

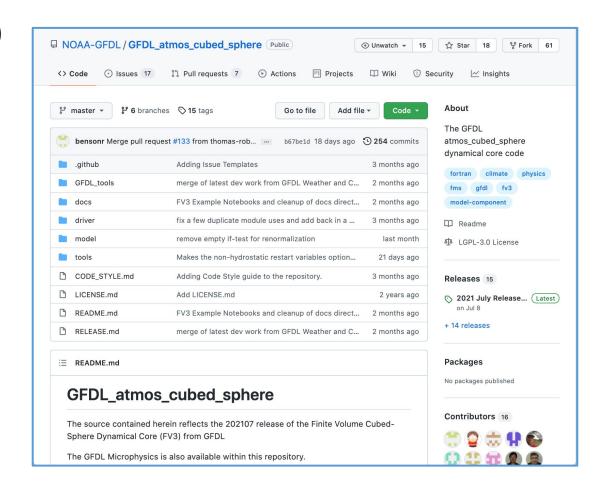
FV3 In a Nutshell

Lucas Harris for the GFDL FV3 Team UFS S2S All-Hands Meeting 29 September 2023

FV3 Community Resources

FV3 Portal

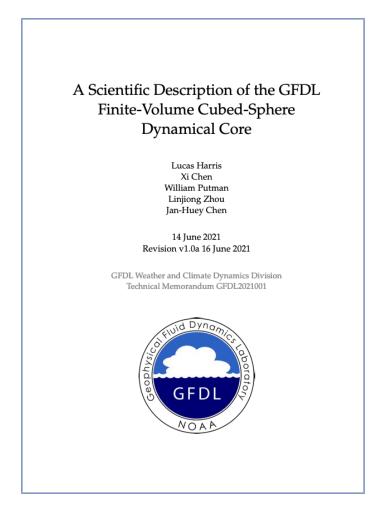
Documentation, publications, tutorials, and demos www.gfdl.noaa.gov/fv3



www.gfdl.noaa.gov/fv3/fv3-documentation-and-references/

"Nobody can contribute to FV3"

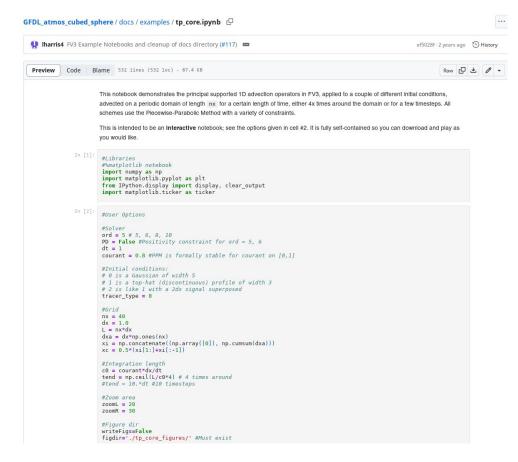
FV3 Community GitHub


- An open GitHub repository for FV3 was established in 2019 as a community hub and official repository for codes.
- FV3 GitHub accepts submissions (merge requests) from collaborators and tracks issues submitted when problems arise.
- GFDL personnel review and approve issues/MRs as they arrive, time permitting
- Continuous Integration/ Deployment ("CI/CD") automatically tests MRs

github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere

"There is too little information on FV3"

FV3 Documentation and References


Harris et al. (2021) 109-page FV3 Scientific Documentation on GitHub and NOAA Institutional Repository

www.gfdl.noaa.gov/fv3/fv3-documentation-and-references/

FV3 GitHub Resources

- Documentation (with LaTeX source) and example notebooks available on GitHub
- Issues, discussions, and versioned releases
 - GFDL has a heavy presence on GitHub. FMS, MOM6, AM5, SHiELD, Pace, containers, & GFDL tools all developed through GitHub.

github.com/NOAA-GFDL/GFDL_atmos_cubed_sphere/ tree/main/docs

"FV3 has stability problems"

Timestepping in FV3

- Innermost "acoustic"/Lagrangian loop and non-passive advection
 - Limited by **U** + **c**_s: in stratosphere U can get to **200 m/s**!!
- Lagrangian layers periodically remapped to reference "Eulerian" layers
 - Needed to run physics, both intermediate (microphysics) and slow
 - Relieves strongly distorted layers and prevents $\delta p \rightarrow 0$
- Passive tracers are advected on the remapping step
 - Adaptive substepping from global U_{max} : rarely more than 3 per remap
- Lagrangian Vertical Coordinate: **No** vertical courant number restriction

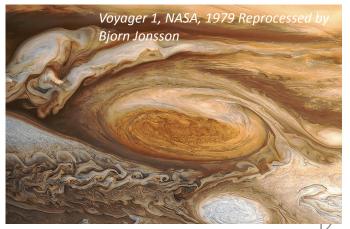
Examples of timesteps in GFDL global models

	C768 SHIELD	C3072 X-SHiELD (lower top)	C384 AM5/SPEAR-Hi (hydrostatic, AM5 phys.)
$\Delta x_{min} (\Delta x_{mean} \div 1.3)$	10.2 km	2.5 km	19.2 km
"Acoustic" timestep	18.75 s	4.5 s	28.5 s
Courant number	0.998	0.98	0.80
Remapping/MP timestep	150 s	36 s	200 s
Physics Timestep	150 s	180 s	600 s

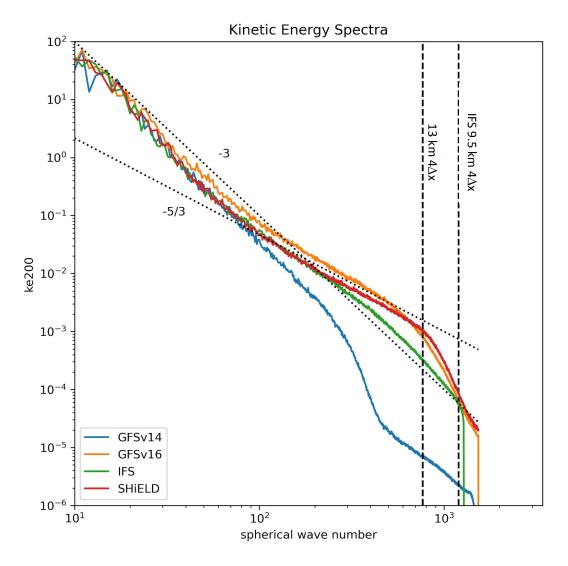
Tracer timestep is adaptively chosen from domain-maximum windspeed

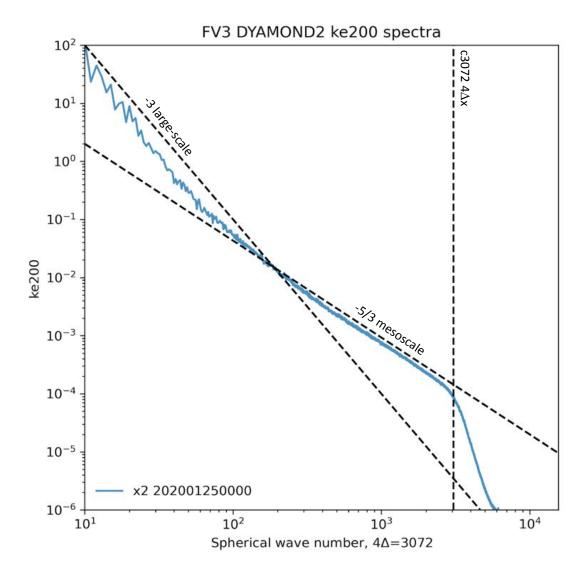
"Acoustic" timestep Courant Number:
$$\left(\mathbf{U}_{\max} + \mathbf{c}_s\right) \frac{\Delta t}{\Delta x_{\min}} \leq 1$$

Using
$$c_s = 343$$
 m/s and $U_{max} = 200$ m/s


"FV3 is a Hack"

FV3 dynamics and consistency

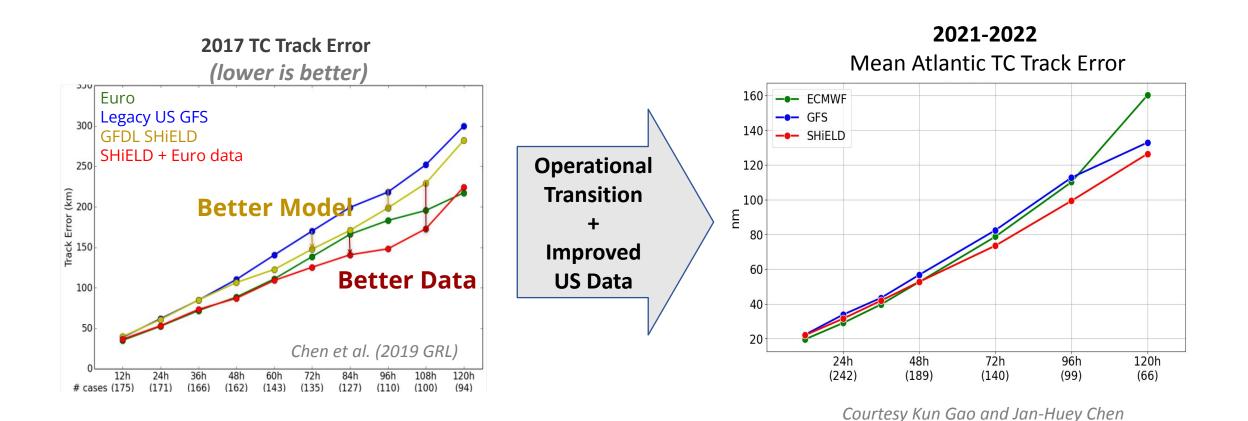

- FV3 is **fully finite-volume** and nearly all processes can be represented as advection—and so consistently computed.
- Consistency means better conservation, realism, accuracy, and fewer computational modes.
- Fluid flows are strongly vortical at all scales. FV3 emphasizes vorticity dynamics and its conservation laws (PV, UH)
- FV3 uses the unique C-D grid to get accurate fluxes: the best of both rotational and divergent modes



"FV3 is too diffusive and uses too many filters"

13-km FV3-based GFS and SHiELD simulate mesoscale spectrum with higher effective resolution than Legacy GFS or 9.5-km ECMWF IFS

"Effectively inviscid" numerics in 3.25 km X-SHiELD produce *perfect* mesoscale spectrum and $4\Delta x$ cutoff


Explicit Diffusion in FV3

- All environmental models need some form of diffusion.
- FV3 has **two** forms of explicit diffusion:
 - 1. Linear higher-order diffusion, separate for divergent and rotational modes
 - 2. A very simplified nonlinear diffusion, currently only for divergence
- And a variety of options and upper-boundary diffusion.
- These are highly configurable due to the vast range of applications for FV3. What works at one resolution may not work for others.
- Divergence has **no** implicit diffusion in the numerics and needs to be controlled explicitly.

"FV3 is why the GFS has fallen behind"

Misconceptions #6a and #6b

SHiELD R2O: Improving Hurricane Forecasts

Better Model + Better Data ⇒ US #1 for Tropical Cyclone Track Forecast

Atlantic GFS track error leading for 2023 also

DIMOSIC

- International intercomparison of global prediction models, all initialized from EC (IFS) ICs
- FV3-based GFDL SHiELD on par with IFS, and better in some ways
- Careful implementation of EC ICs in SHiELD helps a lot

ARPEGE_46T1, bias=0.082, rmse=2.005 MA, bias=0.322, rmse=1.963 UM, bias=0.813, rmse=2.179 IFS-47r3 **ARPEGE** SHiELD Track Error diff (km) 100 12h 24h 36h 48h 60h 72h 84h 96h 108h 120h 132h 144h 156h 168h # cases (190)(188)(167)(155)(139)(126)(113)(101)(84)(69)(55)(48)(39)(33) Reference = IFS

CMC. bias=0.273, rmse=1.938

IFS-47r1, bias=0.381, rmse=1.744

ICON Apr21, bias=0.573, rmse=2.011

IFS-47r3, bias=0.903, rmse=1.751

18

GPM, avg=8.505

SHiELD, bias=0.177, rmse=1.817

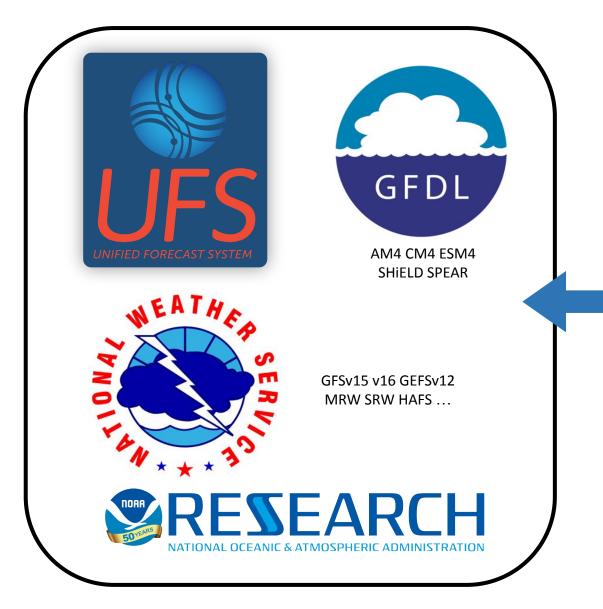
Magnusson et al., BAMS, 2022 J-H Chen et al., Earth Space Sci., 2023

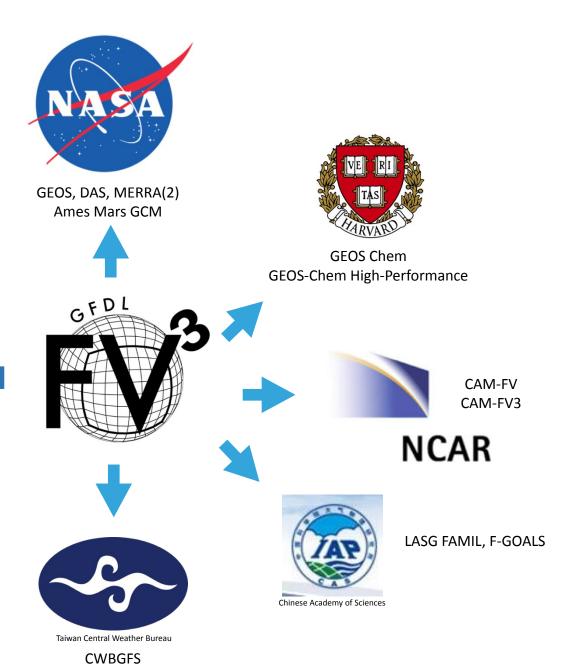
The GFS is a Great Product

- A world class global model with many features and products not in other operational global models
 - Nonhydrostatic dynamics, -5/3 mesoscale spectrum, cold pools, comprehensive cloud microphysics, some realistic hurricane intensity
- GFSv15 and v16 implemented with significant skill improvements
- End-to-end **free** and **open** data, analyses, model, and output: **an incredible value** for scientists and stakeholders
- Used for purposes far beyond original hemispheric prediction
- "Falling behind" is meaningless
- Look at what people use—not what they say.

2018-2020 Retros NH H500:

GFSv15 = 0.891GFSv16 = 0.896


2015–2018 Retros NH H500: Legacy GFSv14 = 0.885 GFSv15 = 0.897

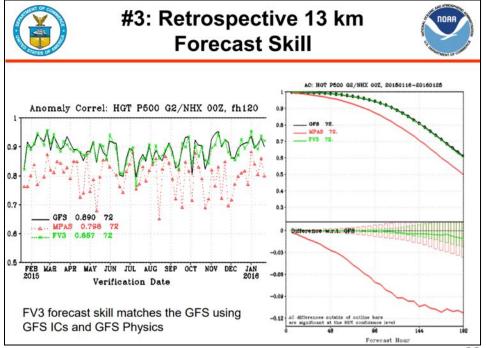

(Note interannual variation in skill!)

"There is no community for FV3"

The Global FV3 Community

Past, present, future earth and beyond

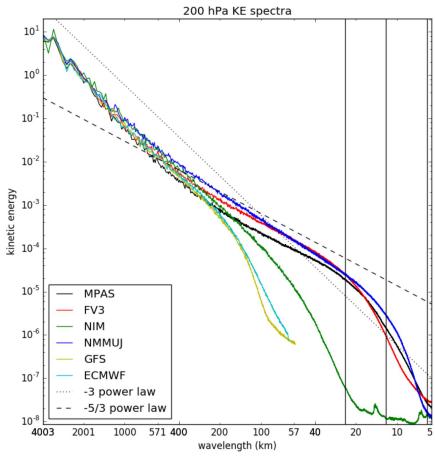
"FV3 was only selected because of its speed"

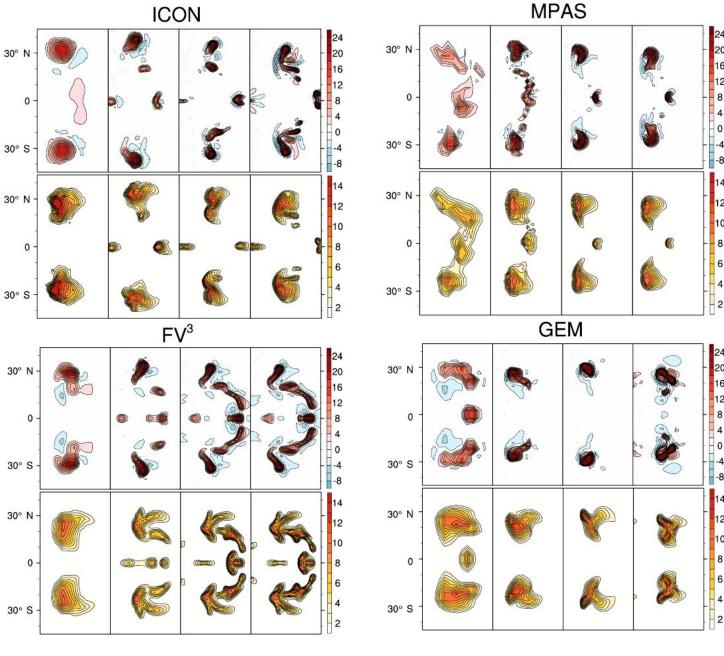

NGGPS Evaluation

- FV3 was selected due to better stability, efficiency, accuracy, and forecast skill at 50-km, 13-km, and 3-km scales. Three independent experts agreed.
- GFDL and EMC have enjoyed a close relationship since 2016 to transition FV3 into the UFS.
- Efficiency is **crucial** for practical applications

Selecting a single dynamical core upon which to build a unified global coupled system, will be achieved through assessing 10 additional criteria described in the table below. As results from Phase 2 testing are generated, they will be made available here.

#	Evaluation Criteria	Results ¹
1	Relaxing shallow atmosphere approximation (deep atmosphere dynamics)	Results
2	Accurate conservation of mass, tracers, entropy, and energy	Results
3	Robust model solutions under a wide range of realistic atmospheric initial conditions using a common (GFS) physics package	Results Results (web)
4	Computational performance with GFS physics	Results
5	Demonstration of variable resolution and/or nesting capabilities, including physically realistic simulations of convection in the high-resolution region	Results
6	Stable, conservative long integrations with realistic climate statistics	Results
7	Code adaptable to NEMS/ESMF	Requirements
8	Detailed dynamical core documentation, including documentation of vertical grid, numerical filters, time-integration scheme and variable resolution and/or nesting capabilities	Documentation
9	Evaluation of performance in cycled data assimilation	Results
10	Implementation Plan (including costs)	Results


¹See Dynamical Core Test Plan for description of testing methodology


Evaluation with same physics.

23

Convective-scale Evaluation

200-mb KE spectrum (Skamarock 2004) in a global 3-km simulation. NGGPS Phase I Report

DCMIP (June 2016 @ NCAR): Zarzycki et al. 2019 Reduced-radius earth supercell test (4-2-1-0.5 km)

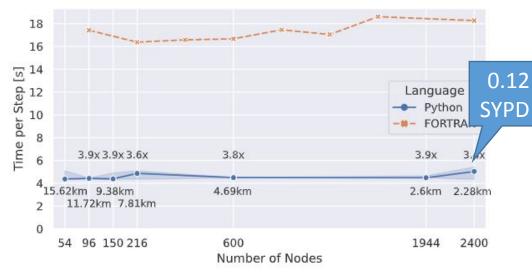
"FV3 cannot work on GPUs"

Al2 Pace Accelerating to k-scale

- Earlier GPU ports of FV3 at NASA and LASG got order-of-magnitude speedups—but were unsustainable
- Pace: GT4py implementation of FV3 + parameterizations

Performance + Python Flexibility

- Compiled to optimized code for any processor
- Transitioned into NOAA + NASA with SENA funding



Socket-for-socket comparison on Piz Daint (CSCS Switzerland, 12x Intel Haswell + 1 NVIDIA P100)

"Nobody in NOAA knows this code"

FV3 Ongoing Development

- Duo-Grid & LMARS
 - GFDL, LASG
- Advanced nesting: telescoping, moving, and vertical nests
 - GFDL, AOML
- Super-regular regional domain
 - EMC
- Whole and deep atmospheres
 - EMC, SWPC, GMAO
- FV3 Integrated/In-line physics
 - GFDL, AOML, EMC, LASG
- New advection and vertical remapping operators
 - GFDL, GMAO

- Semi-implicit solver revisions
 - GFDL + EMC
- Subgrid turbulence
 - GFDL, Clemson, FIU, AOML
- GitHub CI/CD
 - GFDL
- FV3 Adjoint
 - GMAO & JSCDA
- Revised 2D advection
 - U Sao Paulo
- AI2 FV3net Python + ML wrapper

FV3 Ongoing Development

- Duo-Grid & LMARS
 - GFDL, LASG
- Advanced nesting: telescoping, moving, and vertical nests
 - GFDL, AOML
- Super-regular regional domain
 - EMC
- Whole and deep atmospheres
 - EMC, SWPC, GMAO
- FV3 Integrated/In-line physics
 - GFDL, AOML, EMC, LASG
- New advection and vertical remapping operators
 - **GFDL**, GMAO

- Semi-implicit solver revisions
 - GFDL + EMC
- Subgrid turbulence
 - **GFDL**, Clemson, FIU, **AOML**
- GitHub CI/CD
 - GFDL
- FV3 Adjoint
 - GMAO & JSCDA
- Revised 2D advection
 - U Sao Paulo
- AI2 FV3net Python + ML wrapper

"A key element that makes collaborations successful is having individuals who enjoy working together and are able to do so."—Morris Bender, BAMS 2019

Thoughts on development

- "A good model must be a fast model" S-J Lin
- Dynamics isn't the whole story.
- Development is learned by doing development.
- Successful models are developed holistically.
 - "Mix 'n' match" or "plug 'n' play" development doesn't work
- Common methods give common results.