfalling Category 4-5 storms despite there being no change in the basin-wide 
number of Category 4-5 hurricanes.  Clearly, the multiple factors contributing to the frequency of U.S. landfalling 
Category 4-5 hurricanes implies that it is a difficult metric to project.  Therefore, the projected increase in U.S. 
landfalling Category 4-5 hurricanes is a change for which we have only tentative confidence at present.   

 

4.4. Increase in TC Precipitation Rates  

Although we do not focus on TC rain rates as much as other TC metrics in the present study, here we discuss in 
some detail the TC rain rate behavior with climate warming over the Atlantic, including revisiting some previous 
studies that included more detailed analyses of our model framework (e.g., K13) as well other models.  The 
general mechanism producing an increase in TC precipitation rates with climate warming is the increase in 
tropospheric water vapor content in a warmer atmosphere, together with the moisture convergence 
mechanism which supplies moisture to a hurricane from its surrounding environment (Wang et al. 2015).  K13 
(see their Fig. 11) showed that the precipitation rate in the GFDL Hurricane Model increased the most (in 
percent) near the composite storm’s core rainfall region, and was especially large within about 100 km of the 
storm center.  This result influenced our choice of using TC rain rates averaged within 100 km of the storm 
center as our primary metric for this study.  K13 found that the TC rain rate increases were generally at or above 
the rate at which tropical tropospheric water vapor increases with warming [i.e., about 7% per 1o Celsius rise in 
SST (Held and Soden 2006)].  In our current study, the 18% increase in 100-km radius averaged rainfall rate also 
exceeds this Clausius-Clapeyron scaling, as the average tropical Atlantic SST increase is about 1.7oC, giving an 
expected increase in TC rain rate of 12% from water vapor increase alone, assuming constant relative humidity.    
Liu et al. (2019) found that increased TC intensity with climate warming can lead to “super-Clausius-Clapeyron” 
increases in projected TC rain rates.  As discussed above, there is some indication in our experiments for 
increased TC intensities with warming (especially considering basin-wide intensities).   

Overall, model-based evidence for a substantial TC rain rate increase with climate warming continues to grow.  
For example, Reed et al. (2021) modeled substantial increases in rain rates for U.S. landfalling TCs.  Considering 
TC rain rates over the Atlantic Ocean basin (as opposed to U.S. landfalling),  Patricola and Wehner (2018), Hill 
and Lackmann (2011) and several other studies reviewed in Knutson et al. (2020) reported  broadly similar 
sensitivities of TC rain rates to climate warming to those simulated here.   

The reasons for the higher percentage increase in TC rain rate for higher-intensity U.S. landfalling hurricanes 
(discussed in Section 3) remains uncertain, but this finding could be influenced by the relatively small sample 
size of intense U.S. landfalling TCs in our experiments.  Additionally, there is a strong observed relationship 
between the TC rainfall rate itself and TC intensity at landfall (Tuleya et al., 2007) which could play some role in 
this behavior. 
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In short, for TC precipitation at the time of U.S. landfall, our study supports previous findings of an increase in 
Atlantic basin-wide TC rain rates, with the caveat that the statistical significance and robustness across models is 
not as high for U.S. landfalling TCs as for basin-wide TCs.  Nonetheless, we have--at this stage--relatively high 
confidence that precipitation rates will increase for U.S. landfalling TCs with 21st century climate warming, based 
on results presented here as well as other assessments of TC precipitation changes (Knutson et al. 2020). 

 

5. Summary and Conclusions 

In this analysis, we explored future projections of U.S. landfalling TCs, examining a large number of cases 
generated using different climate model projections of large-scale environmental conditions, generally for the 
late 21st century under the CMIP3 A1B scenario or the CMIP5 RCP4.5 scenario.  We examined 13 different sets 
of projected warmed climate conditions based on 10 individual CMIP3 models or on the multi-model ensemble 
mean projection from the CMIP3 or CMIP5 models.  

A robust projection we simulated was an increase in the proportion of TCs making U.S. landfall.  Our analysis 
suggests that this increase is due primarily to changes in the climatological winds which impacted the large-scale 
steering by favoring TC movement more toward the U.S. East Coast.  These changes in the 300-850 hPa wind 
were evident in most of the CMIP model or ensemble model environments examined.  A second related 
influence was an increase in the percent of TC genesis occurring near the U.S. East Coast in our warm climate 
downscaling simulations.  However we have less confidence in the robustness of this influence, due to the 
existence of a positive bias in the frequency of TC genesis in this region in our control simulations.   

The increase in proportion of landfalling TCs led to an increase in the number of Category 4-5 hurricanes making 
U.S. landfall. This increase in Category 4-5 landfalling frequency averaged +390% across the model, with at least 
nominal increases projected for 10 of 13 models (with no change for the other three models); increases in three 
of 13 models were statistically significant.  This projection, while not definitive, contrasts with the robust 
decrease in Category 1-5 hurricane frequency projected for the Atlantic basin, the projected decrease in basin-
wide PDI, and the lack of significant change in the frequency of U.S. landfalling Category 1-5 hurricanes.  While 
basin-wide hurricane intensity increased, there was little significant change projected for intensity of U.S. 
landfalling hurricanes.  Duration of TCs showed a significant decrease (averaging -13%) while propagation speed 
showed a slight increasing tendency. 

Another robust projection was an increase in the precipitation rate for U.S. landfalling TCs—a signal that 
averaged 18% considering rain averaged within 100 km of the storm center for all categories of hurricanes.  At 
least near the storm, the change appeared to exceed the Clausius-Clapeyron rate of about 7% per degree Celsius 
of warming, but the changes overall were not as statistically significant for U.S. landfalling storms as for basin-
wide storms.  Furthermore, the magnitude of the projected increase was larger in percentage terms for more 
intense categories of landfalling hurricanes for reasons that were not clear.  The limited statistical significance 
for rain rates of U.S. landfalling TCs at landfall and the increased percentage change of rain rate for higher 
category TCs may both be related to the relatively limited number of cases available. 

 

There are several important caveats for our study.  First, the model framework shows limited skill in simulating 
the historical year-to-year variability of U.S. landfalling TC activity using SSTs and the NCEP/NCAR Reanalysis as 
large-scale climate forcings.  Excessive TC genesis near to and east of the U.S. East Coast in the control run raises 
some concerns about projected increases in TC genesis in those regions in the climate change scenarios.  There 
is also uncertainty in the climate change signal in large-scale environmental parameters, which is partly reflected 
in the spread of results across the different model-derived scenarios.  The spread shown in our various results 
cannot be assumed to represent the true confidence intervals for results in this study.    Despite these 



12 
 

limitations, it is important to test our models with such future climate change scenarios and continue to 
compare modeled scenarios with the growing observational database to work toward a better understanding of 
the changes in landfalling hurricane risk facing society in the coming decades.  
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Fig. 1. Distribution of tropical storm genesis locations (a, b) in events per year and tropical cyclone 
(TC) track density (c, d) in TC days per year based on IBTrACS observations (a, c) and downscaled 
simulations.  The downscaled simulations use the NCEP Reanalysis to provide the initial conditions, 
boundary conditions and the target for the large-scale interior spectral nudging  for the initial 
Zetac model Control (present day) simulations. The storms from Zetac model were further 
downscaled (individually by storm) using the GFDL Hurricane model.  Observations and models 
cover the months of Aug-Oct. for the years 1980-2016. The insets along the right edge of each 
panel show the zonally accumulated value for each row of grid points (or latitude row) on the map. 

 

Tropical Storm Genesis 

Tropical Cyclone Days 
d) 

IBTrACS Current Zetac/GFDL Hurricane Model: Control b) a) 

c)                 IBTrACS Current Zetac/GFDL Hurricane Model: Control 
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Fig. 2.  Annual (Aug.-Oct.) counts of Atlantic basin-wide (a, c, e, g) and contiguous U.S. 
landfalling (b, d, f) tropical cyclones in observations (blue) or as simulated in the 
downscaling framework using NCEP Reanalysis large-scale forcing.   Intensity categories 
are:  a,b) tropical storm and higher; c,d) Category 1-5 hurricanes; e,f) Major (Category 3-
5) hurricanes; or g) very intense (Category 4-5) hurricanes. The series means and 
correlations (r) between observed and modeled series are shown in each panel.  Dashed 
lines are linear trends.  Differing y-axis scaling is used. 

b) 
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f) 
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Fig. 3.  Summary comparison of hurricane activity measures for the Control (present day, 
thick line) and CMIP3 or CMIP5 warming climate scenarios (see x-axis labels).  In panels a-d 
the average number of storms per year of a given storm type is shown for: Atlantic basin-
wide a) Category 1-5 or b) Category 4-5 hurricanes, and for U.S. landfalling c) Category 1-5 
or d) Category 4-5 hurricanes.  Panels e,f show the fraction of storms making U.S. landfall 
for e) Category 1-5 or f) Category 4-5 hurricanes. The slightly larger “ringed” dots denote 
statistically significant changes according to a Mann-Whitney test. 

a) b) 

c) d) 

e) f) 
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Fig. 4.  Summary comparison of hurricane activity measures for the Control (present day) and CMIP3 or 
CMIP5 warming climate scenarios (see x-axis labels).  For each panel the percentage change (from 
present-day to warm climate scenario) in the given TC metric is shown. The slightly larger “ringed” dots 
significant statistically significant changes according to a Mann-Whitney test (see Table 1 in Appendix).  
Metrics include percent changes in: a) precipitation rate for U.S. landfalling TCs (within 100 km of the TC 
center); b) lifetime maximum 10 m wind speed intensity of Atlantic basin hurricanes; c) basin-wide 
average TC translation speed; d) maximum intensity (10 m wind speeds) at or just prior to U.S. landfall;   
e) basin-wide average TC duration; and f) TC basin-wide power dissipation index.  See main text and 
Supplemental Material (Table 1) for further details. 

a) b) 

c) d) 

e) f) 
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Fig. 5. Tracks of all tropical cyclones that made U.S. landfall while at Category 4 or 5 intensity based on: 
a) observations or b) NCEP Reanalysis-driven present-day simulations (Control) for Aug-Oct. of the years 
1980-2006.  The remaining simulation panels used the reanalysis variability from 1980-2006 while their 
mean climate conditions were altered from the reanalysis according to warming scenarios derived from: 
c) CMIP3 18-model ensemble (late 21st century A1B scenario); d, e) CMIP5 multi-model ensemble early 
(d) and late (e) 21st century RCP4.5 scenarios; or f-o) individual CMIP3 models. See text for details. 

US Landfalling Cat 4-5s 

(27 seasons: Aug-Oct.) 

a) Observed – 3 storms (1980-2006) 

b) c) 

d) e) 

f) g) 

i) 

h) 

j) k) 

l) m) n) 

o) 
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Fig. 6.  Each panel shows the difference in percentage of total TC days occurring at each grid 
point between the warm climate and control climate (warm minus control).  In panel (n) the 
average of the 10 individual CMIP3 model results is shown, with dots where results from 8 or 
more of the 10 individual CMIP3 models agree on the sign of change.  The insets along the 
right edge of each plot (a-n) show the difference between the zonal accumulated values for 
the warm climate runs minus those of the control run.  
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Fig. 7.  Each panel shows the difference in the percentage of total TC genesis events occurring at 
grid point, with the difference taken between the warm climate and control climate maps (warm 
minus control).  In panel (n) the average of the 10 individual CMIP3 model results is shown, with 
dots where results from 8 or more of the 10 individual CMIP3 models agree on the sign of change.  
The insets along the right edge of each plot (a-n) show the difference between the zonal 
accumulated values for the warm climate runs minus those of the control run.       
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Fig. 8.  Change (warm climate minus control) in the climatological average of the 
vector winds in the 300-850mb layer.  This is an approximate indicator of the 
change in steering flow that TCs on average would experience.  Panel titles 
identify the model or model ensemble shown.  Solid white shading:  magnitudes 
exceeding 2 m s

-1
.  
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This supplemental material contains a detailed Methodology section and Table 1, which is a  
detailed series of TC metrics and their response to climate change as discussed in the main text.  

1. METHODOLOGICAL DETAILS  
1.1  Overview  

Our study explores 21st century climate change projections for U.S. landfalling hurricane  
activity using a two-step dynamical downscaling framework, together with tropical climate change  
projections from multiple CMIP3 and CMIP5 climate models-- the same models as used in K13.  In  
addition to the present-day runs, 13 CMIP3 or CMIP5 climate change scenarios were explored.    

In the earlier study, the highest resolution simulations with the GFDL hurricane model (i.e.,  
the second step of our two-step downscaling procedure) were limited to five days in length, as we  
were closely following the procedures of the operational GFDL hurricane model from that time  
period, which had some operational limitations.  Specifically, in Knutson et al. (2013; hereafter K13)  
each five-day downscaling case was started from initial conditions, obtained from the 18 km grid  
Zetac regional atmospheric model (Knutson et al. 2007; hereafter K07), beginning two days prior to  
the storm’s time of maximum intensity as simulated in the Zetac model.  The Zetac model  
simulated hurricanes only up to about 50 m s-1 intensity in terms of surface wind speed, which was  
one reason why the second downscaling step using the higher-resolution GFDL hurricane model  
(with 9 km spacing for the inner grid) was necessary.  In contrast, in the present study, we wish to  
focus on the U.S. landfalling stages (meaning here landfalling for the Contiguous U.S., i.e., excluding  
Hawaii, Puerto Rico, Guam, etc.).  We also focus, using higher resolution, on simulating realistic  
storm intensity and structure throughout each storm’s life cycle.  We initialize each high-resolution  
hurricane model simulation (storm case) using initial conditions from the regional Zetac model at  
the time when tropical storm intensity of 17.5 m s-1 is first reached in the Zetac model, and then  
integrate the hurricane model forward for 15 days.    

The methodology for our study mostly follows that in K13, K07, and Bender et al. (2010),  
and is described in detail in those studies.  Here the methodology is presented only in abbreviated  
form, where we focus mainly on aspects of the methodology that differ from K13 and K07.  The  
reader is referred to these previous studies for further details.    

1.2   Experimental Design for Present-day Hurricane Simulations  

The simulation of Atlantic hurricanes proceeds in in several stages.  We performed control  
(present-day) and climate change simulations for 27 seasons (1980-2006, and modified “warm- 
climate” versions of the 1980-2006 seasons). Before we perform climate change simulations, we  
first want to assess how well our complete modeling system is able to simulate Atlantic hurricane  
activity and its interannual variability for a given set of environmental conditions.  To explore this,  
we first test our system by initializing and forcing it with present-day large-scale climate conditions  
as defined by the time-evolving NCEP/NCAR Reanalysis I (Kalnay et al. 1996) of the atmosphere and  
observed sea surface temperatures (SSTs).   Because during our projected we decided that we  
wanted more robust statistics for the correlations between simulated and observed interannual  
variability, we expanded the years of our control simulation through 2016 (i.e.,  1980-2016), though  
not the entire analysis, which was much more computationally expensive.  In a few cases,  
intermediate ending year results are presented here (i.e., 1980-2013).    
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For each year analyzed (e.g., 1980-2016), we simulate the three-month period August- 
October with the regional 18-km grid Zetac regional model, using the reanalysis to provide lateral  
boundary conditions, the atmospheric initial conditions, and the time-evolving target fields for  
interior spectral nudging of the very large scale (zonal and meridional wavenumber 0-2 of the  
regional domain) atmospheric environment, with a nudging timescale of 12 hours.  Note that since  
only the large-scale atmospheric conditions are used as our interior spectral nudging target a high- 
resolution atmospheric analysis is not required for the nudging.   

The simulations were limited to the peak three months of the Atlantic TC season (Aug. –  
Oct.) to save on computation requirements, which may introduce some uncertainty to our results,  
particularly if aspects of seasonality, such as the length of the Atlantic TC season, were to change  
with climate warming.  For example, Dwyer et al. (2015) find that in model projections, models that  
project fewer TCs with climate warming also simulate shorter seasons, and vice versa for models  
projecting more TCs.  This potential limitation of our Aug.-Oct. season approach should be kept in  
mind in interpreting our results.  The model was run over specified time-evolving SSTs.  The Zetac  
regional model is a nonhydrostatic model run here without convective parameterization (see K07  
for details).    

Tropical storm cases are identified in these three-month simulations using the automated  
TC search procedure described in K07, including a requirement for warm-core structure, surface  
wind speeds for the storm feature of at least 17.5 m s-1, and total duration of at least  48 hours (not  
necessarily consecutive hours) at an intensity of at least 17.5 m s-1.  Landfalling TCs for the  
Contiguous U.S. (CONUS) were defined by the intersection of the surface center of the TC (defined  
by the minimum in surface pressure) with the coastline  
(https://www.nhc.noaa.gov/aboutgloss.shtml), where the land region was defined as the 48  
contiguous states (excluding Alaska and Hawaii).  Multiple CONUS landfalls by a single storm were  
counted as separate landfalls in our statistics.  

Each individual tropical storm case from the Zetac regional model was then re-run as an  
individual 15-day case study using the GFDL Hurricane Model.  The GFDL Hurricane Model is a high- 
resolution coupled regional prediction model that was used operationally by the National Weather  
Service (NWS) from 1995 (Bender et al. 2007; 2010) until it was retired from operations in 2017.  
The version used in this study was the model used in Bender et al. (2010), which was the version  
that was operational from 2006 through 2010.    The model consists of a triply nested moveable  
mesh system designed for hurricane track and intensity prediction, and has grid-spacing of about  
8.5 km in the innermost 5ox5o nest.  The GFDL Hurricane Model cases are initialized at the time a  
given tropical storm (see criteria above) first reaches tropical storm strength, as opposed to being  
initialized after it has reached at least 48 hours duration at tropical storm strength.  About 13% of  
tropical storm genesis events identified in the Zetac regional model failed to survive and develop as  
storms after being initialized into the GFDL Hurricane Model.   In those cases, we attempted to  
restart the case using initial conditions from six hours later in the Zetac simulation, and in most  
cases (about 70% of such cases) the storms did survive and were tracked.  If, after this second  
attempt, a storm case still failed to survive even a few timesteps in the model, the case was  
discarded and was not counted as a genesis event or further analyzed in our GFDL Hurricane Model  
analyses. About 4% of Zetac tropical storm genesis cases were discarded for this reason.    
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The atmospheric component of the GFDL Hurricane Model has been coupled to the  
Princeton Ocean Model since 2001 (Bender et al. 2007) and for the present-day simulations uses a  
realistic present-day climatology of ocean subsurface temperature and salinity (U.S. Navy GDEM, or  
Generalized Digital Environmental Model) so that the hurricane model is able to simulate a realistic  
ocean response to the strong hurricane forcing, including generation of a “cold wake” in the SST  
field as it passes over the ocean (Bender et al. 2007). Following the procedure used operationally  
(2006-2010) for storm initialization, the ocean model state for each storm case was initialized by  
running the ocean model for two days using the GDEM climatology values for ocean temperature  
and salinity with SSTs prescribed.  During this first step, a sharpening technique is employed in  
order to assimilate a reasonable climatologically based Loop Current and Gulf Stream ocean  
structure (Yablonsky et al. 2015).  Next, starting three days prior to the storm case start date,  
atmospheric forcing is imposed, based on the model’s storm wind field.  In this second step, the  
SSTs as well as ocean temperatures and salinity are allowed to evolve.  This procedure is used to  
initialize the cold wake in the SST and ocean temperature field due to the passage of the storm.   A  
limitation of the version of the operational GFDL Hurricane Modeling System used in this study was  
that the dynamical ocean domain did not cover the full North Atlantic basin but rather the coupled  
model used two separate ocean model domains—one covering the central to eastern Atlantic and  
the other the central to western Atlantic (see Fig. 5 of Bender et al. 2007).  Therefore, storms  
traversing the central Atlantic could run off one of these grids and lose their ocean coupling.   
However since the two ocean grids were overlapped, when this occurred, we restarted the storm  
on the second ocean grid before the coupling was lost and then continued the simulation with full  
ocean coupling until landfall.  Since this happened only for a small subset of runs, and the transition  
occurred very far from U.S. landfall, and was treated the same for both present-day and warm  
climate experiments, we believe that this limitation of our model framework was very unlikely to  
affect our overall conclusions.  

In addition, during the 15-day integrations, the time-mean state of the atmospheric fields  
in the GFDL Hurricane Model tended to drift from the initial state (taken from the Zetac model)  
toward the GFDL Hurricane Model’s climatological state, which differed from that of the host  
(Zetac) regional model.  However, the average drift that occurred was found to be similar for  
present-day climate and future warm climate scenarios, so that any systematic effects of the drift  
on the storm characteristics should be similar in the present-day and warm climate cases.   
Therefore the drift should have little influence on the modeled TC climate change responses.     

  

1.3  U.S. landfalling TC tracks:  Zetac model vs. GFDL Hurricane Model  

To illustrate some of the basic simulation characteristics of storms in the Zetac regional  
model vs. the GFDL Hurricane Model, Fig. S1 compares the tracks and intensities of simulated U.S.  
landfalling TCs from the two modeling systems for the years 1980-2013.  The tracks from the higher  
resolution model resemble those of from the Zetac regional model, although the intensities clearly  
extend to higher categories (up to category 5) in the hurricane model compared to the Zetac  
model, as expected due to the coarser resolution of the Zetac model.  Almost no track segments  
above category 1 are found in the Zetac regional model simulations.   This illustrates the basic  
advantage of including the second downscaling step into the GFDL Hurricane Model:  to simulate  
TCs with intensities higher than category 1 (see also Bender et al. 2010 and K13).    The remaining  
figures and analyses in this report are based on the GFDL Hurricane Model simulations.   
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Figure S1 also shows that the tracks in the Zetac regional model do not extend poleward of  
about 43oN while tracks terminate even further south (near 38oN) in the GFDL Hurricane Model  
simulations. These track truncation effects, which can affect the duration of storms, are due to the  
presence of the Zetac regional model boundary at 45oN and the difference in each model’s  
structure and tracking algorithm. In the Zetac model tracks typically end as storms decay as they  
approach the model’s boundary. In addition to these limitations, the GFDL model tracks terminate  
further from the boundary than the Zetac model’s storms due to the interaction of the model’s   

   

Fig. S1.  U.S. landfalling tropical storms and hurricanes for the years 
1980-2013 as simulated by: a) the Zetac regional model based on initial 
conditions, boundary conditions, and large-scale interior spectral nudging 
targets derived from the NCAR/NCEP Reanalyses for Aug.-Oct. seasons; and 
b) the GFDL hurricane model using all tropical storm genesis cases from the 
Zetac regional model (both landfalling and non-landfalling cases in Zetac) as 
initial conditions and boundary conditions for higher-resolution downscaled 
simulations, but plotting only contiguous U.S. landfalling hurricane model 
cases.  

 

a) Zetac regional model 

b) GFDL Hurricane Model downscaled storms 
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moveable nests with the outer boundary; storms cannot be tracked in the GFDL model closer than  
within about 7o of the model outer boundary partly due to restrictions on the movement of the  
nested grids.  

The observed tropical storm genesis points and tropical storm tracks from IBTrACS s in Fig.  
1 of the main text are based on the official Best Track data from the National Hurricane Center.   
Model tropical storm genesis occurrences  are determined from the Zetac regional model runs  
(except for storms which failed to run even 6 simulated hours in the hurricane model), and are  
based on the tropical storm identification scheme described above.  The identification scheme  
includes requirements for a warm core, surface wind speed intensity, and duration model (i.e., 48  
hours duration—not necessarily consecutive--with tropical warm core characteristics and intensity  
of at least 17.5 m s-1) in the Zetac regional.  The storms that were simulated in the GFDL hurricane  
model were not further tested for warm core characteristics, but were classified hurricanes of  
various categories if the surface wind speeds reached the required thresholds.    

1.4 Details of Construction of Climate Change Downscaling Simulations  

Following on the above-mentioned present-day simulations and analysis of Atlantic  
hurricane seasons using our two-step downscaling simulations, we next analyze similar sets of  
experiments, but this time applying a set of climate change conditions.  We focus here on 27  
seasons (1980-2006) for computational efficiency.    

We first created a series of climate change “delta” fields, which we added to the  
NCEP/NCAR Reanalysis, to create a series of warm-climate perturbation experiments that use  
realistic conditions (i.e., the reanalysis) as the baseline case.   Specifically, we use changes in SST,  
surface pressure, air temperature, relative humidity, and winds to modify the NCEP/NCAR  
reanalysis fields that are used as boundary forcing and as the nudging target for the interior  
spectral nudging procedure with the Zetac regional model.  As described in K13, for CMIP3 models,  
these perturbations included an 18-model ensemble average perturbation (models listed in K13),  
which was the August-October average of 2081-2100 minus 2001-2020 for the Special Report on  
Emission Scenarios A1B (SRES A1B) scenario.  Then for each of the 10 individual CMIP3 models used  
in this study (identified in the figures of this study), we created individual model climate change  
perturbation fields.  For this, we first computed the linear trend of each model’s data for the period  
2001-2100.  We then projected this linear trend through time to compute an effective “linear trend  
difference” between the 2081-2100 period and the 2001-2020 baseline period. Our experimental  
design re-uses the observed interannual variability from the NCEP/NCAR Reanalysis for the climate  
change experiments, which is an assumption that the interannual variability of these fields does not  
change with climate change.  We chose this assumption because projected changes in interannual  
variability of these fields are generally assessed as having less confidence than changes in the large- 
scale time-mean environmental fields, although this implies some additional uncertainty for our TC  
projections.  We constructed two 18-model ensemble-mean CMIP5 model warm-climate scenarios  
using the 2016-2035 (early 21st century) or 2081-2100 (late 21st century) period of the CMIP5  
RCP4.5 scenario versus the baseline period of 1986-2005 of the CMIP5 historical runs (see K13 for a  
list of the 18 models).  The global temperature difference between present-day and the warm- 
climate condition was 1.69oC for CMIP3 vs. 1.70oC for the CMIP5 late-21st century case. In  
sensitivity experiments, we found that hurricane model intensity changes in the warm climate  
scenarios were relatively insensitive to the small increase in the ocean subsurface vertical  
temperature gradients associated with the SST warming scenarios (see also Tuleya et al. 2016).   
Therefore, following Knutson et al. (2013) for the ocean subsurface temperature profiles in the  
warm climate runs, we used the 18-model ensemble average three-dimensional ocean structure  
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change from the CMIP3 models to represent the change in ocean temperature stratification in the  
warmer climate for all of the hurricane model climate change experiments in this study.  

  

2. DETAILED MODELED RESPONSE  OF TC METRICS TO CLIMATE WARMING  

Details of the simulated response of various TC metrics to the climate warming  
experiments are presented in Table 1.  Key results from Table 1 are summarized and discussed in  
the main text (Fig. 3 and 4).   In Table 1, to focus on results from our experiments where most  
models agree on the sign of the projected changes, we examine both the level of agreement across  
the models for projected changes for a given metrics, along with statistical significance test  
indicators for the individual model results.  Mann-Whitney statistical tests for differences in means  
were performed, assuming that the 27 separate seasons (years) are independent samples. Using  
this summary approach, Table 1 (and Figs. 3 and 4 or the main text) examine two distinct but  
important sources of uncertainty in projections:  modeling uncertainty as indicated by the  
agreement in sign of the projected change for the 13 different models, and internal variability  
uncertainty, as estimated by statistical significance testing on the 27 different samples (years) from  
each model’s experiments.    
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Table 1.  Summary projections for various Atlantic (basin-wide) or U.S. landfalling TC metrics.   
Underlined bold text indicates values that are statistically significant at the 0.05 level based on a  
Mann-Whitney test.   Column A (Control) refers to the control run values of the TC metrics, derived  
from downscaling NCEP Reanalyses (1981-2006).  Remaining columns (B-N) refer to percent changes in  
the TC metric for the given climate change scenario or model, as identified in the “Key to columns”  
below.  The final column (“Average”) shows the average of the percent changes in columns B-N, with  
the value in parentheses indicating the number of models that simulated the same sign change as the  
average change.  “lf” = landfalling storms over the contiguous U.S.; TS = frequency (annual number of  
storms) of tropical storm-strength (sub-hurricane strength); H1…H5 = frequency of category 1…5  
hurricanes; all TCs = frequency of all tropical storms and hurricanes combined; hur (cat 1-5) =  
frequency of all hurricanes (category 1-5); mhur (cat 3-5) = frequency of major hurricanes of category  
3-5; hur45 = frequency of category 4 & 5 hurricanes;  lf_TS = frequency of U.S. landfalling sub- 
hurricane strength storms; lf_all_TCs = frequency of all U.S. landfalling tropical storms and hurricanes;  
lf_maxwnd_all_TCs = average  maximum wind intensity at landfall of U.S. landfalling tropical storms  
and hurricanes (m s-1); PDI = power dissipation index in units of 109 m3 s-2; max_wind_all_TCs = average  
lifetime maximum surface wind speed for all tropical storms and hurricanes combined (m s-1);   
duration = storm accumulated lifetime with at least tropical storm strength (days); trans speed =  
average propagation speed of storm (m s-1); rain_all_TCs = spatially averaged rain rate within 100 km  
of storm center for all tropical storm and hurricane, averaged over all time periods where wind  
intensities exceeded 17.5 m s-1  (in mm day-1); lf_rain_all_TCs = average rain rate within 100 km of  
storm center of all tropical storms and hurricanes at time of U.S. landfall (mm day-1).  For basin-wide  
statistics, results labeled TS, all TCs, or related metrics include track segments where the storm was  
below tropical storm intensity. Also included were the complete tracks of a small percentage of weak  
TCs that reached tropical storm status in the parent regional model experiments but never reached  
tropical storm strength in the downscaled runs.  For U.S. landfall proportions, the control values and  
percent changes are for the fraction of storms of a given category or range of categories that make  
U.S. landfall.  The U.S. landfall proportion is calculated as the ratio of all U.S. landfalling storms to the  
sum of all landfalling and non-landfalling storms, with storm counts accumulated over all seasons prior  
to computing the ratio.  Statistical significance tests, typically done in the Table by comparing across  
individual seasons for a given model, were not performed for the U.S. landfall proportions.   The PDI  
for each season is sum of the modeled TC intensities raised to the third power, accumulated over each  
storm’s lifetime and accumulated over the all storms for a season.  It is one measure of the aggregate  
intensity, frequency, and duration combined for TC winds, aggregated over the basin and the entire  
season.      

Key to columns in table.  

  A Control     H CMIP3_mri  
  B CMIP3_ens18    I CMIP3_gfdl-cm20 
  C CMIP5_EARLY    J CMIP3_hadgem1 
  D CMIP5_LATE    K CMIP3_miroc-hi 
  E CMIP3_gfdl_cm2    L CMIP3_ccsm3 
  F CMIP3_mpi    M CMIP3_ingv 
  G CMIP3_hadcm3    N CMIP3_miroc-med 
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Table 1.  Summary Results.  

METRIC: 
A. 

Control 
Model 

B 
(% 

C 
Change) 

D E F G H I J K L M N Average 

Basin-wide frequency                

TS  2.704 -9.6 -2.7 2.7 -9.6 -8.2 -8.2 -16.5 0.0 -30.1 4.1 -13.7 -12.4 -28.8 -10.2 (10) 

H1 2.37 -45.3 -26.5 -45.3 -35.9 -39.1 -59.4 -28.1 -32.8 -54.7 -56.2 -32.8 -34.3 -51.6 -41.7 (13) 

H2 1.852 -56.0 -10.0 -36.0 -48.0 -52.0 -68.0 -58.0 -10.0 -62.0 -60.0 -18.0 -50.0 -62.0 -45.4 (13)   

H3 2.296 -25.8 -37.1 -33.8 -24.2 -58.1 -75.8 -22.6 -17.7 -79.1 -62.9 -27.4 -38.7 -61.3 -43.4 (13) 

H4 1.37 10.9 -8.1 2.7 24.4 -27.0 -62.1 0.0 64.9 -81.1 -18.9 0.0 -2.7 -24.3 -9.3 (7) 

H5 0.185 80.0 -40.0 120.0 280.5 80.0 20.0 120.0 360.5 -80.0 20.0 20.0 180.5 80.0 95.5 (11) 

all_TCs 10.778 -24.7 -17.9 -20.3 -15.8 -34.0 -50.5 -23.0 1.7 -58.8 -37.1 -19.2 -24.7 -44.0 -28.3 (12) 

hur (cat 1-5) 8.074 -29.8 -22.9 -28.0 -17.9 -42.7 -64.7 -25.2 2.3 -68.3 -50.9 -21.1 -28.9 -49.1 -34.4 (12) 

mhur (cat 3-5) 3.852 -7.7 -26.9 -13.5 7.7 -40.4 -66.4 -7.7 29.8 -79.8 -43.3 -15.4 -15.4 -41.4 -24.6 (11) 

hur45 1.556 19.0 -12.0 16.6 54.7 -14.3 -52.4 14.3 99.9 -81.0 -14.3 2.4 19.0 -12.0 3.1 (7) 

                

Landfalling frequency                

lf_TS  0.815 -22.7 -9.1 40.9 4.5 13.6 36.3 0.0 22.7 4.5 -22.7 9.1 54.5 -18.2 8.7 (8) 

lf_H1 0.444 -16.7 25.2 16.9 -8.3 -33.3 -66.7 25.2 41.9 -41.7 -8.3 91.9 0.0 -33.3 -0.6 (7) 

lf_H2 0.259 -28.6 114.7 28.6 14.3 -57.1 -42.9 0.0 28.6 -42.9 -14.3 14.3 28.6 -42.9 0.0 (--) 

lf_H3 0.259 -57.1 42.9 -57.1 28.6 -14.3 -71.4 -42.9 85.7 -71.4 -28.6 -14.3 42.9 -42.9 -15.4 (9) 

lf_H4 0.037 300.0 100.0 800.0 700.0 0.0 200.0 500.0 1200.0 0.0 0.0 0.0 300.0 100.0 323 (9) 

                

lf_all_TCs 1.815 -20.4 26.5 34.7 28.5 -10.2 -10.2 12.2 63.3 -24.5 -18.4 26.5 42.9 -26.6 9.6 (7) 

lf_hur (cat 1-5) 1 -18.5 55.6 29.6 48.1 -29.6 -48.1 22.2 96.3 -48.1 -14.8 40.7 33.3 -33.3 10.3 (7) 

lf_mhur (cat 3-5) 0.296 -12.5 50.0 50.0 162.8 0.0 -25.0 37.5 237.8 -62.5 -25.0 -12.5 87.8 -25.0 35.7 (6) 

lf_hur45 0.037 300.0 100.0 800.0 1100.0 100.0 300.0 600.0 1302.7 0.0 0.0 0.0 400.0 100.0 392 (10) 

                

Landfalling Intensity                

lf_maxwnd_all_TCs 36.364 -4.0 0.6 -3.3 4.8 -11.3 -13.0 -3.4 10.6 -15.4 -9.0 -5.3 -1.2 -3.9 -4.1 (10) 

lf_maxwnd_hur 45.944 -0.6 -3.7 5.8 13.6 3.2 3.5 3.0 11.1 -2.6 -2.5 -5.5 5.3 -0.8 2.3 (7) 

                
Misc. Basin-Wide TC Metrics  
PDI 381.994 -14.0 -29.0 -19.1 1.3 -36.0 -65.5 

 
-20.7 22.1 -80.5 -43.1 -12.5 -20.0 -43.4 -27.7 (11) 

max_wind_all_TCs 43.367 3.5 -1.4 0.7 7.3 -2.8 -10.8 
 

3.6 8.9 -12.7 -5.1 1.2 3.3 2.2 -0.2 (5) 

max_wind_hur 49.417 8.1 1.2 6.0 9.7 4.1 1.4 
 

5.7 10.4 -6.9 6.0 3.4 6.2 6.4 4.7 (12) 

duration 7.367 -7.1 -12.1 -9.1 -9.9 -16.1 -28.7 
 

-8.9 -8.8 -28.1 -25.0 1.3 -8.7 -12.2 -13.3 (12) 

trans_speed 5.658 3.1 -1.7 2.9 12.8 2.8 -2.1 
 

0.5 10.1 3.8 3.6 3.7 1.5 -2.5 3.0 (10) 

        
 

        
Basin-wide TC Rain- 
Rate:        

 
        

rain_all_TCs 163.2 24.7 10.9 19.5 32.8 21.3 13.8 
 

21.1 29.0 -9.2 27.5 14.4 18.9 18.1 18.7 (12) 

rain_hur (cat 1-5) 234.252 23.9 10.6 23.3 29.4 24.2 28.7 
 

25.8 28.7 1.7 29.1 10.2 20.7 25.8 21.7 (13) 

rain_mhur (cat 3-5)  341.269 19.9 12.9 20.9 24.0 14.2 20.3 
 

21.2 25.3 12.1 21.6 14.8 15.4 22.1 18.8 (13) 

rain_hur45 421.257 24.8 15.7 21.9 24.3 7.4 20.0 
 

22.1 20.9 14.9 25.5 16.5 17.6 24.6 19.7 (13) 
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Table 1, contd.        
 

        

        
 

        

 Model: (%t Change)     
 

        

METRIC: Control B C D E F G 
 

H I J K L M N Average 

        
 

        
Landfalling TC Rain 
Rate:        

 
        

lf_rain_all_TCs 169.65 14.5 13.6 24.9 40.4 34.3 -4.3 
 

31.5 43.5 -11.4 8.1 8.5 19.6 16.2 18.4 (11) 

lf_rain_hur (1-5) 223.406 13.9 7.2 29.3 55.2 44.6 25.4 
 

29.1 41.7 8.0 21.4 8.2 31.5 20.0 25.8 (13) 

lf_rain_mhur (cat 3-5) 279.786 45.3 6.2 46.8 51.7 52.5 36.4 
 

35.7 38.9 28.7 24.6 13.5 42.6 55.3 36.8 (13) 
 
lf_rain_hur45 160.66 204.1 52.8 165.4 213.5 229.2 238.8 

 
183.4 191.9 157.1 279.5 152.9 254.0 186.6 193 (13) 

      
 

        

        
 

        

        
 

        

US Landfall proportions       
 

        
TS  0.301 

-14.5 
-6.5 37.1 15.7 23.8 48.6 

 
19.7 22.7 49.6 -25.7 26.4 76.2 14.9 22.2 (10) 

H1 0.187 52.4 70.5 113.8 43.0 9.4 -18.0 
 

74.2 111.1 28.7 109.5 185.5 52.3 37.6 66.9 (12) 

H2 0.140 62.3 138.5 100.9 119.8 -10.7 78.5 
 

138.0 42.8 50.3 114.2 39.3 157.1 50.3 83.2 (12) 

H3 0.113 -42.3 127.1 -35.2 69.6 104.4 18.0 
 

-26.2 125.7 36.4 92.5 18.1 133.1 47.6 51.4 (10) 

H4 0.027 260.8 117.6 776.3 543.2 37.0 691.9 
 

500.0 688.4 429.0 23.3 0.0 311.1 164.2 349 (12) 

        
 

        

all_TCs 0.168 5.7 54.0 68.9 52.7 36.1 81.5 
 

45.8 60.5 83.1 29.8 56.6 89.8 31.1 53.5 (13) 

hur (cat 1-5) 0.124 16.1 101.9 79.9 80.4 22.8 46.9 
 

63.4 91.9 63.9 73.6 78.3 87.5 31.0 64.4 (13) 

mhur (cat 3-5) 0.077 -5.2 105.3 73.4 144.1 67.8 122.9 
 

48.9 160.3 85.7 32.2 3.4 122.0 27.9 76.0 (12) 

hur45 0.024 236.1 127.2 671.6 675.7 133.5 739.9 
 

512.6 601.6 425.7 16.7 -2.3 320.1 127.2 353 (12) 
  

  

 

 

 
 

 


