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FV3 Community GitHub
Official site for FV3 releases, 
examples, issue tracking, 
documentation, and more

Fork FV3 on GitHub

Examples directory: Jupyter notebooks
demonstrating FV3 capabilities.
Updates released regularly.

github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere 3



SHiELD and 
solo FV3 Container

• Convenient, portable, and reproducible 
SHiELD and FV3 demonstration
• 35-km regional and nested domains
• Includes idealized “solo_core” 

FV3 tests

• Docker and Singularity containers run on 
supercomputers, workstations, and 
laptops

shield.gfdl.noaa.gov/shield-in-a-box/
Cheng et al. 2022a

Jeevanjee and Zhou (2022)

Literature



The FV3 Way
ØPhysical consistency
ØFully-FV numerics 
ØComponent coupling
ØComputational efficiency

FV3 for the 2020s
Rigorous Thermodynamics
Flexible dynamics
Adaptable physics interface
Variable-resolution techniques
Regional & periodic domains
Powerful initialization, DA, 
      and nudging functions

Lin & Rood 1996 
Efficient 2D high-order 
conservative FV transport
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Figure 2. Schematics of the two-grid system: the 'CD-grid'. The time-centered advective winds (u * ,  v*) (the 
hollow arrows) are staggered as in the C-grid (as in Fig. 1) whereas the prognostic winds (u", u")  (the solid arrows) 

are staggered as in the D-grid. The cell-averaged relative vorticity is computed by the Stokes theorem. 

both cases, however, the diffusion is scale-dependent and nonlinear. As argued in Rood 
et al. (1992), there is some evidence that the nonlinear diffusion associated with monotonic 
advection schemes can be interpreted physically, at least for stratospheric tracer problems. 
Consequently, in the current implementation of the FFSL algorithm for solving the shallow- 
water equations no explicit diffusion will be needed. 

Another important difference between the FFSL algorithm and AL's method is in the 
way absolute vorticity is transported in a general divergent flow. In the current approach 
the discretized h and S-2 fields are taken as cell-averaged values, not point-wise values, and 
the same scheme is used for transporting h and a, regardless of the divergence of the flow. 
Functional relations between h and C2 can therefore be better preserved. In AL's approach, 
the equation for the fluid depth h (Eq. (10)) is centre-differenced in a straightforward 
manner while (1 1) and (12) are centre-differenced, in a more sophisticated way, to achieve 
the goal of vorticity transport by the Arakawa Jacobian for non-divergent flow. Therefore, 
the transport scheme for h and C2 in AL's approach will be, in general, different. As a 
consequence, an initial linear and/or nonlinear functional relationship between these two 
conservative variables will be lost during the course of time integration. Therefore, the 
AL approach does not maintain the analytic relationships which are derived from basic 
physical principles. 

To achieve the goal of transporting h and C2 by exactly the same manner, an obvious 
requirement is that h and C2 be defined at the same point (or, in the finite-volume sense, 
enclosed in the same cell). Since our prognostic variables are h and (u , v), rather than h and 
(a, q) ,  the D-grid arrangement (see Fig. 2) is the logical choice. As tangential winds are 
defined along the cell boundaries, the D-grid is ideally suited for computing the circulation 
(and hence, the cell-averaged relative vorticity, in the mean value theorem sense). It is 
also the best grid on which to compute geostrophically balanced flow. It is known that 
any single-grid system, other than the C-grid or the Z-grid (Randall 1994), generates two- 
grid-length gravity waves. This problem can be avoided by computing the time-centred 
advective winds (u*, v*) on the C-grid, as required by the multidimensional FFSL scheme 

Lin & Rood 1997 
FV horizontal solver focusing on 
nonlinear vorticity dynamics 

Lin 1998–2004  FV core with “floating” Lagrangian 
vertical coordinate

OCTOBER 2004 2299L I N

FIG. 2. The surface pressure perturbation and the temperature at the lowest model layer at day 10 for (top to
bottom) three different horizontal resolutions.

hydrostatic pressure as defined by Eq. (23) as the re-
mapping coordinate. We outline the remapping proce-
dure as follows:

Step 1: Define a suitable Eulerian reference coordi-
nate. The surface pressure typically plays an ‘‘an-

choring’’ role in defining the terrain-following Eu-
lerian vertical coordinate. The mass in each layer
(dp) is then computed according to the chosen Eu-
lerian coordinate.

Step 2: Construct vertical subgrid profiles of tracer
mixing ratios (q), zonal and meridional winds (u,

Putman & Lin 2007
Scalable cubed-sphere grid, 
doubly-periodic domain

Lin 2006, X Chen & Lin et al 2013 
Consistent Lagrangian nonhydrostatic 
dynamics

shows the Gaussian bubble results from the Eulerian
configuration, while the second row shows the same
results from the Lagrangian configuration. The output
times for the Gaussian bubble results are 0, 6, 12, and
18 min. The last row shows the uniform bubble test, with
the left two subplots from the Eulerian configuration
while the right two are from the Lagrangian configura-
tion. The grid size for all the results was Dx5 Dz5 5 m,
and the time step Dt 5 0.007 s scales with the grid
spacing. The color range is presented from 0 to 0.5 K for
comparison purposes with the results shown by Robert
(1993). The output times for the uniform bubble results
are at 7 and 10 min. The AUSM1-up method was also
tested with the Eulerian configuration and shows almost

identical results (figures omitted), but requires about
50% more computer time compared to the LMARS
method.
Since no limiter is applied in either interpolation

scheme for the variables or remapping, two grid-size
waves can be observed. These waves do not grow or
cause instability. Figure 2 provides a clearer picture of
theses small-scale oscillations. It shows the cross section
at the center of the uniform bubble test for the 7-min
plot (the dashed line in the bottom-left plot in Fig. 1).
The oscillations are especially present near the sharp
edges of the rising uniform bubble.
In Fig. 1, the 6- and 12-min results for the two different

coordinate configurations agree well with each other

FIG. 1. (top two rows) The potential temperature (PT) (K) for a Gaussian bubble pertur-
bation in a 1 km by 1.5 km domain using (top) the Eulerian coordinate and (middle)) the
Lagrangian coordinate: (left to right) t 5 0–18 min. (bottom) An initial uniform bubble per-
turbation in a 1 km by 1 km domain using (left two panels) the Eulerian coordinate and (right
two panels) the Lagrangian coordinate: (from left to right) t5 7–10 min. The grid spacing of all
results is 5 m. The cross section of the PT perturbation along the dashed line in the bottom-left
panel is presented in Fig. 2.

JULY 2013 CHEN ET AL . 2535

Harris & Lin 2013, 2016
Variable resolution with two-way 
nesting and Schmidt grid stretching

METHOD FOR COMPUTING PRESSURE GRADIENT FORCE 1751 

Figure 1. The finite-volume discretization in terrain-following coordinates. 

third law states that ‘to every action there is always opposed an equal reaction’. By the 
virtue of the finite-volume discretization (see Fig. l) ,  Newton’s third law is automatically 
satisfied. Referring to Fig. 1, the contour integral can be further decomposed as follows: 

and 

where points 1,2,3, and 4 are the four vertices of the finite volume. 

the following condition must hold 
The derivation so far is for the general non-hydrostatic flow. For a hydrostatic system, 

CF, = g A m  ( 5 )  

where g is the acceleration due to gravity. Equation ( 5 )  states that the vertical component 
of the resultant pressure force acting on the finite volume exactly balances the total weight 
of the finite volume. The horizontal acceleration, after eliminating Am from (2) using (3, 
can be written as 

du ‘CF, 
- = g- = g /  tan y 
dt XFz 

where y is the angle between the resultant pressure force and the horizontal surface. 
Equation (6) states that, for a hydrostatic system, the momentum acceleration due to the 
horizontal pressure gradient is simply the gravitational acceleration divided by the slope 
(tan y )  of the resultant pressure force acting on the finite volume. The slope should never 
vanish if the hydrostatic approximation is valid. The process of eliminating Am using 
(5) ,  the exact hydrostatic balance equation for the finite volume, ensures the hydrostatic 
consistency of the algorithm. 

Equation (6) is central to the finite-volume integration method, and it is exact for an 
arbitrary finite volume in a hydrostatic flow. To carry out the contour integration, assump- 
tions regarding the subgrid distribution of the thermodynamic variables must be made. 
The accuracy of the method thus depends on how well the assumed subgrid distribution 

Lin 1997 Efficient, 
mimetic FV PGF

FV3: The GFDL Finite-Volume 
Cubed-Sphere Dynamical Core
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LASG FAMIL, F-GOALS

Chinese Academy of Sciences

CAM-FV
CAM-FV3

GEOS, DAS, MERRA(2)
Ames Mars GCM

GEOS Chem
GEOS-Chem High-Performance

Taiwan Central Weather Bureau

CWBGFS

The Global FV3 Community
Past, present, future earth and beyond

AM4 CM4 ESM4
SHiELD SPEAR

GFSv15 v16 GEFSv12
MRW SRW HAFS …

6



Finite-Volume Dynamical Cores
• All variables are 3D cell- or face-means…not gridpoint values
• We solve not the differential Euler equations but their cell-integrated 

forms using integral theorems
• Everything is a flux, including the momentum equation. Fully FV!
• Mass conservation ensured to rounding error
• C-D grid: Vorticity computed exactly; accurate divergence computation
• Mimetic: Physical properties recovered by discretization, particularly 

Newton’s 3rd law
• Fully compressible: calculation is horizontally local
• Flow-following Lagrangian vertical coordinate

• FV3 is a fully forward-in-time solver with backwards PGF and acoustic 
terms

Section 1.2
FV3 Documentation
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FV3 time integration sequence

• FV3 is a forward-in-time solver with multiple levels of time-
integration
• Flux-divergence terms and physics tendencies evaluated forward-in-time
• Pressure-gradient and sound-wave terms evaluated backward-in-time for 

stability
• HEVI: Everything is explicit in the horizontal but implicit in the vertical

• Lagrangian vertical coordinate: flow constrained along time-evolving 
Lagrangian surfaces. This greatly simplifies the inner “acoustic” or 
“Lagrangian dynamics” timestep.

Chapter 2
FV3 Documentation

8



FV3 solver Lagrangian dynamics

Sub-cycled tracer transport

Vertical Remapping
GFDL In-line Microphysics

C-grid solver

Forward Lagrangian dyn.

Forward δz evaluation

Backwards horizontal PGF

Backwards vertical PGF, 
sound wave processes

[physics]

Consistent field update

dt_atmos
Physics timestep

k_split 
“remapping” loop

n_split 
“acoustic” loop

Chapter 2
FV3 Documentation

9



The Cubed-Sphere Grid
The 3 in FV3

• Gnomonic cubed-sphere grid: 
coordinates are great circles but non-
orthogonal
• Solution winds are covariant, advection is by 

contravariant winds

• Winds u and v are defined internally in 
the local coordinate; output is always 
rotated to earth-relative coords
• Special handling at edges and corners �

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.

45

Chapter 3
FV3 Documentation

Putman + Lin 2007
Literature
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The Cubed-Sphere Grid 
and Arbitrary Grid Domains

FV3 uses a global cubed-sphere grid or any arbitrary regular non-orthogonal quadrilateral grid
This permits Schmidt-stretched grids, two-way nested grids,

Building a Weather-Ready Nation  //  11NATIONAL WEATHER SERVICE

Extended Schmidt gnomonic grid Ordinary gnomonic grid

(Figures kindly provided by Chan-Hoo Jeon)

Contours of grid cell size show the advantages of extending the parameter space

Building a Weather-Ready Nation  //  11NATIONAL WEATHER SERVICE

Extended Schmidt gnomonic grid Ordinary gnomonic grid

(Figures kindly provided by Chan-Hoo Jeon)

Contours of grid cell size show the advantages of extending the parameter space

Regional-Domain Grid-cell Width
Courtesy Jim Purser and 
Chan-Hoo Jeon (NCEP/EMC)

and uniform regional domains



FV Advection
• “Reverse-engineered” forward-in-time 2D 

scheme constructed from 1D Piecewise-Parabolic 
Method (PPM) operators
• Mass-conservative
• Correlation-preserving for monotonic limiter
• Cancels splitting error
• Separate Courant number limit in x and y
• Upwinding preserves hyperbolicity and causality 

• Tracers are advected with a longer, adaptive 
timestep using the accumulated mass fluxes

• All quasi-horizontal processes, except PGF, can 
be represented as advection

• Highly adaptable: Positive-definite tracer 
advection greatly improves hurricane structure

FV3-based NASA GEOS

Axisymmetric 5-km W in Hurricane Irma 
Gao et al. 2021, JAS

Monotonic Advection Positive-Definite Advection

Chapter 4
FV3 Documentation

Lin and Rood 1996
Putman and Lin 2007

Literature
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The Piecewise-Parabolic Method:
The cornerstone of FV numerics
• Extension to higher order of the Van 

Leer piecewise-linear method, itself 
an extension of Godunov’s first-
order finite-volume scheme
• The internal variation of each grid 

cell is approximated by a parabola, 
from which the fluxes through each 
cell interface can be integrated

Third-order PPM

Monday, February 9, 2015

Collela & Woodward 1984
Van Leer 1971–1979

Literature

Section 4.1
FV3 Documentation
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The Piecewise-Parabolic Method:
The cornerstone of FV numerics
• “Vanilla” PPM reconstruction is 

formally 4th order if ∆x is constant. 
• But you are free to do much more with 

your degrees of freedom. You can 
flatten or steepen or …?
• This is useful for shape-preservation 

(monotonicity, positive-definite) or for 
simply eliminating undesirable 2∆x 
noise

“Imagine PPM as something akin to the Toll 
House chocolate chip cookie recipe. The 
cookies you get by following the package 
exactly are really, really good. At the same 
time, you can modify the recipe to produce 
something even better while staying true to 
the basic framework. The basic cookies will 
get you far, but with some modification you 
might just win contests or simply impress 
your friends. PPM is just like that.”

wjrider.wordpress.com/2017/11/17/
the-piecewise-parabolic-method-ppm/

14
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Which solution is the best?
“Accuracy” analyses assume 
continuous sinusoid modes. They 
cannot incorporate discontinuities.

Centered-differencing schemes 
produce a lot of noise at 
discontinuities!! And staggered grids 
preserve the junk!

Monotonic schemes are more 
diffusive—but PPM gives you the 
freedom to balance shape-
preservation with accuracy

4th-order
centered

difference

Semi-
Lagrangian

PPM
Monotone

PPM
Positive-
definite

Low-order Methods High-order Methods

Staggered Grid
Centered-Difference

Unstaggered Grid
Centered-Difference

Unstaggered Grid
Upwind (LMARS Riemann Solver)

Lin and Rood 1996
X Chen et al. 2018

Literature

15
RHwave, tp_core

Notebooks



Effect of advection options:
200-mb KE spectra

4∆x

6∆x

4∆x

3-km T-SHiELD 
(courtesy Kun Gao)

Hord=6 
SAS-shal on

Hord = 5 
SAS-shal on

Hord = 6 
No shalcnv

Hord = 5 
No shalcnv

13-km SHiELD
(Courtesy X Chen)

WARNING
Variance spectra depend on many 

factors, show case-to-case 
variability, and may not depict 
scientifically-credible features.
Parental discretion is advised.

16



T-SHiELD Positive-Definite Advection:
Rapid Intensification and Storm Structure

Positive-definite (PD) 
tracer advection 
è successful rapid 
intensification (RI) 
predictions compared to 
monotonic (MONO)

PD advection enables 
more WV into eyewall, 
permitting better updraft 
and TC structure: may 
contribute to RI processes

Gao et al. 2021
Literature



Lin-Rood FV Advection

• F, G are flux-form PPM operators, ensuring mass conservation.
• f, g are advective form PPM operators. 
• This “reverse-engineered” form cancels the leading-order 

deformation error. The Courant number restriction is then 
independent in both directions—a truly two-dimensional scheme
• max(Cx,Cy) ≤ 1 instead of Cx + Cy ≤ 1

Chapter 4
FV3 Documentation

Lin and Rood 1996
Putman and Lin 2007

Literature



Tracer advection and sub-cycling

• Tracers are advected with a longer timestep than the dynamics
• Umax ≈ 200 m/s but Umax+cs ≈ 540 m/s
• Split-explicit methods that assume U ≪ cs struggle in the stratosphere

• Free-stream preservation: FV3 accumulates mass fluxes during the 
acoustic timesteps. These fluxes are then used to advect the tracers.
• One or two sub-cycled timesteps is usually enough for stability. 
• Adaptively determined timestep from domain-maximum wind speed

• Tracer advection is always monotone or positive definite to avoid new 
extrema. Explicit diffusion is not used.

Section 4.2
FV3 Documentation

19



Lagrangian Dynamics in FV3

• FV3 transforms the Euler equations 
of motion into a Lagrangian vertical 
coordinate, constraining the flow 
along quasi-horizontal surfaces
• Lagrangian surfaces deform during 

the integration. Vertical motion and 
advection is “free”
• Requires layer thickness δp (and δz 

for nonhydro) to be a prognostic 
variable

Chapter 5
FV3 Documentation

Lin 2004
Literature

5. THE VERTICALLY-LAGRANGIAN SOLVER: GOVERNING EQUATIONS AND
VERTICAL DISCRETIZATION

Table 5.1: Prognostic variables in FV3

Variable Description
�p⇤ Vertical difference in hydrostatic pressure, proportional to mass
u D-grid face-mean horizontal x-direction wind
v D-grid face-mean horizontal y-direction wind
⇥v Cell-mean virtual potential temperature
w Cell-mean vertical velocity
�z Geometric layer height

5.2 Prognostic variables and governing equations

The mass of a grid cell per unit area �m is proportional to the difference in
hydrostatic pressure �p⇤ between the top and bottom of the layer. It can also
be written in terms of the layer depth2 �z using the hydrostatic equation:

�m =
�p⇤

g
= ⇢�z. (5.2)

The continuous Lagrangian equations of motion, in a layer of finite depth �z
and mass �p⇤, each bounded by isosurfaces of an imaginary tracer ⇣ are then
given by

@�p⇤

@t
+r · (V�p⇤) = 0 (5.3a)

@⇥v�p
⇤

@t
+r · (V�p⇤⇥v) = 0 (5.3b)

@w�p⇤

@t
+r · (V�p⇤w) = -�p 0 (5.3c)

@u

@t
= ⌦v-

@

@x
K-

1
⇢

@p

@x

���
z

(5.3d)

@v

@t
= -⌦u-

@

@y
K-

1
⇢

@p

@y

���
z

(5.3e)

as derived in Section 5.A. These are the fully-compressible inviscid Euler equa-
tions in an adiabatic, rotating shallow atmosphere. Prognostic variables are
given in Table 5.2.

The flow is entirely along the Lagrangian surfaces, including the verti-
cal motion which deforms the surfaces appropriately. The divergence is also
taken entirely along the surfaces. In (5.3d) and (5.3e), ⌦ is the vertical com-

2In this document, to avoid confusion we write �z as if it is a positive-definite quantity. In
the solver itself, �z is defined to be negative-definite, incorporating the negative sign from the
hydrostatic equation into the definition of �z; this definition is slightly more efficient and has
the additional advantage of being consistent with how �p is defined, being measured as the
difference in hydrostatic pressure between the bottom and top of a layer.

42

5.2. Prognostic variables and governing equations

ponent of absolute vorticity, K = 1
2 (euu+ evv) is the kinetic energy3, and p is

the full nonhydrostatic pressure. The vertical, nonhydrostatic pressure gradi-
ent term in the w equation is computed by the semi-implicit solver described
in Section 7.1, which also calculates the elastic strains (sound-wave) terms
needed to update �z. There is no projection of the vertical pressure gradient
force into the horizontal and no projection of the horizontal winds u, v into
the vertical, despite the slopes of the Lagrangian surfaces.

There is no evolution equation for the density ⇢ = �p⇤

g�z . We could directly
solve an equation for the volume or specific density of a grid cell; however this
created excessive noise near steep topography, and incorporating the kine-
matic surface condition of no flow perpendicular to the surface was more dif-
ficult. We instead derive an equation for z from the definition of w:

Dz

Dt
= w =

@z

@t
+ V ·rz, (5.4)

which can be rearranged to give an expression for @z
@t in terms of w and the ad-

vected z. Since at the surface zs is constant this gives a very simple expression
for ws the lower-boundary condition for vertical velocity:

ws =
dzs
dt

= Vs ·rzs. (5.5)

If the solver is re-formulated to use a different vertical coordinate, such as z
or ⇥ a different expression for the remaining prognostic variable would be
necessary.

We close the system of equations with the ideal gas law:

p = p⇤ + p 0 = ⇢RdTv =
�p⇤

g�z
RdTv (5.6a)

=

✓
�m

�z
Rd⇥v

◆�

(5.6b)

where Tv = T (1 + ✏qv) (1 - qcond) is the “condensate modified” virtual tem-
perature, or density temperature. Similarly, the virtual potential temperature

is ⇥v = Tv
⇣

p0
p

⌘
, where in FV3 p0 =1 Pa and  =

⇣
1 + cvm

Rd(1+✏qv)

⌘-1
as de-

rived in Section 9.2. Here, qcond is the specific ratio of the sum of all liquid and
solid-phase microphysical species, if present. When the gas law is used, the
mass �p⇤ in this computation must be the mass of gas only—dry air and wa-
ter vapor—and cannot include the mass of the non-gas condensates species.
This capability is enabled by setting the USE_COND option at compile time; if
it is not present then (5.6a) is computed as if the entire mass of the cell were
gas. A rigorous derivation of the virtual and density temperatures is given in

3The kinetic energy K in (5.3d) and (5.3e) only uses the horizontal wind components, as
explained in Section 5.A

43
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Prognostic Variables
δp Total air mass (including vapor and condensates)

Equal to hydrostatic pressure depth of layer
θv Virtual potential temperature
u, v Horizontal D-grid winds in local coordinate 

(defined on cell faces)
w Vertical winds (nonhydrostatic)
δz Geometric layer depth (nonhydrostatic)
qi Passive tracers

Cell-mean pressure, density, divergence, and specific heat are all diagnostic quantities
All variables are layer-means in the vertical: No vertical staggering

21



Vorticity Dynamics
• Fluids are strongly vortical at all scales. 

Vortical motions are especially critical 
in geophysical flows
• FV3’s discretization emphasizes 

vorticity dynamics:
• Vector-invariant equations: vorticity 

computed exactly
• C-D Grid Discretization
• Consistent advection of derived vorticial 

quantities

Voyager 1, NASA, 1979 Reprocessed by Bjorn Jonsson

Leonardo c. 1508

BTwave, BCwave, 
TornadicSupercell

Notebooks

Lin et al. 2017

Literature

Chapter 6

FV3 Documentation
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Momentum equation
• FV3 solves nonlinear flux-form vector 

invariant equations using the absolute 
vorticity fluxes Ωv, -Ωu
• D-grid gives exact absolute vorticity Ω using 

Stokes’ theorem—no averaging! 
• Cell-mean vorticity is advected as a scalar, 

using the same fluxes as other variables. 
Products are also advected as scalars!
• ex: Updraft helicity wΩ

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143

⇧�p

⇧t
+⌅ · (V�p) = 0144

⇧�p�

⇧t
+⌅ · (V�p�) = 0145

146

⇧V

⇧t
= �⇥k̂ ⇤V �⌅

�
⇥ + ⇤⌅2D

⇥
� 1

⌅
⌅p

⇤⇤⇤
z

147

where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature �; and the vector wind V. Here, k̂ is the vertical unit vector. The150

6

ç UHmax

wmax è

Lin & Rood 1996
Harris et al. 2019

Literature
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RHwave, 
HSzuritasuperrotation
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The C-D grid solver
• Flux evaluation requires face-normal and 

time-mean fluxes.
• The C-grid winds are interpolated and 

then advanced a half-timestep. These are
used to compute the fluxes. 
• Upstream flux also allows consistent computation of the KE gradient 

term, avoiding the Hollingsworth-Kallberg instability
• Two-grid discretization and time-centered upwind fluxes avoid 

computational modes, giving FV3 high accuracy and low noise

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
The angle � is that between the covariant and contravariant components; in orthogonal
coordinates � = ⇥/2.

45

Lin & Rood 1997
Literature
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2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141
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where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148
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Backward horizontal
pressure gradient force
• Computed from Newton’s second 

and third laws, and Green’s Theorem
• Errors lower, with much less noise, 

compared to traditional evaluations
• Purely horizontal: no along-coordinate 

projection
• PGF equal and opposite—3rd law! 

Momentum is conserved
• Curl-free in the absence of density 

gradients

Lin 1997
Literature

Section 6.6
FV3 Documentation mtn_rest_100km 

mtn_wave_tests

Notebooks
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The Lagrangian 
Vertical Coordinate
• Vertical motion and advection is implicit 

through the deformation of quasi-
horizontal layers. 
• No Courant number restriction or time-

splitting
• Computing δp and δz is sufficient for 

vertical advection.

• Periodically, a high-order conservative 
remapping back to the reference 
“Eulerian” coordinate is done to avoid 
δp → 0 

Lin 2004
Literature

Sec. 5.1, 5.3; Chap 7
FV3 Documentation

3.25-km X-SHiELD: remap dt = 36 s 
à vertical courant number = [-10.9,9.36]
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Semi-implicit nonhydrostatic solver

• Semi-implicit solver cleanly extends FV Lagrangian 
dynamics into nonhydrostatic regime
• Start with advected w*, z*

• Consistent with other variables

• Vertical pressure gradient and non-advective changes to 
layer depth δz are solved by semi-implicit solver
• Simultaneous solution for w and δz through diagnosed p’
• p’ accurately interpolated to interfaces using cubic spline

• Vertically-propagating sound waves weakly damped. 
That’s OK. Section 7.1

FV3 Documentation

7. NONHYDROSTATIC DYNAMICS IN FV3

for the vertical processes can be written:

@

@t
z⇤ = w⇤ (7.1a)

@

@t
(w⇤�m) = �p 0, (7.1b)

where again � is understood to be a vertical difference between the values at
the top and bottom of a layer. We can take a vertical difference of (7.1a) to get:

@

@t
�z⇤ = �w⇤. (7.2)

This form shows how �z—the cell volume—is altered by strain due to the ver-
tical gradient in w, and is another expression of how vertical motion deforms
Lagrangian interfaces along the flow: the vertical motion deforms but does not
cross the layers.

We can derive an equation for the non-hydrostatic pressure increment p 0

by taking the time-derivative of the logarithm of (5.6b). Using (7.2) and that p⇤

is not altered by the vertical processes in the vertically-Lagrangian equations
gives:

@p 0

@t
= �p

�w⇤

�z⇤
. (7.3)

The equations (7.1b) and (7.3), along with the ideal gas law (5.6b) and the
boundary conditions p 0

T = 0 and (5.5) determine w, �z, and p 0.
We use a vertically-implicit method for the time-discretization since solu-

tions of these equations are vertically-propagating sound waves, which would
have a very large Courant number if computed explicitly. The implicit so-
lution has the additional benefit of consistency with the Lagrangian vertical
coordinate. To be consistent with the backwards-in-time horizontal pressure-
gradient force we discretize the two evolution equations backwards-in-time
over an acoustic timestep �t:

wn+1
k = w⇤

k +
�t

�mk

⇣
p 0n+1
k+ 1

2
- p 0n+1

k- 1
2

⌘
(7.4a)

p 0n+1
k+ 1

2
= p 0⇤

k+ 1
2
+ ak+ 1

2

�
wn+1

k+1 -wn+1
k

�
/�t (7.4b)

where ak+ 1
2
= 2 (�t)�pk+ 1

2
/
�
�z⇤k+1 + �z⇤k

�
. (7.4c)

Here, integer indices represent layer-mean values, consistent with the finite-
volume discretization. Interface values are given half-integer indices: k = 1

2
and k = Km + 1

2 are the upper and lower boundaries, respectively. In the
expression for ak+ 1

2
p is full pressure, re-computed from ✓n+1

V , �p⇤(N+1), and
�z⇤.
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5.2. Prognostic variables and governing equations

ponent of absolute vorticity, K = 1
2 (euu+ evv) is the kinetic energy3, and p is

the full nonhydrostatic pressure. The vertical, nonhydrostatic pressure gradi-
ent term in the w equation is computed by the semi-implicit solver described
in Section 7.1, which also calculates the elastic strains (sound-wave) terms
needed to update �z. There is no projection of the vertical pressure gradient
force into the horizontal and no projection of the horizontal winds u, v into
the vertical, despite the slopes of the Lagrangian surfaces.

There is no evolution equation for the density ⇢ = �p⇤

g�z . We could directly
solve an equation for the volume or specific density of a grid cell; however this
created excessive noise near steep topography, and incorporating the kine-
matic surface condition of no flow perpendicular to the surface was more dif-
ficult. We instead derive an equation for z from the definition of w:

Dz

Dt
= w =

@z

@t
+ V ·rz, (5.4)

which can be rearranged to give an expression for @z
@t in terms of w and the ad-

vected z. Since at the surface zs is constant this gives a very simple expression
for ws the lower-boundary condition for vertical velocity:

ws =
dzs
dt

= Vs ·rzs. (5.5)

If the solver is re-formulated to use a different vertical coordinate, such as z
or ⇥ a different expression for the remaining prognostic variable would be
necessary.

We close the system of equations with the ideal gas law:

p = p⇤ + p 0 = ⇢RdTv =
�p⇤

g�z
RdTv (5.6a)

=

✓
�m

�z
Rd⇥v

◆�

(5.6b)

where Tv = T (1 + ✏qv) (1 - qcond) is the “condensate modified” virtual tem-
perature, or density temperature. Similarly, the virtual potential temperature

is ⇥v = Tv
⇣

p0
p

⌘
, where in FV3 p0 =1 Pa and  =

⇣
1 + cvm

Rd(1+✏qv)

⌘-1
as de-

rived in Section 9.2. Here, qcond is the specific ratio of the sum of all liquid and
solid-phase microphysical species, if present. When the gas law is used, the
mass �p⇤ in this computation must be the mass of gas only—dry air and wa-
ter vapor—and cannot include the mass of the non-gas condensates species.
This capability is enabled by setting the USE_COND option at compile time; if
it is not present then (5.6a) is computed as if the entire mass of the cell were
gas. A rigorous derivation of the virtual and density temperatures is given in

3The kinetic energy K in (5.3d) and (5.3e) only uses the horizontal wind components, as
explained in Section 5.A
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is not altered by the vertical processes in the vertically-Lagrangian equations
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The equations (7.1b) and (7.3), along with the ideal gas law (5.6b) and the
boundary conditions p 0

T = 0 and (5.5) determine w, �z, and p 0.
We use a vertically-implicit method for the time-discretization since solu-

tions of these equations are vertically-propagating sound waves, which would
have a very large Courant number if computed explicitly. The implicit so-
lution has the additional benefit of consistency with the Lagrangian vertical
coordinate. To be consistent with the backwards-in-time horizontal pressure-
gradient force we discretize the two evolution equations backwards-in-time
over an acoustic timestep �t:
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Here, integer indices represent layer-mean values, consistent with the finite-
volume discretization. Interface values are given half-integer indices: k = 1

2
and k = Km + 1

2 are the upper and lower boundaries, respectively. In the
expression for ak+ 1

2
p is full pressure, re-computed from ✓n+1

V , �p⇤(N+1), and
�z⇤.
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vected z. Since at the surface zs is constant this gives a very simple expression
for ws the lower-boundary condition for vertical velocity:
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dzs
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If the solver is re-formulated to use a different vertical coordinate, such as z
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necessary.
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where Tv = T (1 + ✏qv) (1 - qcond) is the “condensate modified” virtual tem-
perature, or density temperature. Similarly, the virtual potential temperature

is ⇥v = Tv
⇣

p0
p

⌘
, where in FV3 p0 =1 Pa and  =

⇣
1 + cvm

Rd(1+✏qv)

⌘-1
as de-

rived in Section 9.2. Here, qcond is the specific ratio of the sum of all liquid and
solid-phase microphysical species, if present. When the gas law is used, the
mass �p⇤ in this computation must be the mass of gas only—dry air and wa-
ter vapor—and cannot include the mass of the non-gas condensates species.
This capability is enabled by setting the USE_COND option at compile time; if
it is not present then (5.6a) is computed as if the entire mass of the cell were
gas. A rigorous derivation of the virtual and density temperatures is given in

3The kinetic energy K in (5.3d) and (5.3e) only uses the horizontal wind components, as
explained in Section 5.A
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Lagrangian nonhydrostatic dynamics, 
how do they work?
• Recall that FV3 uses a hybrid-pressure coordinate. 

Cell mass δp is constant during sound wave processes. 
• Nonhydrostaticity creates pressure perturbation
• p computed by ideal gas law, incorporating heating
• p* computed through δp above

• Vertical gradients in p’ create vertical accelerations, 
deforming the Lagrangian interfaces
• Elastic straining (expansion/compression) of the 

Lagrangian layers alters δz
• Adiabatic changes to δz changes p’…

Section 7.2
FV3 Documentation

DPsupercell
Notebook
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have a very large Courant number if computed explicitly. The implicit so-
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coordinate. To be consistent with the backwards-in-time horizontal pressure-
gradient force we discretize the two evolution equations backwards-in-time
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Here, integer indices represent layer-mean values, consistent with the finite-
volume discretization. Interface values are given half-integer indices: k = 1
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in Section 7.1, which also calculates the elastic strains (sound-wave) terms
needed to update �z. There is no projection of the vertical pressure gradient
force into the horizontal and no projection of the horizontal winds u, v into
the vertical, despite the slopes of the Lagrangian surfaces.

There is no evolution equation for the density ⇢ = �p⇤

g�z . We could directly
solve an equation for the volume or specific density of a grid cell; however this
created excessive noise near steep topography, and incorporating the kine-
matic surface condition of no flow perpendicular to the surface was more dif-
ficult. We instead derive an equation for z from the definition of w:

Dz

Dt
= w =

@z

@t
+ V ·rz, (5.4)

which can be rearranged to give an expression for @z
@t in terms of w and the ad-

vected z. Since at the surface zs is constant this gives a very simple expression
for ws the lower-boundary condition for vertical velocity:

ws =
dzs
dt

= Vs ·rzs. (5.5)

If the solver is re-formulated to use a different vertical coordinate, such as z
or ⇥ a different expression for the remaining prognostic variable would be
necessary.

We close the system of equations with the ideal gas law:

p = p⇤ + p 0 = ⇢RdTv =
�p⇤

g�z
RdTv (5.6a)

=

✓
�m

�z
Rd⇥v

◆�

(5.6b)

where Tv = T (1 + ✏qv) (1 - qcond) is the “condensate modified” virtual tem-
perature, or density temperature. Similarly, the virtual potential temperature

is ⇥v = Tv
⇣

p0
p

⌘
, where in FV3 p0 =1 Pa and  =

⇣
1 + cvm

Rd(1+✏qv)

⌘-1
as de-

rived in Section 9.2. Here, qcond is the specific ratio of the sum of all liquid and
solid-phase microphysical species, if present. When the gas law is used, the
mass �p⇤ in this computation must be the mass of gas only—dry air and wa-
ter vapor—and cannot include the mass of the non-gas condensates species.
This capability is enabled by setting the USE_COND option at compile time; if
it is not present then (5.6a) is computed as if the entire mass of the cell were
gas. A rigorous derivation of the virtual and density temperatures is given in

3The kinetic energy K in (5.3d) and (5.3e) only uses the horizontal wind components, as
explained in Section 5.A
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for the vertical processes can be written:

@

@t
z⇤ = w⇤ (7.1a)

@

@t
(w⇤�m) = �p 0, (7.1b)

where again � is understood to be a vertical difference between the values at
the top and bottom of a layer. We can take a vertical difference of (7.1a) to get:

@

@t
�z⇤ = �w⇤. (7.2)

This form shows how �z—the cell volume—is altered by strain due to the ver-
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Lagrangian interfaces along the flow: the vertical motion deforms but does not
cross the layers.
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is not altered by the vertical processes in the vertically-Lagrangian equations
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@p 0

@t
= �p

�w⇤

�z⇤
. (7.3)

The equations (7.1b) and (7.3), along with the ideal gas law (5.6b) and the
boundary conditions p 0

T = 0 and (5.5) determine w, �z, and p 0.
We use a vertically-implicit method for the time-discretization since solu-

tions of these equations are vertically-propagating sound waves, which would
have a very large Courant number if computed explicitly. The implicit so-
lution has the additional benefit of consistency with the Lagrangian vertical
coordinate. To be consistent with the backwards-in-time horizontal pressure-
gradient force we discretize the two evolution equations backwards-in-time
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wn+1
k = w⇤

k +
�t

�mk

⇣
p 0n+1
k+ 1

2
- p 0n+1

k- 1
2

⌘
(7.4a)

p 0n+1
k+ 1

2
= p 0⇤

k+ 1
2
+ ak+ 1

2

�
wn+1

k+1 -wn+1
k

�
/�t (7.4b)

where ak+ 1
2
= 2 (�t)�pk+ 1

2
/
�
�z⇤k+1 + �z⇤k

�
. (7.4c)

Here, integer indices represent layer-mean values, consistent with the finite-
volume discretization. Interface values are given half-integer indices: k = 1

2
and k = Km + 1

2 are the upper and lower boundaries, respectively. In the
expression for ak+ 1

2
p is full pressure, re-computed from ✓n+1

V , �p⇤(N+1), and
�z⇤.

66

5.2. Prognostic variables and governing equations

ponent of absolute vorticity, K = 1
2 (euu+ evv) is the kinetic energy3, and p is

the full nonhydrostatic pressure. The vertical, nonhydrostatic pressure gradi-
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in Section 7.1, which also calculates the elastic strains (sound-wave) terms
needed to update �z. There is no projection of the vertical pressure gradient
force into the horizontal and no projection of the horizontal winds u, v into
the vertical, despite the slopes of the Lagrangian surfaces.

There is no evolution equation for the density ⇢ = �p⇤

g�z . We could directly
solve an equation for the volume or specific density of a grid cell; however this
created excessive noise near steep topography, and incorporating the kine-
matic surface condition of no flow perpendicular to the surface was more dif-
ficult. We instead derive an equation for z from the definition of w:
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which can be rearranged to give an expression for @z
@t in terms of w and the ad-

vected z. Since at the surface zs is constant this gives a very simple expression
for ws the lower-boundary condition for vertical velocity:

ws =
dzs
dt

= Vs ·rzs. (5.5)

If the solver is re-formulated to use a different vertical coordinate, such as z
or ⇥ a different expression for the remaining prognostic variable would be
necessary.

We close the system of equations with the ideal gas law:
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where Tv = T (1 + ✏qv) (1 - qcond) is the “condensate modified” virtual tem-
perature, or density temperature. Similarly, the virtual potential temperature
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, where in FV3 p0 =1 Pa and  =
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Rd(1+✏qv)

⌘-1
as de-

rived in Section 9.2. Here, qcond is the specific ratio of the sum of all liquid and
solid-phase microphysical species, if present. When the gas law is used, the
mass �p⇤ in this computation must be the mass of gas only—dry air and wa-
ter vapor—and cannot include the mass of the non-gas condensates species.
This capability is enabled by setting the USE_COND option at compile time; if
it is not present then (5.6a) is computed as if the entire mass of the cell were
gas. A rigorous derivation of the virtual and density temperatures is given in

3The kinetic energy K in (5.3d) and (5.3e) only uses the horizontal wind components, as
explained in Section 5.A
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•MYTH: Numerical diffusion is evil, only used 
to cover for discretization deficiencies, and 
should be avoided at all costs. 

•TRUTH: Numerical diffusion is a necessary 
part of any model used for environmental 
simulation.



Numerical Diffusion and Physical Dissipation
• All useful atmospheric models have grid-scale motions removed by 

numerical diffusion (whether they know it or not).
• Energy cascades to grid scales and must be removed since dissipative 

scales (O(1 cm)) are not explicitly resolved
• Models aren’t perfect, noise and errors must be removed
• C-grids produce particularly prodigious noise at discontinuities 

• Diffusion is also a powerful tool to improve simulations
• Tompkins and Semie 2017; Pressel et al. 2017; see also Implicit LES

Zhao et al. 2012
X Chen et al. 2018

Literature

Sections 8.1, 8.2
FV3 Documentation
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The Turbulent Energy Cascade
“Big whirls have little whirls
that feed on their velocity,
And little whirls have lesser whirls
and so on to viscosity”
—Lewis F. Richardson, 1922

Kinetic energy cascades from the large 
energy-containing scale to increasingly 
small-wavelength modes. 

In a continuous fluid, the cascade 
continues until molecular diffusion can 
dissipate kinetic energy to heat. 

In large-scale flows this is complicated by 
a second upscale turbulent cascade.

Ecke: “The Turbulence Problem” (2005)

31

https://en.wikipedia.org/wiki/Lewis_F._Richardson


Damping in FV3

• FV3’s physical consistency produces very few computational modes and 
thus can be minimally-diffusive. 
But well-configured diffusion can give improved results
• FV3 applies no direct implicit diffusion to divergent modes which cascade 

to grid scale unimpeded. 
Scale-selective divergence damping represents their physical dissipation. 
• Rotational modes can be damped implicitly by monotonic advection or 

explicitly by vorticity damping. 
• For consistency also damps δp, δz, θv, w.
No explicit damping for tracers.

• Note that all implicit (except vertical remapping) and explicit diffusion is 
along Lagrangian surfaces. 

Sections 8.3, 8.4, 8.5
FV3 Documentation
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The Upper Boundary

• FV3 has a flexible constant-pressure upper boundary, greatly reducing 
reflection of vertically-propagating gravity waves. So the sponge layer 
can be much shallower.
• Much less problematic than constant-height rigid lid upper boundaries

• In FV3 the top two layers are reserved as sponge layers. 
• These layers are very deep (∆z), already implicitly dissipating vertically-

propagating wave.
• In these layers a much stronger, less scale-selective second-order damping is 

applied on the acoustic timestep.
• Tunable Rayleigh damping and a 2∆z filter are also available. 

Both convert damped KE to heat—energy conserving



Variable-resolution techniques

• Variable-resolution is the future of convective-
scale modeling (C-SHiELD, HAFS-B)
• Stretched global grid is the easy, simple way to 

grid refinement.
• Two-way nesting is flexible and highly 

configurable.
• Inflow BCs “baked-in” to numerics
• Nesting methodology designed to be consistent with 

numerics
• Concurrent nesting is extremely efficient: 

Run as many grids as you want at the same time!

Chapter 10
FV3 Documentation
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Telescoping Nesting
As many levels as you want

35
Mouallem et al. 2022

Literature

Triple-nests onto Hurricane Laura
Tele-SHiELD: 1.4 km 
onto Northeast Corridor 
and Taiwan



Rigorous Thermodynamics and 
Physics-Dynamics Coupling
• Mass δp in FV3 includes water vapor and all 

condensates. Condensate loading and moist-mass 
effects are baked-in. 
• FV3 incorporates the heat content of water vapor 

and condensates in adiabatic processes and diabatic 
heating
• Diabatic heating is applied consistently with the 

dynamics
• cp in hydrostatic: δp constant, δz dependent on T 

(hypsometric equation)
• cvm in nonhydrostatic: δz constant, p dependent on T 

(ideal gas law)

Zhou et al. 2022abc
Literature

Sec. 7.2, Chapter 9

FV3 Documentation
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LMARS horizontal solver
and Duo-Grid
• Efficient Riemann solver allows 

accurate unstaggered solution to 
improve physics coupling
• Shows way to true total energy 

conservation 
• Duo-grid eliminates grid imprinting 

and provides unified approach to 
cubed-sphere grid design

X Chen et al 2018, 2020
Li & Chen 2019

Literature



AI2 Pace
Accelerating to km-scale

• The CPU-MPI era is (?) ending
• GT4py Domain Specific Language (DSL)

Model re-written in Python and compiled 
to optimized code for any processor
• GridTools in operations at MeteoSwiss
• Evaluation underway by ECMWF and MPI

• Pace: GT4py implementation of FV3GFS
Performance + Python Flexibility

Python user code 

DSL Frontend (GT4Py)

DSL Compiler
Checkers

Optimizers
Code Generators

Python

CPU 
Compiler

GPU 
Compiler

Flowchart courtesy Oliver Elbert, AI2

Ben-Nun et al. 2022
Gibbon et al. 2022

Literature



GT4py FV3

Pinterest user Elizabeth Chambers

Productive Performance Engineering for Weather
and Climate Modeling with Python

Tal Ben-Nun⇤, Linus Groner†, Florian Deconinck‡, Tobias Wicky‡, Eddie Davis‡, Johann Dahm‡,
Oliver Elbert‡, Rhea George‡, Jeremy McGibbon‡, Lukas Trümper⇤, Elynn Wu‡,

Oliver Fuhrer‡, Thomas Schulthess†, Torsten Hoefler⇤
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Abstract—Earth system models are developed with a tight

coupling to target hardware, often containing highly-specialized

code predicated on processor characteristics. This coupling stems

from using imperative languages that hard-code computation

schedules and layout. In this work, we present a detailed

account of optimizing the Finite Volume Cubed-Sphere (FV3)

weather model, improving productivity and performance. By

using a declarative Python-embedded stencil DSL and data-

centric optimization, we abstract hardware-specific details and

define a semi-automated workflow for analyzing and optimizing

weather and climate applications. The workflow utilizes both

local optimization and full-program optimization, as well as user-

guided fine-tuning. To prune the infeasible global optimization

space, we automatically utilize repeating code motifs via a novel

transfer tuning approach. On the Piz Daint supercomputer, we

achieve speedups of up to 3.92⇥ using GPUs over the tuned

production implementation at a fraction of the original code.

I. INTRODUCTION

Climate change and the associated weather extremes is one
of the biggest challenges facing humanity today. The basis
of what we know about our future stem from simulations
using weather and climate models running on some of the
world’s largest supercomputing infrastructures. But progress
in leveraging the power of current and emerging supercom-
puting hardware architectures is slow, due to legacy software
engineering and lift-and-shift approaches to code portability.

In order to address the shortcomings of currently available
weather and climate data, there is an urgent need to address
this software productivity gap to enable simulations with
higher fidelity [1]. Given today’s hardware landscape and
increasing complexity of models, the current approach is
not sustainable [2]. We urgently need to enable more rapid
development cycles and faster adoption of leadership class
supercomputing infrastructures [3].

In this paper, we present a novel approach to productive
performance engineering for weather and climate modeling
using Python. Our approach, summarized in Fig. 1, increases
developer productivity while not making any compromises in
terms of performance and performance portability.

To enable performance engineering, we must express the
code in a way that allows it to mutate schedules while

Declarative Abstraction (GT4Py)

Halo Exchange

Dynamical Core

Acoustics Remapping

Tracer Advection

Horizontal Stencil Vertical Solver

Orchestration (DaCe)

Full-Program 
Optimization

Local 
Optimization

Automatic
Callbacks

Transfer 
Tuning

Lines of Code vs. FORTRAN: 0.42x�
Speedup: 3.��x (P100), 8.48x�(A100)

Backend

Unit Tests

Fig. 1: System overview.

maintaining the algorithms. To this end, we leverage a domain-
specific language (DSL) embedded in Python which allows
the developer to express the algorithms on a high level of
abstraction (Section III-A). The Python programming language
and package ecosystem allows for writing modular, re-usable
code which can easily be unit-tested (Section IV). The pure-
Python backend of the DSL toolchain is ideal for rapid proto-
typing, debugging and interactive visualization of algorithmic
approaches. The abstraction and domain-specificity of the DSL
allows for concise, declarative code which is not littered with
hardware dependent optimizations or annotations.

For the actual performance engineering we leverage a data-
centric parallel programming framework as a backend for
optimization and code generation (Section III-B and V). This
framework allows to modify schedules, data layouts, and
memory placement (Section VI). We take a disciplined model-
driven approach for optimization [4], which keeps track of
performance bounds (e.g., memory bandwidth) during local
and global optimizations to guide further decisions.

Furthermore, we introduce a novel automatic tuning tech-
nique called transfer tuning (Section VI-B). The core problem
of automatic tuning at scale is the high rate of configu-
rations that must be traversed. Since many optimizations
recur throughout the program, good configurations are already
known from earlier decisions. Transfer tuning therefore ex-
tracts the top configurations for each type of transformation
from a smaller part of the application and applies matching
patterns to the others, significantly pruning the search space.
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