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Key Points:  

1) A new variable-resolution global chemistry-climate model has been developed for research at 
the nexus of US climate and air quality extremes 

2) This model unifies component advances in physics, chemistry and land-atmosphere 
interactions within a seamless variable-resolution framework 

3) This model features much improved US regional precipitation, drought, and air quality 
extremes compared to previous models 

 
Abstract. We present a variable-resolution global chemistry-climate model (AM4VR) developed at 
NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) for research at the nexus of US climate and 
air quality extremes. AM4VR has a horizontal resolution of 13 km over the US, allowing it to resolve 
urban-to-rural chemical regimes, mesoscale convective systems, and land-surface heterogeneity. 
With the resolution gradually reducing to 100 km over the Indian Ocean, we achieve multi-decadal 
simulations driven by observed sea surface temperatures at 50% of the computational cost for a 25-
km uniform-resolution model. In contrast with GFDL’s AM4.1 contributing to the sixth Coupled Model 
Intercomparison Project  at 100-km resolution, AM4VR features much improved US climate mean 
patterns and variability. In particular, AM4VR shows improved representation of: precipitation 
seasonal-to-diurnal cycles and extremes, notably reducing the central US dry-and-warm bias; western 
US snowpack and summer drought, with implications for wildfires; and the North American monsoon, 
affecting dust storms. AM4VR exhibits excellent representation of winter precipitation, summer 
drought, and air pollution meteorology in California with complex terrain, enabling skillful prediction of 
both extreme summer ozone pollution and winter haze events in the Central Valley. AM4VR also 
provides vast improvements in the process-level representations of biogenic volatile organic 
compound emissions, interactive dust emissions from land, and removal of air pollutants by terrestrial 
ecosystems. We highlight the value of increased model resolution in representing climate–air quality 
interactions through land-biosphere feedbacks. AM4VR offers a novel opportunity to study global 
dimensions to US air quality, especially the role of Earth system feedbacks in a changing climate.  
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Plain Language Summary. NOAA’s Geophysical Fluid Dynamics Laboratory has developed a new 
variable-resolution global chemistry-climate model for research at the nexus of US climate and air 
quality extremes. In contrast with the global models contributing to the latest Intergovernmental Panel 
on Climate Change Report, this model features more than 10 times finer spatial resolution over the 
contiguous US, allowing it to better resolve cities, mountain valleys, thunderstorms, and urban-to-rural 
air quality variations. This model features much improved representation of regional rainfall extremes, 
drought, and severe air pollution events in diverse US air basins, including California. Notably, this 
model reduces the central US dry-and-warm bias that has persisted in many generations of climate 
models. As global climate change leads to more hot and dry weather, the resulting droughts are creating 
dust-prone bare lands or stressing plants, making them less able to remove ozone pollution from the 
air. These effects are included in this model, with particular focus on integrating physical, chemical, and 
biological components at high spatial resolution to understand Earth system feedbacks to US air quality 
extremes in a changing climate.  
 

1. Introduction 
Earth system interactions of air quality with weather and climate operate across time scales from hours 
to decades and across spatial scales from hundreds of meters to thousands of kilometers. Climate 
change influences air quality globally, including by altering the frequency, severity, and duration of air 
stagnation events, heat waves, precipitation, and other meteorology conducive to pollutant 
accumulation in populated regions [e.g., Fiore et al., 2015]. In particular, compound heatwaves and 
drought events exacerbate air pollution through land-biosphere feedbacks, such as reducing ozone 
removal by drought-stressed vegetation [e.g. Lin et al., 2019; Lin et al., 2020], increasing wildfire and 
dust emissions [Xie et al., 2022; Pu et al., 2022; Yu et al., 2022], and altering biogenic volatile organic 
compound (BVOC) emissions from plants [Sharkey and Monson, 2014; Lin et al., 2017]. Some regions 
may be particularly vulnerable to large feedbacks from natural sources of aerosol and ozone precursors, 
such as semi-arid western US regions with topography ranging from below sea level to over 4 km above 
sea level. Representing Earth system feedbacks requires advances in current global chemistry-climate 
models, especially increased coupling and interactivity of atmospheric composition with the biosphere, 
improved representation of surface heterogeneity in land-atmosphere coupling, and increased 
resolution to better represent extreme heat, drought and air pollution events in regions over complex 
terrain. Here we aim to address these challenges by integrating physical, chemical, and biological 
components in a variable-resolution global chemistry-climate model.  
 
In the US, air pollution regulation is complicated by contributions from multiple sources including 
background sources like stratospheric ozone intrusions, dust storms, wildfires, transported pollution, 
and biogenic precursors, in addition to US anthropogenic sources [Lin et al., 2012ab; Ginoux et al., 
2012; US EPA 2016; Lin et al., 2017; Jaffe et al., 2018]. Air pollution events are often initiated by 
changes in large-scale atmospheric dynamics that can be resolved by global models, but assessing 
their ultimate impacts on surface air quality requires high-resolution models. For example, model 
resolution plays a critical role in representing: the fine-scale filamentary structure of the stratospheric 
ozone intrusions that penetrate deeper into the troposphere [Lin et al., 2012a; Lin et al., 2015; Langford 
et al., 2017; Zhang et al., 2020]; the offshore downslope Santa Ana and Diablo winds that often result 
in increased wildfire danger in California [Mass and Owen, 2019; Goss et al., 2020]; and ozone pollution 
episodes caused by the complex chemical mixing of wildfire plumes with urban emissions in 
intermountain valleys [Jaffe et al., 2020] and by lake breezes at coastal counties around Lake Michigan 
[Dye et al., 1995; Stanier et al., 2021]. High-resolution models are also needed to better represent 
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surface heterogeneity of dust source locations, surface wind gusts and mesoscale convective systems 
that trigger extreme dust storms such as haboobs [Ginoux et al, 2012; UNEP 2016; Kim et al., 2017]. 
 
Home to over 39 million people and America’s most productive farmlands surrounded by mountain 
ranges, California is particularly susceptible to extreme climate and air pollution events [OEHHA 2022]. 
Despite decades of progress in air quality regulation, ozone is still among the most widespread and 
significant air pollution health threats in California. Seven of the ten cities in the US with the worst ozone 
pollution were consistently in California during the last decade [American Lung Association, 2023]. Not 
only notorious for ozone pollution, California’s Bakersfield, Visalia, and Fresno in the Central Valley also 
ranked the top three cities in the US with the highest year-round concentration of PM2.5 (American Lung 
Association, 2023). With more frequent hot and dry weather expected in the coming decades [e.g., Lau 
et al., 2012], accurate projection of future air quality in California can provide valuable information to air 
quality managers as they develop abatement strategies. However, current global chemistry-climate 
models typically have a spatial resolution of 100–300 km in the atmosphere [Thornhill et al., 2021], too 
coarse to resolve diverse air basins in California and other US regions, limiting their usefulness for local 
and regional policymakers.  
 
Statistical downscaling has been widely used to refine projections of future climate, but it requires the 
assumption that the statistical relationships used to transform global climate model fields during a 
historical period hold for the novel environments under climate change (“stationarity”), of which the 
validity is difficult to assess [Lanzante et al., 2018]. High-resolution regional models such as the Weather 
Research & Forecasting model with Chemistry (WRF-Chem) and the Community Multiscale Air Quality 
Modeling System (CMAQ) [US EPA 2022] provide an alternate approach, but they require prescribed 
atmospheric boundaries from other models. There are substantial issues with imposing global model 
boundary conditions in a regional model, due to inconsistencies in the physical and chemical schemes 
and vertical resolution among models, and the neglect of climate feedbacks from regional environments 
to the global system [e.g., Lin et al., 2009; Lin et al., 2010; Gao et al., 2013; Pfister et al., 2014; Hogrefe 
et al., 2018; Liu et al., 2018].  Furthermore, regional air quality models typically rely on prescribed 
vegetation characteristics (e.g., Foroutan et al., 2017), limiting their ability to study the impacts of future 
climate change on vegetation dynamics and feedbacks to air quality. Accurate projection of future 
climate and air quality at scales relevant to local and regional stakeholders requires a seamless 
modeling system that can provide detailed information over a targeted region, while still integrating the 
global Earth system components in a computationally efficient manner.  
 
Continuing increases in computing power have enabled development of global high-resolution (25-50 
km) physical climate models, which have been shown to improve representation of atmospheric rivers 
and rainfall extremes [e.g.,  Roberts et al., 2020; Haarsma et al., 2020; Zhao, 2022; Jong et al., 2023]. 
However, accurately simulating the central US warm-season precipitation and its diurnal cycle remains 
a serious challenge, even in models at 25 km resolution [e.g., Tang et al., 2019; Dong et al., 2023]. 
These physical climate models typically have minimal representation of aerosols by prescribing ozone 
and other oxidants, but avoid the high computational cost of interactive atmospheric chemistry. The 
desire to maintain both comprehensive chemistry and high resolution for air quality research has 
motivated several variable-resolution model development efforts. The US National Center for 
Atmospheric Research (NCAR) is developing the Multi-Scale Infrastructure for Chemistry and Aerosols 
(MUSICA) using the spectral element dynamical core [Pfister et al., 2020]. With horizontal winds and 
temperature nudged to reanalysis, Schwantes et al. [2022] and Tang et al. [2023] evaluated several 
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one-year simulations of MUSICA version 0 with 32 vertical layers and horizontal mesh refinement down 
to 14 km over the continental US (CONUS). GEOS-Chem, a global chemical transport model with 
prescribed meteorology, recently has also developed grid-stretching capability [Bindle et al., 2021]. 
These short-term simulations with nudged or prescribed meteorology have demonstrated the value of 
regional grid refinement for simulating atmospheric trace constituents.  
 
Here we present multi-decadal simulations of a new variable-resolution global chemistry-climate model 
developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL AM4VR), with particular focus on 
integrating physical, chemical, and biological components for research at the nexus of US climate and 
air quality extremes. AM4VR builds upon a variable-resolution version of the GFDL Finite–Volume 
Cubed-Sphere Dynamical Core (FV3) with regional grid refinements of 13 km over CONUS [Harris et 
al., 2016] and the GFDL AM4.1 global chemistry-climate models with 49 vertical levels [Horowitz et al., 
2020]. Many global and regional atmospheric chemistry models calculate dry deposition of gases to 
vegetation using the Wesely (1989) scheme, which does not account for stomatal closure induced by 
soil drying or rising atmospheric CO2 concentrations [Rydsaa et al., 2016; Kavassalis et al., 2017; 
Galmarini et al., 2021]. In contrast, AM4VR incorporates a new mechanistic scheme with dry deposition 
of ozone, reactive nitrogen, and their precursors responding to hydroclimate and photosynthesis in a 
dynamic vegetation land model [Lin et al., 2019], which has been shown to improve representation of 
ozone extremes during drought and of climate-driven surface ozone trends [Lin et al., 2020]. AM4VR 
also includes substantial improvements in the representation of interactive BVOC emissions, the 
response of dust emissions to dynamic vegetation cover, and wildfire plume chemistry and injection 
height. Development of such a comprehensive model, with meteorology-chemistry coupling, feedbacks, 
and interactions across space and time is particularly challenging.  
 
The focus of the present study is to provide an overview of the AM4VR performance in AMIP 
(Atmospheric Model Intercomparison Project) mode, driven by observed sea surface temperature (SST) 
and sea ice distributions, historical anthropogenic emissions, land use and atmospheric radiative forcing 
agents over 1988-2020. Section 2 provides a detailed description of the grid structure, physical and 
chemical model formulations, and forcing datasets as distinguished from the AM4.1 configuration used 
in simulations for the sixth Coupled Model Intercomparison Project (CMIP6) [Horowitz et al., 2020]. In 
Section 3, we evaluate the physical climate simulation with AM4VR: including global distributions of 
precipitation patterns and radiative fluxes, and surface air temperature, drought, and rainfall extremes 
over the US. After a brief evaluation of atmospheric composition simulation (Section 4), we then focus 
our analysis on US climate–air quality interactions (Section 5). We summarize in Section 6 the strengths 
and potential applications of AM4VR and discuss future development plans.  

2. Model Description 

2.1 Grid Structure 
[Figure 1 about here]  
AM4VR is built using the GFDL FV3 Dynamical Core [Putman and Lin 2007] on a stretched c256 grid 
[Harris et al. 2016; Harris et al., 2019; Zhou et al., 2019], providing a horizontal resolution of 
approximately 13 km over the contiguous US (Fig.1). In contrast with AM4.1 using the c96 (~100 km) 
uniform-resolution grid, AM4VR features eight times finer horizontal resolution over the contiguous US, 
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allowing it to better resolve cities, mountain-valleys, urban-to-rural chemical regimes, mesoscale 
convective systems, fire weather and air pollution meteorology over California’s complex terrain 
(Fig.S1). With the resolution gradually reducing to 100 km over the Indian Ocean on the opposite face 
of the FV3 cube, we achieve computational efficiency for seamless assessment across daily to multi-
decadal time scales. In contrast with the C384 (25 km) uniform-resolution grid,  AM4VR shows 50%  
reduction of computational burden while doubling resolution over North America (Supporting Text S1). 
In contrast with MUSICA-v0 [Schwantes et al., 2022; Tang et al., 2023], which has a horizontal 
resolution of 14 km over the contiguous US, quickly transitioning to 111 km over the rest of the globe, 
AM4VR with the FV3 dynamical core features a less radically-stretched grid structure with resolution 
gradually reducing from 13 km over CONUS to 25-50 km over Europe, 50-100 km over Asia, and 100 
km over the Indian Ocean. This allows for better representation of the general circulation and upstream 
chemical processes over much of the Earth, and a less-severe discontinuity outside of the highest-
resolution region. 
 
AM4VR uses an update to the GFDL Land Model version 4.0 that was used as the land component in 
the AM4.0 physical climate and aerosol model [Zhao et al., 2018ab] for CMIP6 simulations, not the 
GFDL Land Model version 4.1 used by the full-chemistry AM4.1 atmospheric model [Horowitz et al., 
2020] and the ESM4.1 coupled Earth System Model [Dunne et al., 2020]. The land model employs the 
same grid structure as the atmospheric model, but represents small-scale heterogeneity of land surface 
cover in each grid cell using a mosaic approach, with a combination of subgrid tiles in four land use 
categories: lands undisturbed by human activity (i.e., “natural”), lands harvested at least once (i.e., 
“secondary”), croplands, and pastures [Shevliakova et al., 2009; Malyshev et al., 2015; Fig.S2]. 
Transitions among the four land-use types are prescribed from the historical reconstruction at 
0.25ox0.25o resolution used in CMIP6 [Hurtt et al., 2020]. Land initial conditions for AM4VR are 
remapped from GFDL’s seasonal prediction model at 25 km resolution [Delworth et al., 2020]. The time 
step for atmospheric chemistry and physics and land is reduced from 30 min in AM4.1 to 10 min in 
AM4VR for increased numerical stability.  
 
For this study, we evaluate the AMIP configuration of AM4VR and document the differences in results 
between AM4VR and two uniform-resolution C96 AMIP experiments: (1) The CMIP6 configuration of 
AM4.1; (2) An experiment with emissions, atmospheric chemistry, land model component, and dry 
deposition schemes updated as in AM4VR (Sections 2.3-2.5), but retaining the physical model 
formulation as in AM4.1 (Section 2.2). To demonstrate the benefit of refining the model resolution from 
25 to 13 km, we also analyze a 7-year C384 uniform-resolution experiment. Table S1 provides a list of 
model experiments analyzed in this study.  

2.2 Physical Model Formulation 
The physical formulation of AM4VR is similar to that of AM4.1, but with some changes in the 
configuration of the dynamical core and physics retuning for the convection scheme and cloud 
microphysics. Our goal and tuning strategy for AM4VR is to achieve marked improvements in mean 
climate and variability over the US, while maintaining a good simulation of global-scale circulation and 
climate comparable to AM4.1 at C96 resolution. One significant change in the configuration of the 
dynamics in AM4VR is the use of a fourth-order divergence damping rather than the sixth-order damping 
used in AM4.0 and AM4.1. Increased divergence damping in the model can result in increased tropical 
cyclone frequency, decreased convective updrafts, and a broadened precipitation distribution and larger 
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extreme values [Zhao et al., 2012; Anber et al., 2018]. Using lower-order divergence damping is more 
justifiable for higher-resolution simulations to reduce grid-scale noise,  enhance numerical stability, and 
improve the simulation of organized convection [Zhao, 2022]. The vertical resolution of AM4VR is the 
same as that for AM4.1, including 49 vertical levels, ranging in thickness from 30 m near the Earth’s 
surface to 1-1.5 km near the tropopause and 2-3 km in much of the stratosphere with model top at 1 Pa 
(~80 km altitude). Unlike in AM4.1, a sponge layer extending down to 15 Pa is applied in the top five 
model layers in AM4VR to control numerical noise for increased stability [Harris et al., 2021].  
 
Since a model's ability to accurately simulate the global distribution of precipitation given observed sea 
ice and SST distributions is important to the model's overall quality in simulating the atmospheric 
general circulation, temperature, clouds, vegetation, and sources and sinks of atmospheric pollutants, 
we have considered it as a high priority during model development. In principle, it would be preferable 
to resolve convective precipitation rather than rely on parameterization. But given that AM4VR’s 
resolution, even over North America, is still too coarse to resolve deep convection, it must still rely on 
convective parameterization to some extent. In an initial 10-year AMIP simulation with AM4VR before 
any retuning of the physics from the  AM4.1 settings, precipitation shifted markedly from parameterized 
to resolved-scale (explicit) convection due to the increased resolution over North America. We find this 
deteriorates model-simulated mean climate because excessive resolved-scale convection tends to 
distort convection towards unrealistically large scales. Over the southeast US during summer, for 
example, the fraction of resolved-scale precipitation increases from ~42% in AM4.1 to ~81% in this 
initial AM4VR simulation, with simulated precipitation peaking at nighttime as opposed to the observed 
afternoon peak. These results are broadly consistent with many prior studies suggesting that the model-
simulated mean state can deteriorate dramatically when parameterized deep convection is overly 
inhibited [Zhao et al., 2018b, Freitas et al., 2020, and references therein], highlighting the need for 
further work on scale-aware convection as well as the explicit cloud parameterization.  
 
We are able to ameliorate some of these issues by retuning several of the moist physics 
parameterizations. Specifically, we increase parameterized precipitation in AM4VR by modifying the 
strength of the deep plume lateral mixing rate in the double plume convection scheme (𝜀1 in Equation 1 
of Zhao et al., 2018b). We conduct two 10-year AMIP sensitivity simulations (2008-2017) with 𝜀1 

decreasing from the AM4.1 default value of 0.9 km-1 to 0.7 and 0.5 km-1, and evaluate the global 
distribution of precipitation and radiation at the top of the atmosphere (TOA) with observational 
estimates. Fig.S3 shows comparisons of US annual precipitation patterns and seasonal cycles. As 𝜀1 

decreases to 0.5 km-1, the fraction of large-scale precipitation over the Southeast US during June-
September decreases to 60%, compared to 81% with 𝜀1 = 0.9 km-1 (72% with 𝜀1 = 0.7 km-1), along with 
reductions in wintertime precipitation, leading to marked improvements in the simulated precipitation 
season cycle (r2 = 0.86 versus 0.60). A lower 𝜀1 value generally decreases US land precipitation, 
reducing the wet bias in the Southeast  while increasing the dry bias in the central US during nighttime. 
The deep plume lateral mixing rate also influences model-simulated tropical transient activity, which 
decreases with increased convective parameterization [Zhao et al., 2018b]. We choose to use 𝜀1 = 0.5 
km-1 as our baseline model configuration for AM4VR, but also discuss results from an alternate 
configuration with 𝜀1 = 0.6 km-1 in Sections 3 and 4, after compromising between the mean state and 
internal atmospheric variability.  
 
We also adjust a liquid cloud microphysics parameter, referred to as the critical cloud drop radius (rthresh), 
above which liquid water in large-scale clouds is converted to rain [Golaz et al., 2013]. For a given cloud 
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liquid water content and droplet number, an increase of rthresh makes it harder for the liquid cloud to 
precipitate and therefore increases cloud liquid water content, especially in the extratropics where large-
scale stratiform clouds dominate. We increase rthresh from 8.5 𝜇m in AM4.1 to 9.5 𝜇m in AM4VR, which 
is more consistent with satellite observations [Suzuki et al., 2013], to reduce positive biases in net 
shortwave downward radiative flux in AM4VR.  

2.3 Atmospheric Chemistry, Aerosol, and Vegetation Feedbacks 
AM4VR includes interactive tropospheric and stratospheric gas-phase and aerosol chemistry. The bulk 
aerosol scheme includes 18 transported aerosol tracers, and the gas-phase chemistry scheme 
represents the NOx–HOx–Ox–CO–VOCs system with ~100 chemical tracers, 190 gas-phase kinetic 
reactions, 43 photolysis reactions, and 15 heterogeneous reactions [Horowitz et al., 2020]. 
Heterogeneous chemistry is slightly updated from AM4.1. AM4VR corrects an error in the simulated 
hygroscopic growth of the surface area of organic aerosols. The reaction probabilities (𝛾 values) of N2O5 
and NO3 on aerosol surfaces have been reduced from their values in AM4.1, from 𝛾N2O5=0.02 to 0.01, 
and 𝛾NO3=0.02 to 0.001, on the basis of recent observational data (see Table S1 of Holmes et al., 
2019). The optical properties of aerosol, extinction efficiency, single scattering albedo and asymmetry 
parameter, are calculated at 40 wavelengths from 174 nm to 40 micrometers using a Mie code (Text 
S2).  
 
One significant change in the configuration of atmospheric chemistry for AM4VR is the use of an 
interactive dry deposition scheme, coupled to dynamic vegetation in LM4.0, for reactive nitrogen 
species [Paulot et al., 2018], SO2, volatile organic compounds (VOCs), and ozone [Lin et al., 2019; Lin 
et al., 2020]. Unlike AM4VR, dry deposition velocities for all gases in AM4.1 are prescribed from a 
monthly climatology [Silva & Heald, 2018]. AM4VR includes a mechanistic simulation of tracer dry 
deposition to vegetation depending on photosynthesis, soil water stress, atmospheric CO2 
concentration and vapor pressure deficit [Lin et al., 2019; 2020]. The scheme includes a correction to 
double counting of reduced stomatal deposition on the wet part of the leaf noted by Clifton et al. [2020]. 
The LM4.0 dry deposition scheme described in Lin et al. [2019, 2020] was driven by observation-based 
atmospheric forcings, and used the CMIP5 settings for soil types, soil parameter values, and land use. 
The scheme in the AM4VR configuration instead uses the LM4.0 CMIP6 settings and is coupled to the 
atmospheric model. This enables investigation of how the improved representation of precipitation and 
drought influences air quality simulation through land-biosphere feedbacks.  
 
Dust emissions are calculated dynamically online in the land component, LM4.0. The emissions and 
dry deposition of dust are calculated separately on each sub-grid tile (i.e. pasture, cropland, natural and 
secondary vegetation) of LM4.0. Net dust flux (emission minus deposition) is transferred to the 
atmosphere through the model's coupler. Dust emission is initiated when the surface wind speed 
reaches a specified minimum threshold necessary to start the sand blasting process lifting clay and silt 
particles. Dust emission is parameterized following Ginoux et al. (2001) with adaptation to the GFDL 
previous version of the dynamic land model LM3 by Evans et al. (2016). To consider the preferential 
location of dust sources in topographic depressions, dust emission is proportional to the source function 
S (Eq. 1 of Ginoux et al., 2001). The threshold of wind erosion is minimum for dry and bare surfaces, 
and is given a specific value for each land use type. Higher values are used for cropland (6 m/s) and 
pasture (4 m/s) compared to natural and secondary vegetation (1 m/s) to consider surface littering by 
agricultural waste. Surface bareness is assumed to decrease exponentially as the  sum of the Leaf Area 
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Index (LAI) and ten times the Stem Area Index (SAI) increases, with maximum values of LAI (0.2) and 
SAI (0.015), beyond which emissions are completely suppressed. Dust emissions are also suppressed 
when the following parameters exceed the stated maximum values: snow cover (0.01 kg/m2), soil 
wetness (0.3) and soil iceness (0.025) averaged over the first 15 cm below the surface. Note that our 
simulations do not include scaling of the threshold wind velocity with soil moisture (Ginoux et al., 2001, 
Eq. 3), beyond the soil wetness threshold mentioned above. Following Kok et al. (2014), the soil mass 
fraction in AM4VR is distributed  with mass fraction of 0.05, 0.15, 0.3, 0.27 and 0.23 for the size classes 
0.1-1 μm, 1-2 μm, 2-3 μm, 3-6 μm, and 6-10 μm, respectively. The dimensional global emission factor 
C (Eq. 2 of Ginoux et al., 2001) has been increased to 2.5 µg s-2 m-5 in AM4VR from 1.0 µg s-2 m-5 in 
Ginoux et al. [2001] to improve agreement of simulated surface concentrations with observations. Table 
S2 provides a list of dust model parameters in AM4VR and C96 calculated from LM4.0, in comparison 
to those in AM4.1/LM4.1.  
 
Lightning NO emissions are calculated interactively as a function of subgrid convection in the model, 
as diagnosed by the double-plume convection scheme (Zhao et al., 2018b). A shift from parameterized 
convective precipitation to resolved large-scale precipitation with increasing grid resolution poses a 
challenge for estimating lightning flash rate and lightning NO emission in a variable-resolution model. 
We were able to ameliorate this issue by using a global scaling factor to have AM4VR produce a similar 
magnitude of total lightning NO emissions over North America as in AM4.1. The global total production 
of NO by lightning is 3.26 TgN/yr (400.5 GgN/yr over North America) in AM4.1 and 4.28 TgN/yr (375.1 
GgN/yr over North America) in AM4VR (Fig.S4). The larger production of lightning NO in AM4VR is 
located around the Indian Ocean, which has little direct impact on air quality episodes in the US but 
may have some influence on the global background ozone by modulating methane lifetime. We find 
that the methane lifetime against loss by reaction with tropospheric OH is 0.5 years shorter in AM4VR 
than AM4.1 (Fig.S5). Future development efforts should include a scale-aware lightning 
parameterization to account for the shift from parameterized to resolved convective updrafts as the 
model resolution increases. At high spatial resolutions, scaling using a “calibration factor” such as 
proposed by Price and Rind (1994) is insufficient to account for resolved-scale convection. Instead, a 
scale-aware lightning parameterization may be approached by comparing grid-box mean vertical 
pressure velocities (omega) and the parameterized convective mass fluxes. As the model resolution 
increases, the grid-box mean vertical pressure velocities increase while parameterized convective mass 
flux decreases. One can use vertical pressure velocity to determine the magnitude and depth of 
resolved-scale convection. The hydrometeor contents and convective available potential energy can be 
combined with the convective depth to infer the lightning parameterization associated with resolved-
scale convection.  

2.4 Interactive BVOC Emissions  
Biogenic emissions of isoprene and monoterpenes are calculated online using the PCEEA 
(Parameterized Canopy Environment Emission Activity) algorithm [Guenther et al., 2006] in the Model 
of Emissions of Gases and Aerosols from Nature (MEGAN v2.1; Guenther et al., 2012) as a function of 
emission potentials, land cover, leaf area index, and simulated air temperature and shortwave radiative 
fluxes. In this work, we implement high-resolution emission potential (EP) data and satellite-derived 
land cover maps to improve representation of urban-to-rural variations in BVOC emissions. The 
vegetation types and leaf area indices used in MEGAN are independent of those simulated by the LM4.0 
dynamic vegetation model, due to a lack of urban land use in LM4.0 and a lack of coupling between the 
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dynamic vegetation properties simulated by LM4.0 and the atmospheric emissions module. MEGAN 
has three options for EP definition: (1) EP maps at 0.5ox0.5o resolution for five vegetation types: needle 
trees, broadleaf trees, crops, shrubs, and grass [Emmons et al., 2010]; (2) EP calculated from 
prescribed Plant Functional Type (PFT) distributions with each of the 16 MEGAN PFTs assigned a 
single emission factor value regardless of species composition; (3)  detailed EP maps with high spatial 
resolution (1x1 km2), combining information on land cover, species composition with species-specific 
emission factors, and above-canopy flux measurements where available [Guenther et al., 2012].  The 
second option, with EP calculated from PFT coverage, is inaccurate, especially for broadleaf deciduous 
forest, which can consist of tree species such as maples, which are low isoprene emitters, and tree 
species such as oaks, which are strong isoprene emitters. AM4.1 adopted the first option for isoprene 
and the second option for monoterpene emissions.  
 
We have made the following changes to the original implementation of MEGAN2.1 in GFDL models 
described by Rasmussen et al. [2012]: (1) fixing an error in the mapping of PFT distributions to 
croplands and shrublands for calculating isoprene emissions with the first EP definition option adopted 
by AM4.1; (2) updating global PFT data from 0.5ox0.5o to 3min x 3min spatial resolution 
[https://bai.ess.uci.edu/megan/data-and-code/megan21]; (3) modifying codes to allow land cover 
change using inter-annually varying PFT and LAI datasets; (4) including the CO2 inhibition effect on 
isoprene emissions [Possell and Hewitt 2011; Tai et al.,2013]; (5) implementing global 0.1ox0.1o MODIS 
LAI data reprocessed to mitigate noise and gaps [Yuan et al., 2011; 2020]; (6) using different factors 
for direct (4.0 μmol photons per Joule) and diffuse light (4.6 μmol photons per Joule) to convert solar 
radiation in W m-2 to Photosynthetic Photon Flux Density in μmol photons m!"#s!$ [Guenther et al., 2012]; 
(7) implementing an additional algorithm to use detailed EP maps (i.e., the third EP option) for isoprene 
and the main monoterpenes (α-pinene, β-pinene, myrcene, sabinene, limonene, trans-β-ocimene, Δ3-
carene; https://bai.ess.uci.edu/megan/data-and-code/megan21; all monoterpene emissions are treated 
as α-pinene in the chemistry scheme). The AM4VR simulations in the present study adopt this new 
algorithm (third EP option) for both isoprene and monoterpene emission calculations. Updates (1) to (3) 
implemented for the first EP option are not used in the AM4VR simulations presented here, but these 
updates will allow future efforts to explore the role of land cover changes. All input datasets are 
regridded to the model grid during runtime using a conservative remapping approach.  
 
[Figures 2 and 3 about here] 
Figure 2a-b displays comparisons of MEGAN isoprene emission fluxes over CONUS computed in the 
AMIP simulations with AM4.1 and AM4VR. AM4VR calculates 50-80% lower isoprene emissions over 
crop-dominated regions, such as the Central Valley of California, the US Great Plains and Midwest 
regions (Fig.2a-b), the North China Plain, northern India, and central Europe (Fig.S6). The higher 
isoprene emissions over these regions estimated by AM4.1 is caused by mis-assigning the EP values 
between  croplands and shrublands. The PFT mapping fix reduces isoprene emissions by ~50% in the 
cropland dominated regions and by ~20% globally in AM4.1 (Fig.S6). The global total isoprene 
emissions from vegetation are 491.5 Tg/yr in AM4.1 and 336.3 Tg/yr in AM4VR for the 2000-2014 period 
(Fig.S6). Another major difference between AM4.1 and AM4VR is the Southeast US isoprene emission 
maximum, which is focused in the Upper South (Kentucky/Virginia) and the Ozark Plateau (Missouri) in 
AM4.1, while AM4VR simulates elevated emissions extending to the Deep South. Comparison with a 
high-resolution (0.25ox0.3125o) inversion of OMI (Ozone Monitoring Instrument) HCHO columns 
available for the Southeast US in August-September 2013 [Kaiser et al., 2018] shows that simulated 
isoprene emissions from AM4VR exhibit significant spatial coherence with the OMI-based estimates on 
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ecosystem-relevant scales (Fig.3). Total isoprene emissions for the Southeast US in August-September 
2013 are 2.3 TgC from the OMI inversion and 2.7 TgC in AM4VR, while emissions in AM4.1 (4.5 TgC) 
are too high by a factor of 2. The spatial difference in simulated isoprene emissions between AM4.1 
and AM4VR partly reflects the difference in the fraction of broadleaf deciduous trees in the underlying 
land use datasets for MEGAN. AM4.1 uses the PFT distributions from the NCAR Community Land 
Model, while the land cover dataset used to generate detailed EP maps for AM4VR adjusts vegetation 
coverage using ground truth data from the US Forest Service [Millet et al., 2008].  
 
Figure 2c-d compares biogenic emissions of monoterpenes computed in AM4.1 with EP calculated 
from PFT coverage and in AM4VR with EP detailed maps accounting for species composition. AM4VR 
calculates higher monoterpene emissions from western Ponderosa Pine forests and midwestern 
American Elm forests, while estimating lower emissions from subtropical forests in the Southeast. The 
global total emissions of monoterpenes from vegetation are 132 Tg/yr in AM4.1 and 96 Tg/yr in AM4VR 
(Fig.S7). Lower monoterpenes emissions  calculated in AM4VR for the tropics are consistent with the 
findings of Sindelarova et al. [2022], who showed that α-pinene emissions calculated from the PFT 
coverage are 70% higher when compared to emissions calculated from the EP maps.  Emissions of 
other BVOCs from vegetation are also updated (Fig.2e-f, Fig.S8, and Text S3). AM4VR assumes a 
5% per-carbon yield of secondary organic aerosols (SOA)  from biogenic isoprene emissions, 
decreased from 10% in AM4.1. The SOA yield from monoterpenes is the same (10%) between AM4.1 
and AM4VR. In the longer-term, we would like to implement a process-based scheme to allow coupling 
between anthropogenic and biogenic emissions for biogenic SOA production [e.g., Zheng et al., 2023].  

2.5 Anthropogenic and Biomass Burning Emissions 
[Figure 4 about here] 
We implement new high-resolution datasets for anthropogenic emissions in AM4VR. Interannually 
varying time series of monthly anthropogenic emissions at 0.1o x 0.1o horizontal resolution for the period 
1980-2020 are obtained from the Community Emissions Data System (CEDS) version 2021-04-21 
(https://doi.org/10.25584/PNNLDataHub/1779095). The AM4.1 CMIP6 simulations used anthropogenic 
emissions from an earlier version (v2017-05-18) of CEDS [Hoesly et al., 2018]. Notably, the new CEDS 
inventory estimates strong reductions of emissions in China for SO2 since 2005, NOx since 2011, and 
organic matter (OM) and black carbon (BC) aerosols since 2000 (Fig.4a-d), consistent with emission 
control regulations and broader technological changes in China (e.g. fuel shifts away from biofuels in 
the residential sector and closing of traditional beehive coke ovens) [Zhang et al., 2017; McDuffie et al., 
2020; Kanaya et al., 2020]. In the US, total anthropogenic NMVOCs emissions considered in AM4VR 
are higher than AM4.1 by 17% during the 2000-2014 period (Fig.4e). While the differences between 
the two CEDS inventories for the other US emissions are small, we find that estimates of US 
anthropogenic OM emissions from the EPA National Emission Inventory for 2017 (NEI2017) are two 
times higher than the CEDS estimates (purple star versus green lines in Fig.4b). This will be discussed 
further in Section 4 when evaluating model simulations of organic aerosols.  
 
Interannually varying time series of monthly biomass burning emissions in AM4VR for 1997-2020 are 
from the Global Fire Emission Database version 4 with small fires (GFED4s) at 0.25°x0.25° resolution 
(https://www.globalfiredata.org/). Biomass burning emissions before 1997 are from the data set of van 
Marle et al. [2017] developed in support of CMIP6, as used in the AM4.1 CMIP6 simulations. Wildfire 
emissions in AM4VR are distributed vertically between the surface and 6 km, with seasonally and 
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geographically varying, biome-dependent (0.25ox0.25o) wildfire smoke injection heights derived from 
space-based multi-angle imaging (MISR 2008-2010; Val Martin et al., 2018), different from the six 
biome-specific vertical profiles of Dentener et al. [2006] used in AM4.1. In North America during 
summer, the percentage of total wildfire emissions injected above 2 km altitude in AM4VR is 25-50% 
over boreal forests, 10-25% over temperate forests, 5-10% over grasslands, and 1-5% over croplands, 
compared to 60% north of 45oN (0% south of 45oN) over North America for all seasons in AM4.1. MISR 
provides more realistic spatiotemporal variation of wildfire smoke injection heights, although we 
acknowledge that the 10:30 AM MISR overpass is well before the afternoon peak in fire activity at most 
locations, so may underestimate injection heights. To account for rapid chemistry in fire plumes, we use 
recent field measurements of western US fire plumes [Calahorrano et al., 2021, Xu et al., 2021] to 
partition oxidized reactive nitrogen (NOy) emissions from biomass burning into PAN (37%), NO (36%), 
and HNO3 (27%) in AM4VR, rather than emitting only NO as in AM4.1. While observations show 
enhancements in particulate nitrate with nearly no enhancement in nitric acid (HNO3) [Calahorrano et 
al., 2021], HNO3 and aerosol nitrate are repartitioned basically instantaneously through the ISORROPIA 
thermodynamic model [Fountoukis & Nenes, 2007]. The NOy partitioning reduces excessive ozone 
production close to the fires while increasing their downwind impact. Other updates, including  changes 
in biomass burning emissions of oxygenated VOCs (Fig.4f), alkanes, alkenes (Fig.S9), and SOA yield, 
are described in Text S4.  

3. Results: Physical Climate Simulation 

3.1 Global Distributions of Precipitation and Radiation 
[Figures 5 about here] 
We examine the role of model resolution on physical climate simulation given observed SSTs by 
comparing the AM4VR and C96 AMIP experiments with the same configuration of land, atmospheric 
chemistry and aerosol forcings (Table S1). Figure 5a-f shows the comparison of long-term annual 
mean precipitation from AM4VR and C96 with observational estimates from the Global Precipitation 
Climatology Project (GPCP v2.3) at 1ox1o resolution [Adler et al. 2003] and the Integrated Multi-satellitE 
Retrievals for Global Precipitation Measurement (IMERG) at 0.1ox0.1o resolution [Huffman et al., 2019]. 
The global areal mean, the Pearson pattern correlation coefficient (r), and overall root mean square 
errors (RMSE) against GPCP estimates are slightly degraded in AM4VR versus C96, but there are 
significant improvements in simulated precipitation on regional scales. The most notable improvements 
in AM4VR (with 𝜀1 = 0.5 km-1) relative to C96 (with 𝜀1 = 0.9 km-1) are a reduction of excessive 
precipitation bias over the Philippine Sea and a reduction of dry bias across  the equatorial Indian Ocean 
to Western Indonesia and over the Gulf of Mexico and the US Great Plains, the South Atlantic 
Convergence Zone, and the Southeast Amazon. A slight degradation of the wet bias is found in parts 
of the Maritime Continent and Central America, although some of the discrepancies may reflect 
limitations of the coarse-resolution GPCP data in resolving precipitation in regions with complex 
geographical features. Supporting this statement, the IMERG satellite product at 0.1ox0.1o resolution 
estimates higher precipitation in these regions than GPCP. The simulated differences in regional 
precipitation reflect the combined effects of higher spatial resolution and physics retuning in AM4VR, 
modulating the partitioning of total precipitation between parameterized deep convective precipitation 
and resolved large-scale precipitation, along with associated changes in atmospheric circulation 
(Fig.5g-h). The zonal mean ratio of parameterized convective to total precipitation in the tropics (20oS-
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20oN) decreases from 0.66 in C96 to 0.61 in AM4VR with 𝜀1 = 0.5 km-1 and to 0.57 with 𝜀1 = 0.6 km-1 
(Fig.S10), bringing it closer to ~0.45 from satellite estimates [Chen et al., 2021].  
 
[Figure 6 about here] 
We evaluate patterns of TOA longwave, shortwave, and net radiation fluxes in comparison with satellite 
estimates (CERES EBAF Edition 4.2; Loeb et al., 2018; https://ceres.larc.nasa.gov/). Comparison of 
TOA outgoing longwave radiation (Fig.6a-b) illustrates a low spatial bias and RMSE with a similar 
pattern to AM4.0 and AM4.1 at C96 resolution reported previously [Zhao et al., 2018a; Horowitz et al., 
2020]. Comparison of TOA shortwave absorption and net radiation (Fig.6c-f) exhibits reduced bias (10-
20 W/m2 compared to 20-60 W/m2 in AM4.1) over the ocean in the California, Peru, and Benguela 
Eastern Boundary Current regions, demonstrating encouraging ability of AM4VR in developing marine 
stratus clouds with implications for coastal fog formation in these regions [Torregrosa et al., 2014]. A 
slight degradation is found around the Maritime Continent and over the Southern Ocean, causing an 
increase of overall RMSE from 7.73 W/m2 in C96 to 8.80 W/m2 in AM4VR for shortwave absorption. 
Over North America, AM4VR shows slightly larger positive biases (< 10 W/m2) than C96 against satellite 
estimates of shortwave absorption (Fig.6c-d), consistent with the difference in shortwave cloud 
radiative effects (Fig.S13). For these initial AMIP applications we have not made substantial efforts to 
retune clouds to improve radiative fluxes; such improvements would be essential before using this 
atmospheric model for coupled ocean-atmosphere simulations. Changes in the deep plume mixing rate 
have a minor impact on the radiation metrics as scored with the global RMSE (Figs.S11-S13). 
Comparison of annual mean 2m temperature over land with observations illustrates a notable reduction 
of warm bias over North America in AM4VR, with the geographical pattern of bias for the other regions 
and overall RMSE similar to the C96 simulation (Fig.S14).  
 
3.2 US Precipitation, Snowpack, Temperature and Extremes 
[Figure 7 about here] 
In this section, we discuss more detailed evaluation of AM4VR performance in mean-state physical 
climate and extremes over CONUS. Our analyses leverage the high-resolution (4x4 km2), observation-
based estimates of precipitation and 2m temperature over CONUS from PRISM (Parameter-elevation 
Regressions on Independent Slopes Model) [Daly et al., 2021]. With regional grid refinements to 13 km 
over CONUS, AM4VR demonstrates marked improvements upon C96 (100 km) resolution in resolving 
the spatial structure of precipitation over the Cascades – Sierra Nevada Mountains, across the 
Intermountain West and the Great Plains, in the Northeast, and over the Deep South and the Gulf of 
Mexico (Fig.7). The Pearson pattern correlation coefficient with observed annual mean precipitation 
across the US increases from 0.85 in C96 to 0.93 in AM4VR and the overall RMSE decreases from 
0.64 mm day-1 in C96 to 0.47 mm day-1 in AM4VR. The statistics from evaluating seasonal mean 
precipitation show a similar degree of improvement (Figs.S15-S18). The most notable difference from 
C96 to AM4VR is an improvement in the dry bias over the central US that has persisted in many 
generations of weather forecast and climate models [e.g., Y. Lin et al., 2017; Morcrette et al. 2018; 
Zhang et al., 2018; Sun and Liang, 2023], including the 4th generation of GFDL models participating in 
CMIP6 [Zhao et al., 2018ab; Horowitz et al., 2020]. AM4VR is able to completely remove the dry bias 
in the southern Great Plains for  spring and fall (Figs.S15-S17). During summer (Fig.S18), the 
improvement is noticeable throughout the Great Plains.  
 
[Figure 8 about here] 
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The majority of annual precipitation in the western US accumulates between November and March, 
falling as snow in the mountains. We evaluate western US snowpack in March, which plays a critical 
role in regional hydroclimate, water supply, and wildfire risk in the warm seasons [e.g., Westerling et 
al., 2006]. We use a 0.25ox0.25o gridded snowpack observation product created by Kapnick et al. [2018] 
using the monthly first-of-the-month snowpack observations from 1136 stations over 1981-2016. 
Comparison of March Snow Water Equivalent (SWE) values in Fig.8 clearly illustrates the improved 
simulation of snowpack climatology with increasing model resolution, also noted by Kapnick et al. [2018] 
who compared models at 25 km, 50 km, and 200 km resolution. At 100 km resolution, the narrow 
mountain ranges of the Washington-Oregon Cascades and Sierra Nevada are not resolved; mountains 
in the Northern Rockies are smoothed and low (Fig.S1), resulting in an underestimated snowpack. 
AM4VR at 13 km resolution better reproduces fine-scale mountain features with snowpack values 
approaching observations.  
 
[Figure 9 about here] 
Figure 9 shows the seasonal cycle of regional precipitation in the central US (38-50°N, 102-87°W), the 
Southeast (25-40°N, 90-75°W), the Cascades (38-49°N, 124.5-121.0°W), and the Southwest US (29-
40°N, 120-102°W). AM4VR exhibits improved skill in simulating the seasonal cycle of precipitation in all 
of the key regions, owing to improved representation of mesoscale convective systems and increases 
in resolved-scale precipitation. AM4VR captures better intense precipitation during the cold seasons 
(November-March) and drought conditions during the warm seasons (June-September) over the Pacific 
Northwest (Fig.9a). The correlation r2 between observed and predicted monthly precipitation increases 
from 0.10 in C96 to 0.85-0.92 in AM4VR for the Southwest, from 0.46 to 0.87-0.93 for the central US, 
and from 0.24 to 0.7-0.83 for the Southeast (Fig.9b-d).  
 
[Figure 10 about here]  
Analysis of daily precipitation distribution demonstrates reduced “drizzling” bias (too frequent light 
precipitation) and increased regional rainfall extremes (Fig.10a-d). Compared to C96, precipitation in 
AM4VR shows a considerable upward shift toward the high tail in the probability density function (PDF) 
distribution of daily precipitation. Rather than sampling daily precipitation on each grid for the PDF 
analysis, we have chosen to sample regionally averaged precipitation for each day, as this approach 
better reflects large-scale controls of precipitation variability and thus is more process-oriented. The 
median value of daily precipitation averaged over the central US increases from 0.8 mm/day in C96 to 
2.0 mm/day in AM4VR, compared with 2.2 mm/day in PRISM observations. The 90th percentile of daily 
precipitation averaged over the Southeast increases from 6.4 mm/day in C96 to 7.8 mm/day in AM4VR, 
compared with 8.4 mm/day in PRISM observations.  
 
Comparison of precipitation over the Southwest demonstrates the skill of AM4VR in representing the 
North American Monsoon, a seasonal change in the atmospheric circulation that brings moisture from 
the Pacific Ocean and the Gulf of California, resulting in thunderstorms and heavy rains in northwestern 
Mexico, Arizona, and New Mexico from July to mid-September. Comparison of monthly precipitation 
climatology over the Southwest reveals a 37% increase in precipitation from resolved mesoscale 
convective systems (i.e., organized thunderstorms) during July-September in AM4VR when compared 
to the model at C96 resolution (Fig.9b). The C96 model has difficulty simulating the springtime dryness 
and captures only 27% of summertime monsoon rainfall. The 90th percentile of daily precipitation 
averaged over the Southwest is 3.4 mm/day in observations and 3.3 mm/day in AM4VR with 𝜀1 = 0.6 
km-1, increasing from 1.8 mm/day in C96 (Fig.10b). The impacts of the monsoon go beyond just rainfall 
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amounts. One recent study found that monsoon rains were important for ending wildfires [Arizpe et al., 
2020]. The improved representation of mesoscale convective systems and hydroclimate in the 
Southwest US also has implications for simulation of dust storms, which we will discuss in Section 5.  
 
In Fig.10e-f, we compare the diurnal cycle of warm-season precipitation in the Central and the 
Southeast US, respectively, from IMERG observations [Huffman et al., 2019] and AM4 simulations at 
100 km, 25 km, and 13 km resolution. Over the Central US during summer, eastward-propagating 
mesoscale convective systems and the low-level jet stream from the Gulf of Mexico bring moisture and 
precipitation late at night and in the early morning hours according to observations [Schumacher and 
Rasmussen, 2020]. For comparison, the observed precipitation in the Southeast is driven primarily by 
the ubiquitous late afternoon thunderstorms and deep convection. Many generations of weather 
forecasting and climate models fail to simulate the observed nocturnal peak of warm-season 
precipitation in the Central US [e.g., Y. Lin et al., 2017; Zhao et al., 2018a; Morcrette et al. 2018]. 
Recently, Tang et al. (2019, 2023) showed that the Department of Energy E3SM model with regional 
grid refinement of 25 km showed little improvement in the Central US precipitation dry bias. During our 
AM4VR development process, we find it challenging to accurately simulate the diurnal cycle of 
precipitation in the Central and the Southeast US simultaneously without a smooth transition between 
parameterized and resolved-scale convection. For the Southeast, AM4VR at 13 km resolution with 𝜀1 = 
0.5 or 0.6 km-1 simulates a local noon peak of precipitation (dominated by parameterized convection) 
similar to the C96 (100 km) model with 𝜀1 = 0.9 km-1 and the C384 (25 km) model with 𝜀1 = 0.7 km-1. 

They all peak too early compared to observations, as in many other climate models [e.g., Dai, A 2006, 
Lee et al., 2007; Dong et al., 2023].  Over the Central US, increasing resolution from 100 km to 25 km 
exhibits encouraging skills with simulated precipitation shifting towards nighttime but the magnitude is 
too weak compared to observations. Doubled resolution in AM4VR brings it closer to observations, 
increasing nocturnal precipitation in the Central US by ~35% from the 25 km model, while maintaining 
a comparable diurnal cycle in the Southeast.  
 
[Figure 11 about here] 
Reducing the intensity of parameterized convection by increasing 𝜀1 from 0.5 to 0.6 km-1 in AM4VR 
leads to improved simulation of precipitation in most US regions except for the Southeast (orange 
versus red lines in Figs.9-10). AM4VR with 𝜀1 = 0.6 km-1 simulates increased mean precipitation and 
larger extreme values over the Southwest during the North American monsoon season. Over the central 
US in JJAS, a precipitation dry bias exceeding 1 mm/day in the C96 model spans a large area extending 
across the Great Plains to the Deep South and the Gulf of Mexico. In contrast, the dry bias is confined 
to the southern Great Plains in AM4VR with 𝜀1 = 0.5 km-1 and further reduced to a smaller area in parts 
of Texas and Oklahoma with 𝜀1 = 0.6 km-1 (Fig.11a). Although AM4VR shows a reduction of dry bias 
over Florida compared to C96, increasing 𝜀1 from 0.5 to 0.6 km-1 in AM4VR shows little improvement 
over Florida where late afternoon deep convection occurs at much smaller scales and so needs to be 
parameterized. Global and regional mean precipitation are also subject to large-scale energy 
constraints; therefore, their regional distribution is challenging to model and will not simply follow 
changes in cumulus mixing rate. 
 
Over the Pacific Northwest and California, AM4VR shows improvements upon C96 in representing 
summer drought. Fig.11b compares annual consecutive dry days (CDD), defined as the maximum 
number of consecutive days with precipitation less than 1 mm at each grid. At C96 resolution, the model 
underestimates CDD in the Pacific Northwest and has difficulty resolving the observed peak of CDD in 
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the Central Valley of California. AM4VR with 𝜀1 = 0.5 km-1 captures the spatial structure but 
overestimates CDD in northern California. AM4VR with 𝜀1 = 0.6 km-1 best represents the spatial 
variations of CDD over California, with more severe drought conditions developed in the San Joaquin 
Valley in the south than the Sacramento Valley in the north, consistent with observations.  
 
[Figure 12 about here] 
Comparison of JJAS mean daily maximum 2m temperature (Tmax) shows a reduction of the warm bias 
from ~4 oC in C96 to ~1 oC in AM4VR with 𝜀1 = 0.6 km-1 over the central US, coinciding with a reduction 
of precipitation dry bias (Fig.12). Over the Pacific Northwest, the improved representation of summer 
drought  in AM4VR leads to better representation of summer Tmax. The Pearson pattern correlation with 
observed Tmax across CONUS increases from 0.83  to 0.92 and overall RMSE decreases from 2.49 to 
1.72. At 13 km resolution, AM4VR better resolves sharp temperature gradients in western US regions 
with complex terrain. However, a warm bias of 2–4 oC in JJAS daily Tmax is found in the Central Valley 
of California and the Snake River Plain in Idaho. A similar warm bias in the Central Valley was found in 
a variable-resolution version of the Community Earth System Model [Huang et al., 2016; Z. Xu et al., 
2021]. The warm bias over the western US in AM4VR is consistent with overall larger positive bias, 
compared to C96 against satellite estimates in TOA net shortwave absorption and shortwave cloud 
radiative effects (Figs.S13-S14). Comparison of effective land surface albedo with satellite estimates 
suggests too low albedo in the Central Valley for visible shortwave radiation (Fig.S19). One possible 
reason for the model’s dry and warm biases over the agriculture-dominated lands (Fig.S2) is neglect of 
agricultural irrigation. Irrigation-induced increases in evapotranspiration have been shown to enhance 
precipitation and result in net land surface cooling according to several modeling studies [DeAngelis et 
al., 2010; Thiery et al., 2017; Yao et al., 2022; Zeng et al., 2022]. A recent study by Chen and Dirmeyer 
[2019] showed that the irrigation-induced reduction of summer Tmax in the Central Valley ranges from 
0.5–2.5 oC, with higher resolution models estimating larger reductions. 
 
4. Results: Simulation of Atmospheric Composition 
 
4.1 Global distributions of aerosols 
[Figure 13 about here]  
We compare global distributions of aerosols and their composition simulated by AM4.1, AM4VR, and 
the C96 experiment with emissions and chemical model formulation updated as in AM4VR (Table S1). 
Unless otherwise noted, AM4VR results in Sections 4 and 5 are presented from the simulation with 𝜀1 

= 0.6 km-1. Figure 13 compares simulated regional monthly mean Aerosol Optical Depth (AOD) for 
2000-2014 with observations from the MODIS [Sayer et al., 2014] and MISR [Kahn et al., 2009] 
instruments. AM4VR reduces the AM4.1 high AOD biases over East Asia, owing to the improved 
representation of aerosol precursor emissions in China (Fig.4). The AM4.1 high bias over Europe is 
also reduced in AM4VR, primarily due to reduced SOA from biogenic isoprene and monoterpenes 
emissions. AM4VR simulates lower AOD compared to C96 in the Amazon basin and Central Africa, 
likely due to stronger wet removal resulting from increased precipitation in these regions (Fig.5).  
 
[Figure 14 about here] 
The wind-driven aerosols such as dust and sea salt are sensitive to model-simulated maximum surface 
wind speed, which may change as the model horizontal resolution varies. Changes in precipitation and 
clouds can also modulate wet scavenging of aerosols and influence surface bareness for dust 
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emissions. Fig.S20 compares simulated surface concentrations of dust and sea salt sodium from C96 
and AM4VR with observations at 28 locations worldwide.  AM4VR does not show systematic biases in 
sea salt and agrees better with observed values (R=0.9) than C96 (R=0.67). For dust, the correlation 
coefficient R increases from 0.79 in C96 to 0.85 in AM4VR. The two models bracket the observed 
surface dust concentrations at sites downwind of Australia – the biggest dust source in the Southern 
Hemisphere. Due to a reduction of precipitation dry bias over Australia (Fig.5), AM4VR exhibits 
substantially lower surface bareness and therefore lower dust emissions from western Australia 
compared to C96 (Fig.S21), consistent with satellite observations the dust sources are mainly located 
in eastern Australia [Ginoux et al., 2012]. Comparison of dust vertical profiles with the Atmospheric 
Tomography (ATom) aircraft campaign data  [Froyd et al., 2019; 2021] shows that the two models 
perform similarly in the remote atmosphere over northern midlatitudes and tropics (Fig.14). Over 
southern mid-latitudes, however, lower dust levels simulated in AM4VR agree better with ATom 
observations (median bias = 0.001 𝜇g/m3 in AM4VR compared to 0.008 𝜇g/m3 in C96).  Both models 
show positive biases in the free troposphere, suggesting the need for further work on scale-aware 
parameterizations for wet scavenging of aerosols in clouds.  

4.2 Aerosols over the Continental US 
[Fig.15 and Fig.16 about here] 
We perform more detailed evaluation of aerosols over CONUS, including regional source 
characteristics, seasonality, and aerosol composition. Fig.15 shows a comparison of long-term annual 
mean AOD (550 nm) with AERONET observations in North America. Fig.16 displays comparison of 
monthly AOD climatology with MODIS and MISR satellite retrievals averaged over sub-regions of North 
America. Observations at AERONET sites are more accurate in magnitude while satellite retrievals 
provide vast spatiotemporal coverage.  Evaluation with AERONET data shows a reduction of positive 
AOD bias from 25-100% in AM4.1 to within 25% in AM4VR for most southwestern and eastern US sites. 
The differences in model AOD over the Southwest stem from the differences in simulated dust 
abundances (comparing brown bars in Fig.16 versus Fig.S22). Over the Great Plains, the Midwest and 
Southeastern US regions, lower AOD simulated in AM4VR reflects decreased SOA from biogenic 
isoprene and monoterpenes emissions for the summer months and decreased nitrate aerosol for the 
non-summer months.  The AOD values in AM4VR are within the bounds of uncertainties in the three 
satellite AOD products [e.g., Kahn et al., 2010; Levy et al., 2018]. The MISR AOD is biased high over 
the Pacific Ocean when the AOD is very low [Kahn et al., 2010]. Over land in the eastern US during 
summer,  AM4.1 is biased high against all satellite products while AM4VR falls within the bounds of 
MODIS and MISR retrievals.  Some of the discrepancies may also reflect the fact that satellite retrievals 
are typically only successful for cloud-free pixels. 
 
[Figures 17 and 18 about here] 
We evaluate biogenic emissions simulated in AM4VR using tropospheric column densities of 
formaldehyde (HCHO), a high-yield isoprene oxidation product, retrieved from the TROPOspheric 
Monitoring Instrument (TROPOMI) (Fig.17). Following the approach of Kaiser et al. [2018] based on 
validation with independent aircraft measurements, we apply a 37% bias correction to monthly 
TROPOMI data  provided by De Smedt et al. [2021] for 2018-2020 (Text S5). The TROPOMI 
comparison, along with the OMI comparison discussed earlier (Fig.3), indicates that the spatial 
distribution and magnitude of biogenic isoprene emissions simulated in AM4VR are in reasonable 
agreement with the top-down satellite constraints. Comparison with ground-based observations from 
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the IMPROVE (Interagency Monitoring of Protected Visual Environments) network exhibits significantly 
reduced biases in surface organic matter (OM) concentrations during summer in AM4VR, due to 
decreased biogenic SOA (Fig.18). AM4.1 overestimates summer OM concentrations by a factor of two 
across the central and eastern US. Summer OM concentrations over the Southeast decrease from 9.6 
𝜇g/m3 in AM4.1 to 5.4 𝜇g/m3 in AM4VR, compared with 4.0 𝜇g/m3 in observations. Comparison of OM 
monthly climatology for the croplands-dominated Midwest shows a similar reduction of bias in AM4VR 
for summer (Fig.19a). The spatial distribution of biogenic SOA over the eastern US simulated in AM4VR 
agrees well with the spatial distribution of tropospheric HCHO columns observed from space (Fig.17).  
 
While AM4VR with higher resolution clearly exhibits improvements upon AM4.1 in representing aerosols 
in urban areas (Fig.18d versus Fig.18h), all models capture only 50% of observed OM levels during 
the non-summer months (Figs.18e and 19a). This underestimate is common in CMIP6 models [Turnock 
et al., 2020] and may reflect the combined effects of model deficiencies in representing SOA from 
oxidation of VOCs and too low primary OM emissions from anthropogenic and biomass burning 
sources. Our current chemistry scheme does not consider emissions and chemistry for aromatic 
hydrocarbons, which are important SOA precursors in urban environments [Wang et al., 2020; Nie et 
al., 2022]. We find that primary OM emissions from NEI2017 are two times greater than the estimate 
from the CEDS inventory used in AM4VR (purple star vs green line in Fig.4b). Mounting evidence 
indicates underestimates of biomass burning emissions of carbonaceous aerosols in GFED4s [e.g., 
Pan et al., 2020; Xie et al., 2020]. All three models using GFED4s underpredicted overall aerosol loading 
over the Pacific Northwest during July-September when wildfire peaks seasonally (Figs.16 and 18). In 
the Southeast and the Central US, crop-residue fires and prescribed burning are common in the non-
summer months [Jaffe et al., 2020]. These prescribed low-intensity or understory burns are harder for 
satellites to detect but can emit considerable amounts of carbonaceous aerosols [e.g., Nowell et al., 
2018]. Using multiple streams of high-resolution remote sensing data, Chen et al. [2023] recently 
created a new burned area dataset as a component of the GFED version 5 under development. GFED5 
estimated burned area in the US is more than two times higher than GFED4s for the non-summer 
months [Chen et al., 2023].  
 
[Figure 19 about here] 
Comparison of ammonium nitrate aerosol (NH4NO3) in surface air over the croplands-dominated 
Midwest exhibits strongly reduced bias in AM4VR compared to AM4.1 (Fig.19b). The improvement 
reflects faster removal of HNO3 and NH3 by terrestrial ecosystems represented in AM4VR with an 
interactive dry deposition scheme coupled to vegetation in LM4.0 (Section 2).  Note that dry and wet 
deposition of NH4NO3 aerosol in AM4VR are calculated as in AM4.1 [Horowitz et al., 2020]. During 
March-April-May, faster removal of HNO3 and NH3 by vegetation results in 50% lower NH4NO3 aerosol 
concentrations in AM4VR compared to AM4.1 using prescribed monthly climatology of dry deposition 
velocities.  Evaluation with observations from the US Air Quality System (AQS) shows that AM4VR 
captures nitrate pollution hotspots in the agriculture-dense areas in the Central Valley, the Midwest, and 
Pennsylvania (Fig.19c). Lower NH4NO3 aerosol in AM4VR decreases simulated AOD compared to 
AM4.1 in late spring. A low-AOD bias is found in AM4VR over the US Pacific Northwest, Mexico, and 
Northeast Asia (Figs.13 and 16). For these regions in late spring, we suggest that the agreement of 
AM4.1 AOD with MODIS may reflect compensating errors of too high nitrate aerosols and too low 
organic aerosols from wildfires and prescribed burning. The CEDS inventories used in both models do 
not sufficiently represent varying seasonality of NH3 emissions with regional agricultural management 
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practices [e.g., Paulot et al., 2014; Wang et al., 2020; Beaudor et al., 2023], which may also contribute 
to seasonal biases in simulated NH4NO3 aerosol.   
 
[Figure 20 about here] 
Comparison of sulfate aerosol in surface air at IMPROVE sites over the eastern US (Fig.20) 
demonstrates the ability of AM4VR to represent the observed marked reductions (two thirds) of sulfate 
aerosol in recent decades, which have been shown to strengthen Atlantic hurricane activity [e.g., 
Murakami, 2022]. AM4.1 underpredicted peak summertime sulfate concentration. Including a bug fix to 
an error in AM4.1 for calculating aerosol surface area for heterogeneous chemistry, the C96 model is 
unbiased, but AM4VR is biased high by ~20% in polluted conditions during the earlier period (1995-
2009). In the US, especially in states along the Ohio River Valley, tall smokestacks (stacks of 150 - 300 
meter) are used at coal power plants to release SO2 and NOx emissions high into the atmosphere to 
help limit the impact of these emissions on local air quality (https://www.gao.gov/assets/gao-11-
473.pdf). The AM4VR high-sulfate bias along the Ohio River Valley may reflect the lack of accounting 
for stack heights and plume rise, as all power plant emissions are placed in the shallow model surface 
layer (30 m). Ahsan et al. [2023] showed that CMIP6 models are sensitive to the assumptions made 
about SO2 injection height.  Realistic representation of power plant plume rise may be more important 
in high-resolution models, in which chemical reactions occur before concentrated emissions are diluted.  
 
[Figure 21 about here] 
Finally, we evaluate total PM2.5 concentrations in US surface air during summer, using observations 
from the IMPROVE network, located mostly in national parks and wilderness areas, and from the AQS, 
which includes IMPROVE sites and additional sites clustered in populated areas (Fig.21). For coarse 
resolution models that do not resolve urban areas, it makes more sense to compare with IMPROVE 
data. The Pearson correlation coefficient with IMPROVE observations at sites across the US increases 
from 0.7 for AM4.1 to 0.9 for the C96 model with AM4VR aerosol physics and emissions. Mean PM2.5 
levels at IMPROVE sites decreased from 10.4 𝜇g/m3 in AM4.1 to 7.5 𝜇g/m3, compared to 7.0 𝜇g/m3 

from observations. Compared to the C96 model, AM4VR shows higher PM2.5 at AQS sites along the 
Ohio River Valley, due in part to overestimated sulfate. AM4VR at 13 km resolution better captures the 
observed PM2.5 pollution at AQS sites in the Los Angeles Basin, Southeast cities such as Birmingham, 
Alabama and Atlanta, Georgia, and the Northeast mega-cities such as Baltimore, Maryland and 
Philadelphia, Pennsylvania.  

5. Results: US Climate - Air Quality Connections 
5.1 Seamless Prediction of Local to Intercontinental Sources of Dust  
[Figure 22 about here] 
Comparison of surface fine dust concentrations at IMPROVE sites in Arizona demonstrates improved 
representation of Southwest US dustiness and seasonality in AM4VR (Fig.22). The correlation 
coefficient r2 between observed and predicted monthly fine dust concentrations over Arizona increases 
from 0.23 in AM4.1 and 0.06 in C96 to 0.38 in AM4VR. Fine dust concentrations simulated in AM4.1 
with the LM4.1 dynamic vegetation model are three times too high compared to observations (Fig.22a). 
AM4.1/LM4.1 used lower LAI and SAI thresholds and lower global emission factor than AM4VR/LM4.0 
(Table S2), which therefore cannot explain increased dust emissions in AM4.1. One possible 
explanation for excessive dust abundances in AM4.1 is that LM4.1 estimated greater surface bareness 
and drier soils in the major dust source areas, such as the Mojave Desert, the Sonoran Desert and 
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Texas, compared to LM4.0 (Fig.S23). LM4.1 inclusion of daily dynamic fires may also increase dust 
emission by decreasing LAI and SAI. Improving dust emissions in AM4.1/LM4.1 is a subject of ongoing 
research at GFDL. 
 
Comparing AM4VR and C96 with dust emissions calculated from LM4.0, we next focus our discussion 
on the extent to which the improved model representation of Southwest US springtime dryness, the 
North American monsoon, and associated mesoscale convective systems in AM4VR influence 
simulated dust. Comparison of soil moisture integrated over the top 15 cm of soil exhibits a difference 
of as large as ±12 mm (±20%) between the two models in the Southwest, with AM4VR simulating drier 
soils during March and April but wetter soils during July and August (Fig.22b), consistent with the 
difference in simulated precipitation (Fig.9b). The LAI and SAI thresholds for erodible surface are the 
key controlling factors of dust emissions in semi-arid regions. In C96 with excessive precipitation and 
soil moisture during spring, simulated LAI and SAI are high enough to suppress dust emissions. Despite 
raising the LAI and SAI thresholds from 0.2 and 0.015 used in AM4VR to 0.35 and 0.05 for C96 (Table 
S2), the C96 model simulates too low springtime dustiness with little interannual variability. Improved 
representation of springtime dryness in AM4VR, along with greater maximum wind speeds with 
increased spatial resolution, raises Southwest US springtime dustiness in AM4VR, as evidenced by 
increases in both mean values and interannual variability.  
 
During July and August when the North American monsoon peaks, strong winds flowing out of a 
collapsing thunderstorm can create severe dust storms called “haboobs”, most commonly in Arizona, 
where they have caused fatal highway accidents by reducing visibility but are extremely difficult to 
forecast [e.g., Kim et al., 2017]. Stronger winds associated with improved representation of mesoscale 
convective systems (i.e., thunderstorms) during the North American monsoon raise dust levels in 
AM4VR compared to C96, but simulated dust variations are too strong compared to observations. One 
possible explanation is that our current dust scheme does not account for the influence of soil moisture 
on wind erosion potential, which decreases with increasing soil moisture [Fécan et al., 1998]. Soil 
moisture at the surface can efficiently shut down dust emission for several hours after precipitation even 
in arid regions [Okin, 2022]. The improved representation of soil moisture seasonality in AM4VR 
provides a basis for future implementation of the influence of soil moisture on wind erosion threshold, 
which would hopefully further improve the simulation of Southwest US dust seasonality.  
 
[Figure 23 about here] 
In contrast to the semi-arid Southwest US where dust is primarily driven by local sources, dust 
abundances in the Southeast US are largely driven by trans-Atlantic transport of dust from the Sahara 
Desert in Africa [Prospero et al., 1996]. This typically happens during the months of June, July, and 
August, as observed and simulated by the AM4VR AMIP simulation (Fig.23a-b). The correlation 
coefficient r2 between observed and predicted monthly fine dust concentrations in the Southeast 
increases from 0.44 in AM4.1 to 0.81 in C96 and 0.87 in AM4VR. In Fig.23c, we illustrate a massive 
African dust intrusion into the Gulf of Mexico and the Southeast US in June 2020, pushing observed 
surface PM2.5 concentrations to a level (35 – 50 𝜇g/m3) exceeding the US National Ambient Air Quality 
Standard (35 𝜇g/m3 for 24-h average). This record-setting African dust intrusion episode, nicknamed 
Godzilla, was caused by convection-generated haboobs over the Sahara and an anomalously strong 
African easterly jet [Francis et al., 2020; Pu et al., 2021; Yu et al., 2021; https://svs.gsfc.nasa.gov/4849]. 
With horizontal winds nudged to GFS analyses (regridded to 1.4ox1.4o), AM4VR captures this African 
dust intrusion event, with simulated 24-h PM2.5 concentrations approaching 35 𝜇g/m3 along the dust 
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plume track in the Southeast US on June 26-27, 2020. Unlike a regional model, AM4VR with a seamless 
variable-resolution grid structure accounts for such air quality degradation events in the US from 
upstream sources and intercontinental transport.  
 

5.2 Ozone Air Quality and Land-biosphere Feedbacks 
 
[Figure 24 about here] 
In this section, we examine the extent to which the improved representation of emissions, physical 
climate, air pollution meteorology, and land-biosphere feedback affects simulation of ozone air quality. 
Comparison of long-term JJA mean daily maximum 8-hour average (MDA8) surface ozone 
concentrations in the northern hemisphere exhibits reduced bias in AM4VR (Fig.24). Note that surface 
ozone concentrations for both AM4.1 and AM4VR used in this study are output prior to adding the 
deposition, emissions, and chemistry tendencies, avoiding the numerical issues reducing surface ozone 
concentrations in the AM4.1 result reported in Horowitz et al. [2020] (Text S6). Observations are 
compiled from the US AQS (1990-present), China's Ministry of Ecology and Environment surface ozone 
monitoring network (2013-present; archived at https://quotsoft.net), and the Tropospheric Ozone 
Assessment Report (1990-2014, Schultz et al., 2017). The JJA mean biases in MDA8 ozone averaged 
across sites in the Northern Hemisphere were reduced by 6 ppb and RMSE decreased from 15 ppb in 
AM4.1 to 11 ppb in AM4VR. The improvement in boreal regions (above 45oN) reflects faster ozone 
removal by vegetation simulated in the dynamic dry deposition scheme in AM4VR, compared to the 
monthly dry deposition climatology used by AM4.1, as discussed in greater detail by Lin et al. [2019]. 
Over the high-NOx regions such as the North China Plain, Northern India, and the Midwest US where 
ozone formation is VOC-limited, summer MDA8 ozone biases were reduced by 10-20 ppb in AM4VR, 
due to more realistic estimates of biogenic isoprene emissions (Fig.2 and Fig.S6).  
 
[Figures 25 about here] 
Over the CONUS region (Fig.25), the differences in simulated surface ozone reflect the combined 
effects of changes in dry deposition, BVOC emissions, anthropogenic emissions, and model resolution. 
We compare differences from AM4.1 for US summer mean MDA8 ozone in AM4VR and in the C96 
experiment using AM4VR emissions, chemistry, and deposition schemes but at the same coarse 
resolution as in AM4.1. Compared to AM4.1, the C96 experiment shows reductions in surface ozone 
over the Pacific Northwest caused by faster ozone dry deposition velocities (Vd,O3) and over the high-
NOx eastern US regions caused by lower BVOC emissions (Fig.2), while increases in surface ozone 
are simulated for the Southwest and the central US (Fig.25a). AM4VR shows higher MDA8 ozone over 
California and in urban areas, but unlike the C96 model, AM4VR does not simulate broad-scale ozone 
increases in the central US compared to AM4.1 (Fig.25b). Comparison of summer daytime Vd,O3 
simulated in C96 and AM4VR indicates that increases in surface ozone over the central US in C96 are 
caused by the precipitation dry bias leading to slower ozone removal by vegetation due to less 
vegetation and decreased stomatal conductance (Fig.25c). With improved simulation of precipitation, 
AM4VR captures the salient features of Vd,O3 derived from ozone flux measurements over forests, 
croplands, and pastures (Fig.25d; see Fig.S24 for each land cover type and Table 1 of Lin et al. 2019 
for measurement data). Improved representation of summer drought in the Pacific Northwest and 
Northern California in AM4VR leads to reductions in ozone removal by vegetation and therefore 
increases in surface ozone concentrations compared to C96. The broad-scale pattern of differences in 
surface MDA8 ozone concentrations between C96 and AM4VR (comparing Fig.25a and Fig.25b) 
generally follows the pattern of differences in simulated precipitation and Vd,O3. Another effect of higher 



21 

model resolution is  a refinement of the slower ozone removal over the Great Lakes, due to low surface 
roughness, which combined with improved representation of lake breeze meteorology may enable 
simulation of the observed high-O3 pollution events at coastal counties around Lake Michigan [Dye et 
al., 1995; Stanier et al., 2022].  
 
Measurements of ambient ozone concentrations are typically collected at a few meters above the 
Earth’s surface, where a lower ozone mixing ratio is expected due to the effects of vegetation canopies 
[e.g., Makar et al., 2017], while simulated ozone reflects concentrations in the 30-m model surface layer. 
To address this representativeness issue, we calculate ozone at the 2m level based on interpolation 
between the lowest model layer and the surface fluxes in AM4VR, considering surface roughness and 
atmospheric stability (Text S7). Summer mean MDA8 ozone computed at the 2m level is 3-10 ppb lower 
than that in the lowest model layer over forested areas in the eastern US (Fig.S25). The effects in the 
Central Valley and the sparsely-vegetated areas are small (< 2 ppb). Calculated MDA8 ozone at the 
2m level in AM4VR exhibits reduced bias against the EPA AQS observations (Fig.25e-f).  
 
[Figure 26 about here] 
Zoomed into the US West Coast, Fig.26a demonstrates an improved representation of summer ozone 
pollution in AM4VR relative to AM4.1.  AM4.1 overpredicts ozone in the Pacific Northwest and at coastal 
sites, and has difficulty simulating the observed ozone pollution hotspots in the Central Valley and 
Southern California. AM4VR exhibits reduced ozone bias in the Pacific Northwest, attributed primarily 
to the interactive dry deposition scheme. Over California, AM4VR at 13 km resolution shows the skill of 
resolving sharp gradients in urban-to-rural ozone formation regimes, such as capturing the observed 
low ozone within the Los Angeles Basin, where ozone formation is NOx-saturated, and the sharp ozone 
increases in the downwind regions, where ozone formation is more NOx-limited. The Pearson pattern 
correlation coefficient with observations increases from 0.6 for AM4.1 to 0.8 for AM4VR. Both models 
overpredict ozone in Northern California, which may reflect insufficient treatment of wildfire plume height 
and chemistry [Paugam et al., 2016; Li et al., 2023], overestimates of NOx emissions, underestimates 
of aerosols from wildfires that influence heterogeneous chemistry [Pan et al., 2020; Xie et al., 2020; 
Jaffe et al., 2020], and the model’s dry and warm biases affecting simulated BVOC emissions and ozone 
removal by vegetation. Comparison of the probability distribution of JJA daily MDA8 ozone (Fig. 26b) 
highlights the skill of AM4VR in simulating high-ozone pollution extremes in the San Joaquin Valley and 
Southern California. The percentage of site-days with MDA8 ozone above the US National Ambient Air 
Quality Standard (70 ppb) increases from 13% in AM4.1 to 32% in AM4VR, compared to 31% in 
observations. The 90th percentile of MDA8 ozone increases from 72 ppb in AM4.1 to 84 ppb in AM4VR, 
compared to 87 ppb in observations. The standard deviation (𝜎) of daily MDA8 ozone nearly doubled 
in AM4VR from AM4.1.  
 
[Figure 27 about here] 
Comparison of 24-h average surface NO2 and ozone concentrations (Fig.27) further illustrates that 
AM4VR at 13 km resolution captures the spatiotemporal variations in sources, formation regimes, 
chemical and depositional sinks of ozone pollution across California. During winter, strong temperature 
inversions trap NOx emissions from industries, road traffic, and agriculture at ground level in the San 
Francisco Bay Area, the Central Valley, and the Los Angeles Basin, as observed and simulated in 
AM4VR. The abundance of NOx in surface air and the lack of radiation result in very low ozone levels 
in these air basins during winter, while the surrounding mountain ranges experience higher ozone 
concentrations due in part to stratospheric influence [Lin et al., 2012ab]. During summer, plentiful 
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radiation enhances HOx supply and BVOC emissions. The ozone production regime in the Central 
Valley transitions from VOC-limited in winter to NOx-limited in summer. The observed  summer mean 
ozone levels across California show a sharp urban-to-rural gradient: below 30 ppb in the urban centers 
of the San Francisco Bay Area and the Los Angeles Basin, 30-50 ppb in urban and suburban areas, 
while above 60 ppb in suburban and rural areas downwind of the Sacramento Valley, the San Joaquin 
Valley, and the Los Angeles Basin. At 100 km  resolution  in AM4.1, the diverse air basins of California 
are not resolved, resulting in overestimates of ozone in winter while underpredicting peak ozone 
concentrations in suburban and rural areas during summer. AM4VR’s marked improvements in 
representing ozone air pollution over California reflect several key factors: (1) improved representation 
of NOx-rich urban environments through the high-resolution grid and anthropogenic emissions 
inventory; (2) sharp urban-to-rural increases in BVOC emissions through MEGAN driven by high-
resolution satellite land cover datasets (Fig.2); (3) improved representation of air pollution meteorology 
conducive to pollution accumulation in mountain valleys; and (4) improved representation of summer 
drought in the Central Valley leading to reduced ozone removal by vegetation (Figs.11 and 25).  
 
5.3 Winter Haze and Fog Formation in Mountain Valleys 
 
[Figures 28 and 29 about here] 
Following the enactment of the US Clean Air Act, pollution control regulations and cleaner technologies 
have steadily improved PM2.5 air quality in the US. But some valleys in the western US, such as 
California's Central Valley and Utah’s Salt Lake Valley, still experience wintertime PM2.5 pollution 
exceeding national air quality standards [e.g., Franchin et al., 2018; Womack et al., 2019].  Strong 
temperature inversions in these mountain valleys during wintertime trap pollution at ground level to form 
NH4NO3 aerosol. AM4VR captures the observed key characteristics of NH4NO3-dominated haze 
pollution in the Central Valley during winter, more severe in the San Joaquin Valley in the south (Fig.28). 
In contrast, the observed PM2.5 and NH4NO3 pollution hotspot in the Central Valley is absent in the C96 
experiment, in which the PM2.5 peak is much weaker and confined to the Bay Area. Comparing 
observations at Fresno and Visalia in the San Joaquin Valley for the 2001-2010 versus 2011-2020 
periods, we find ~20% reductions in wintertime NH4NO3 aerosol during the last decade (Fig.29). AM4VR 
captures the magnitude, year-to-year variability, and decadal trends of NH4NO3 aerosol in the San 
Joaquin Valley, but simulates only 66% of total PM2.5 levels, due to underestimates of organic aerosols 
as discussed in Section 4. The absence of regulation on NH3 emissions from agricultural practices in 
the US has led to an increase of NH3 emissions [Warner et al., 2017]. The decreasing trend of NH4NO3 
aerosol in the San Joaquin Valley is driven by reductions of NOx and VOC emissions (Fig.4), which 
undergo complex chemical oxidation reactions, forming HNO3 that reacts with gas-phase NH3 to form 
NH4NO3 aerosol [e.g., Womack et al., 2019].  
 
[Figure 30 about here] 
Ammonium nitrate is extremely hygroscopic, making it an ideal cloud condensation nuclei (CCN) for fog 
formation at low supersaturation [e.g., Mazoyer et al., 2019]. California’s Central Valley is known for 
dense wintertime ground fog, called Tule fog, which can significantly reduce visibility, resulting in deadly 
multi-vehicle accidents on roadways, while helping provide nut and fruit trees with the “winter chill” 
required to improve productivity [e.g., Baldocchi et al., 2014]. Central Valley fog frequency exhibits a 
pronounced north-south gradient, with fog occurring more frequently in southern latitudes than northern 
[Gray et al., 2019]. This pattern is consistent with more NH4NO3 aerosol available in the San Joaquin 
Valley as a CCN for fog formation. The formation of fog droplets requires aerosol, humidity, and cooling 
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[Lakra and Avishek, 2022].  Observations and AM4VR simulations show that the Sacramento Valley in 
the north consistently receives more rain than the San Joaquin Valley in the south, whereas the 2 m 
relative humidity is higher in the San Joaquin Valley (Fig.30). The fact that fog occurs more frequently 
in the warmer and drier San Joaquin Valley suggests that the saturation value needed for fog formation 
is likely brought down by increased aerosol number concentration [Mazoyer et al. 2019]. Ammonium 
nitrate aerosol is typically not represented in physical climate–focused models, such as GFDL AM4.0 
[Zhao et al., 2018], as representing its formation requires inclusion of complex atmospheric chemistry 
and thermodynamics. Our analyses demonstrate the value of including comprehensive atmospheric 
chemistry in high-resolution climate models to understand haze and fog frequency in agriculture air 
basins, offering research opportunities for predicting such events under climate change, which has 
implications not only for the health of outdoor farmworkers but also for agricultural productivity.  

6. Conclusions and Future Directions 
The GFDL AM4VR variable-resolution global chemistry-climate model, with horizontal resolution of 13 
km over the US, shows marked improvements, over the previous 100-km uniform resolution AM4.1, in 
US mean climate, storminess, and air quality extremes while maintaining a comparable or improved 
simulation of global-scale circulation and climate. Compared to the 25-km uniform resolution model,  
AM4VR shows ~50% reduction of computational burden and doubled resolution in the US enables 
improved simulation of the mesoscale convective systems driving the central US warm-season 
precipitation. With a seamless variable-resolution grid structure, AM4VR allows for US-focused 
research in regions with complex geographical features (e.g. intermountain valleys), accounting for the 
impacts from global climate change and Earth system feedbacks, while avoiding inconsistencies 
associated with imposing boundary conditions in a regional model. While several studies have 
previously evaluated variable-resolution atmospheric chemistry simulations with prescribed 
meteorology [e.g. Bindle et al., 2021; Schwantes et al., 2022], here we highlight the value of regional 
grid refinements in representing US climate–air quality interactions through interactive meteorology-
chemistry coupling and land-biosphere feedbacks.  
 
Specifically, we use a suite of 33-year AMIP simulations to show that: (1) reducing the long-standing 
climate model bias of precipitation deficiency in the US Great Plains increases ozone removal by 
vegetation and reduces model bias in surface ozone concentrations; (2) improved representation of 
springtime drought, vegetation cover, and summertime mesoscale convective systems during the North 
American monsoon improves simulation of Southwest US dustiness; (3) representing reactive nitrogen 
deposition to croplands in a dynamic vegetation land model improves simulation of ammonium nitrate 
aerosol in agriculture air basins. Through the considerably improved representation of hydroclimate and 
increased biosphere-atmosphere interactions at high spatial resolution, AM4VR provides vastly superior 
fidelity over AM4.1 in simulating atmospheric chemical composition, including natural aerosols, surface 
PM2.5 and ozone air quality  over the US. In contrast to regional air quality models with prescribed land 
cover and vegetation characteristics, AM4VR offers novel opportunities to study changes in vegetation 
dynamics and feedback to atmospheric composition in future climate with rising temperatures and 
shifting rainfall patterns. A future global and regional model intercomparison project focusing on 
atmosphere–biosphere–air quality interactions will benefit the community and will improve 
understanding how these interactions contribute to air quality extremes and trends.  
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AM4VR exhibits excellent representation of winter precipitation extremes, summer drought, air pollution 
meteorology, and urban-to-rural chemical regimes over California with complex terrain. These 
improvements modulate accumulation, sources and sinks of atmospheric pollutants through interactive 
natural emissions and pollution removal by vegetation, enabling skillful prediction of both extreme 
summertime ozone pollution and ammonium-dominated winter haze events in the Central Valley. These 
capabilities have important applications for public health and transportation safety.  Representing 
severe winter haze in the San Joaquin Valley also has implications for prediction of Tule fog and its 
effects on agriculture, as ammonium nitrate aerosol may be critical CCN for fog dynamics [Gray et al., 
2019]. While regional air quality models with prescribed meteorology may represent these features, the 
ability to represent fine-scale air quality–meteorology interactions in a global chemistry-climate model 
offers novel opportunities to understand and contextualize the influence of large-scale atmospheric 
circulation patterns and climate change. For instance, hydroclimate variability and extreme heat in 
California and other parts of US lands are linked to the El Niño - Southern Oscillation and the Pacific 
Decadal Oscillation. Future multi-ensemble AM4VR simulations would improve understanding of the 
response of US hydroclimate and air quality extremes to ocean variability with implications for seasonal 
air quality forecasting.  
 
Moving forward, we prioritize future model development in scale-aware parameterizations of convection 
and clouds, wet scavenging of aerosols in clouds, lightning, and power plant plume rise. Efforts are also 
needed to improve simulations of organic aerosols from anthropogenic, biomass burning, and biogenic 
sources, including better emission inventories for primary organic carbon emissions and improved 
representation of oxidation of VOCs. Priority future developments to enhance land-atmosphere coupling 
and feedback include: incorporating a dynamic urban canopy model to represent urban heat island 
effects [Li et al., 2016a, 2016b; Liao et al., 2021], treatment of irrigation [Zeng et al., 2022], prognostic 
daily fires [Rabin et al., 2015; Ward et al., 2016; Ward et al., 2018] with dynamic plume rise and 
interaction with atmospheric chemistry, and coupling BVOC emissions to the dynamic vegetation land 
model. Incorporating these ongoing developments at GFDL into AM4VR, with improved representation 
of hydroclimate (e.g., western US drought) as demonstrated in the present study, would greatly enhance 
our ability to understand Earth system feedbacks in a changing climate and promote the development 
of improved air quality forecasting with applications to public safety, transportation, and agriculture.  
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Figures Captions 
 
Figure 1. Grid structure and local grid cell widths (shading, units: km) for c96 uniform grid in AM4.1 
configuration and c256 stretched grid centered at 32.0N and 97.6W for AM4VR configuration. The 
notation cN refers to a cubed-sphere grid with N x N grid cells on each of its six faces (bounded by 
thick black lines). The AM4VR resolution is highest along the coastal US on the corner of the cubed-
sphere face. Thin lines are the boundaries of every 32 x 32 grid cells.  
 
Figure 2. Comparisons of BVOC emissions computed in AMIP simulations with AM4.1 (100 km) and 
AM4VR (13 km, with updated land cover and EP maps): (a-b) long-term JJA mean isoprene emission 
fluxes; (c-d) annual mean monoterpenes emission fluxes; and (e-f) annual mean emission fluxes for 
other BVOCs. The annual totals for the domain, as well as interannual standard deviations for the 
2000-2014 period, are reported on each graph. 
 
Figure 3. Comparisons of biogenic isoprene emissions over the southeast US in August-September 
2013 from the OMI inversion (25 km; Kaiser et al., 2018) with those computed in AM4.1 (100 km) and 
AM4VR (13 km, with updated land cover and EP maps). Total isoprene emissions (in TgC) for the 
southeast US domain are reported.  
 
Figure 4. (a-e) Comparison of regional anthropogenic emissions of BC, OM, SO2, NO and total 
NMVOCs used in AM4.1 (CEDS v2017-05-18) and AM4VR (CEDS v2021-04-21) for China (20N-45N, 
100E-125E), Europe (40N-60N,10W-25E), and US (30N-50N, 123W-65W). The purple stars in (a-b) 
denote estimates from the US NEI2017. (f) Comparison of global total biomass burning emissions of 
oxygenated VOCs in AM4.1 and AM4VR (Text S4).  
 
Figure 5. (a-d) Long-term annual mean precipitation (mm day−1) from observation-based estimates 
from IMERG (0.1o, 2000-2020) and GPCP (1o, 1985-2015) and from the AM4VR (regridded to 50km 
globally, 𝜀1 = 0.5 km−1) and C96 (100 km, 𝜀1 = 0.9 km−1) AMIP simulations (1990-2020). (e-f) 
Differences between simulated results and GPCP estimates. (g-h) Fraction of parameterized deep 
convective precipitation. 
 
Figure 6. (a-f) Model bias in long-term annual mean TOA outgoing longwave radiation, 
shortwave absorption, and net radiative flux (W/m2) in comparison with satellite estimates from 
CERES-EBAF-Ed4.2. Results are shown from AM4VR with 𝜀1 = 0.6 km−1 and C96 with 𝜀1 = 0.9 km−1. 
 
Figure 7. US annual mean precipitation (mm day−1) for 1990-2020 from AM4VR (13 km, 𝜀1 = 0.6 km−1) 
and C96 (100 km, 𝜀1 = 0.9 km−1) AMIP simulations and PRISM observations (4 km), and differences 
between simulated and observed precipitation. The boxes on the PRISM map denotes select regions 
for analyses in Figs. 9-10. 
 
Figure 8. Long-term mean March snowpack climatology over the western US from 25 km gridded 
observations (Kapnick et al., 2018), AM4VR (13 km), and C96 (100 km) AMIP simulation. 
 
Figure 9. Monthly climatology (1990-2020) of precipitation (mm day−1) from PRISM observations 
(black), C96 (𝜀1 = 0.9 km−1, green), and AM4VR AMIP simulations with 𝜀1 = 0.5 (orange) and 0.6 
km−1 (red) for the Pacific Northwest, the Southwest. the Great Plains, and the Southeast US. The 
vertical bars represent interannual standard deviations. Correlations between observed and simulated 
total precipitation as well as the percentage of large-scale precipitation (dashed lines) for JJAS are 
reported.  
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Figure 10. (a-d) Probability distribution of regionally averaged daily precipitation for the Pacific 
Northwest in DJF, the Southwest in JAS, and the Central and Southeast US in JJAS from PRISM 
observations and AM4 AMIP simulations. The median (q50), the 90th percentile (q90), and standard 
deviations (σ) are shown (mm day−1). (e-f) Diurnal cycle of JJAS mean precipitation (mm hr−1) for the 
Central and Southeast US from IMERG observations (black) and AM4 AMIP simulations at 100 km 
(green), 25 km (blue), and 13 km resolution (red and orange). The dotted lines show parameterized 
precipitation. 
 
Figure 11. (Left) JJAS precipitation from PRISM observations (4 km) and model biases for C96 (100 
km) and two AM4VR (13 km) AMIP simulations with 𝜀1 = 0.5 and 0.6 km−1, respectively; (Right) Long-
term mean annual consecutive dry days calculated from PRISM observations and model simulations. 
 
Figure 12. (Top) US JJAS mean daily maximum 2m temperature (oC) for 1990-2020 from AM4VR (13 
km, 𝜀1 = 0.6 km−1) and C96 (100 km) AMIP simulations; (Middle) PRISM observations (4 km); 
(Bottom) Differences between simulated and observed results. 
 
Figure 13. Monthly climatology (2000-2014) of aerosol optical depth simulated by AM4.1 (blue line), 
C96 (green line) and AM4VR (red line) and measured by MODIS (TERRA: star, AQUA: cross) and 
MISR (filled circles) satellite instruments. Each panel represents a spatial average over the 
corresponding region on the background map. The vertical bars represent the contribution from 
different aerosol components in AM4VR simulation. The numbers in each box show the correlation 
coefficients (left) and normalized root mean square error (right) compared to MODIS-AQUA. 
 
Figure 14. Comparison of fine dust vertical profiles (μg m−3) from ATom aircraft measurements (blue; 
2016-2018), C96 (green) and AM4VR (red) AMIP simulations (2000-2014 monthly climatology) 
sampled along the ATom campaigns flight track in northern mid-latitudes (30oN to 60oN), tropics (30oS 
to 30oN), and southern mid-latitudes (30oS to 60oS). The box represents the 25th percentile, median, 
and 75th percentile of data points for each 2 km altitude bins, and the whiskers extend to the minimum 
and maximum values, excluding the outliers. Median absolute error is reported. 
 
Figure 15. Comparison of simulated AOD (550 nm) with AERONET observations over the 2000-2014 
period for AM4.1 and AM4VR AMIP simulation. Sites with at least 5 years of observations are shown. 
 
Figure 16. As in Fig. 13 but for CONUS.  
 
Figure 17. Tropospheric HCHO columns during JJA 2018-2020 retrieved from TROPOMI (bias-
corrected, regridded to 13 km) and computed from AM4VR (nudged, 13km) sampled on TROPOMI 
overpass time (1:30PM). The mean value over the SEUS (box on map), as well as standard deviation 
across the nine months in JJA 2018-2020, is reported on each graph. 
 
Figure 18. JJA mean surface organic matter (OM) concentrations (μg m−3) for 1995-2014 from 
IMPROVE observations, AM4VR and AM4.1 simulations (a,b,f), along with the simulated contributions 
from biogenic SOA (c,g) and from anthropogenic and biomass burning emissions (d,h). Also shown is 
observed and simulated monthly climatology (1995-2014) of OM for the southeast US (box on map), 
with the vertical bars representing interannual standard deviations (e). JJA mean values for the 
Southeast are reported on the top right corner of (a), (b), and (f). 
 
Figure 19. (a-b) Monthly climatology (1995-2014) of surface OM and NH4NO3 aerosol concentrations 
in the Midwest US from IMPROVE observations and model simulations. The vertical bars represent 
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interannual standard deviation. (c) Springtime climatology of NH4NO3 aerosol concentrations from 
AQS observations and AM4VR simulation. 
 
Figure 20. (a) Monthly climatology of surface sulfate concentrations in the Eastern US for 1995-2009 
versus 2010-2020 from IMPROVE observations and AM4VR simulations. Results from C96 and 
AM4.1 for the 1995-2009 period are also shown for comparison. (b) Time series of monthly mean 
sulfate concentrations from 1995 to 2020 from observations and model simulations. 
 
Figure 21. Summer PM2.5 concentrations in US surface air averaged over 2000-2014 from IMPROVE 
and AQS observations and from model simulations. The observed-model correlations (r) and means 
(mn) sampled at IMPROVE sites are reported. For illustrative purposes, AQS sites with PM2.5 greater 
than 17 μg/m3 are plotted as larger circles. 
 
Figure 22. (a) Monthly climatology (1995-2014) of surface fine dust concentrations at IMPROVE sites 
in Arizona (box on map) from observations and model simulations. The vertical bars represent 
interannual standard deviation. (b) Difference in top 15-cm soil moisture between AM4VR and C96 
(regridded to 50 km for comparison) for March-April and July-August, respectively.  
 
Figure 23. (a) Monthly climatology (1995-2014) of surface fine dust concentrations in the Southeast 
US from IMPROVE observations and AMIP simulations with AM4.1, C96, and AM4VR. The vertical 
bars represent interannual standard deviation. (b) Climatology (1990-2020) of JJA mean dust optical 
depth in AM4VR AMIP simulation. (c) Surface concentrations of 24-h average PM2.5 on June 26-27, 
2020 from AQS observations (filled circles) and an AM4VR nudged simulation. 
 
Figure 24. Summer mean surface daily maximum 8-hour average (MDA8) ozone (ppb) for the 
northern hemisphere from observations, AM4.1 (100 km) and AM4VR (remapped to 50 km globally) 
AMIP simulations (2000-2014) sampled in the lowest model layer. Differences between AM4VR and 
AM4.1, the rmse and model means (mn) sampled at observational sites are shown.  
 
Figure 25. (a-b) Differences from AM4.1 for long-term JJA mean MDA8 ozone in C96 and AM4VR 
AMIP simulations sampled in the lowest model layer. (c) Differences in summer daytime (9-15 Local 
Time) mean ozone dry deposition velocities (Vd,O3) to secondary vegetation between AM4VR and C96 
AMIP simulations. (d) Summer daytime mean Vd,O3 averaged across all land-cover types simulated in 
AM4VR. The color-coded symbols denote values derived from ozone flux measurements for forests 
(circles), croplands (triangles), and grasslands (squares). (e-f) JJA mean MDA8 ozone from AQS 
observations and AM4VR computed at the 2m level (Text S7). 
 
Figure 26. (a) JJA mean surface MDA8 ozone for 2000-2014 from observations, AM4.1 (100 km) 
sampled in the lowest model layer, and AM4VR (13 km) computed at the 2m level. Spatial 
correlations between observed and simulated results are reported. (b) Probability distributions for 
observed and simulated JJA daily MDA8 ozone sampled in the lowest model layer at sites in Southern 
California (32.5-37.5N; 120-114W). The median (q50), the 90th percentile (q90), standard deviation 
(σ), and the percentage of site-days with MDA8 ozone ³70 ppb (D70) are shown. 
 
Figure 27. Surface concentrations of DJF 24-h average NO2, DJF 24-h average ozone, and JJA 24-h 
average ozone in California during 2000-2014 from observations and model simulations sampled in 
the lowest model layer. 
 
Figure 28. Wintertime (DJF) surface concentrations of total PM2.5 and NH4NO3 aerosols in California 
during 2000-2020 from observations (25 km), C96 (100 km) and AM4VR (13 km) AMIP simulations. 
The circles denote locations of Fresno and Visalia analysed in Fig. 29. 
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Figure 29. Monthly mean PM2.5 and NH4NO3 aerosols sampled at Fresno and Visalia in the San 
Joaquin Valley for 2000-2010 and 2011-2020 from observations and model simulations. The vertical 
bars represent interannual standard deviations. 
 
Figure 30. Wintertime (DJF) precipitation and 2 m relative humidity in California averaged over 1990-
2020 from PRISM observation-based estimates (4 km), C96 (100 km) and AM4VR (13 km) AMIP 
simulations.  
 



Figure 1. Grid structure and local gridcell widths (shading, units: km) for c96 uniform grid in AM4.1
configurations and c256 stretched grid centered at 32.0N and 97.6W for AM4VR configurations. The
notation cN refers to a cubed-sphere grid with N x N grid cells on each of its six faces (bounded by thick
black lines). The AM4VR resolution is highest along the coastal US on the corner of the cubed-sphere face.
Thin lines are the boundaries of every 32 x 32 grid cells.



Figure 2. Comparisons of BVOC emissions computed in AMIP simulations with AM4.1 (100 km) and
AM4VR (13 km, with updated land cover and EP maps): (a-b) long-term JJA mean isoprene emission
fluxes; (c-d) annual mean monoterpenes emission fluxes; and (e-f) annual mean emission fluxes for other
BVOCs. The annual totals for the domain, as well as interannual standard deviations for the 2000-2014
period, are reported on each graph.



OMI

2.3TgC

Figure 3. Comparisons of biogenic isoprene emissions over the southeast US in August-September 2013
from the OMI inversion (25 km; Kaiser et al., 2018) with those computed in AM4.1 (100 km) and AM4VR
(13 km, with updated land cover and EP maps). Total isoprene emissions (in TgC) for the southeast US
domain are reported.
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Figure 4. (a-e) Regional anthropogenic emissions of BC, OM, SO2, NO and total NMVOCs used in
AM4.1 (CEDS v2017-05-18) and AM4VR (CEDS v2021-04-21) for China (20N-45N, 100E-125E), Europe
(40N-60N, 10W-25E), and US (30N-50N, 123W-65W). The purple stars in (a-b) denote estimates from the
US NEI2017. (f) Comparison of global total biomass burning emissions of oxygenated VOCs in AM4.1 and
AM4VR (Text S4).



Figure 5. (a-d) Long-term annual mean precipitation (mm day−1) from observation-based estimates from
IMERG (0.1o, 2000-2020) and GPCP (1o, 1985-2015) and from the AM4VR (regridded to 50km globally, ǫ1
= 0.5 km−1) and C96 (100 km, ǫ1 = 0.9 km−1) AMIP simulations for 1990-2020. (e-f) Differences between
simulated results and GPCP estimates. (g-h) Fraction of parameterized deep convective precipitation.



Figure 6. (a-f) Model bias in long-term annual mean TOA outgoing longwave radiation,
shortwave absorption, and net radiative flux (W/m2) in comparison with satellite estimates from
CERES-EBAF-Ed4.2. Results are shown from AM4VR with ǫ1 = 0.6 km−1 and C96 with ǫ1 = 0.9 km−1.

.



Figure 7. US annual mean precipitation (mm day−1) for 1990-2020 from AM4VR (13 km, ǫ1 = 0.6 km−1)
and C96 (100 km, ǫ1 = 0.9 km−1) AMIP simulations and PRISM observations (4 km), and differences
between simulated and observed precipitation. The boxes on the PRISM map denotes select regions for
analyses in Figs. 9-10.

Figure 8. Long-term mean March snowpack climatology over the western US from 25 km gridded
observations (Kapnick et al., 2018), AM4VR (13 km), and C96 (100 km) AMIP simulation.
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Figure 9. Monthly climatology (1990-2020) of precipitation (mm day−1) from PRISM observations (black),
C96 (ǫ1 = 0.9 km−1, green), and AM4VR AMIP simulations with ǫ1 = 0.5 (orange) and 0.6 (red) km−1 for
the Pacific Northwest, the Southwest. the Great Plains, and the Southeast US. The vertical bars represent
interannual standard deviations. Correlatons between observed and simulated total precipitation as well
as the percentage of large-scale precipitation (dashed lines) for JJAS are reported.
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Figure 10. (a-d) Probability distribution of regionally averaged daily precipitation for the Pacific Northwest
in DJF, the Southwest in JAS, and the Central and Southeast US in JJAS from PRISM observations and
AMIP simulations. The median (q50), the 90th percentile (q90), and standard deviations (σ) are shown
(mm day−1). (e-f) Diurnal cycle of JJAS mean precipitation (mm hr−1) for the Central and Southeast US
from IMERG observations (black) and AM4 AMIP simulations at 100 km (green), 25 km (blue), and 13
km resolution (red and orange). The dotted lines show parameterized precipitation.



(a) JJAS Precipitation (mm/d) (b) Consecutive Dry Days (d)

Figure 11. (Left) JJAS precipitation from PRISM observations (4 km) and model biases for C96 (100 km)
and two AM4VR (13 km) AMIP simulations with ǫ1 = 0.5 and 0.6 km−1, respectively; (Right) Long-term
mean annual consecutive dry days calculated from PRISM and model simulations.



JJAS Tmax (oC)

Figure 12. (Top) US JJAS mean daily maximum 2m temperature (oC) for 1990-2020 from AM4VR (13
km, ǫ1 = 0.6 km−1) and C96 (100 km) AMIP simulations; (Middle) PRISM observations (4 km); (Bottom)
Differences between simulated and observed results.



Aerosol Optical Depth: AM4VR (red), C96 (green), AM4.1 (blue)

Figure 13. Monthly climatology (2000-2014) of aerosol optical depth simulated by AM4.1 (blue line), C96
(green line) and AM4VR (red line) and measured by MODIS (TERRA: star, AQUA: cross) and MISR
(filled circles) satellite instruments. Each panel represents a spatial average over the corresponding region
on the background map. The vertical bars represent the contribution from different aerosol components in
AM4VR simulation. The numbers in each box show the correlation coefficients (left) and normalized root
mean square error (right) compared to MODIS-AQUA (blue: AM4.1, green: C96, red: AM4VR).



Figure 14. Comparison of fine dust vertical profiles (µg m−3) from ATom aircraft measurements (blue;
2016-2018), C96 (green) and AM4VR (red) AMIP simulations (2000-2014 monthly climatology) sampled
along the ATom campaigns flight track in northern mid-latitudes (30oN to 60oN), tropics (30oS to 30oN),
and southern mid-latitudes (30oS to 60oS). The box represents the 25th percentile, median, and 75th
percentile of data points for each 2 km altitude bins, and the whiskers extend to the minimum and maximum
values, excluding the outliers. Median absolute error is reported.



(a) AOD (550 nm): 100% x (AM4.1 - AERONET)/AERONET

(b) AOD (550 nm): 100% x (AM4VR - AERONET)/AERONET

Figure 15. Comparison of simulated AOD (550 nm) with AERONET observations over the 2000-2014
period for AM4.1 and AM4VR AMIP simulation. Sites with at least 5 years of observations are shown.



Aerosol Optical Depth: AM4VR (red), C96 (green), AM4.1 (blue)

Figure 16. As in Fig. 13 but for CONUS.



Figure 17. Tropospheric HCHO columns during JJA 2018-2020 retrieved from TROPOMI (bias-corrected,
regridded to 13 km) and computed from AM4VR (nudged, 13km) sampled on TROPOMI overpass time
(1:30PM). The mean value over the SEUS (box on map), as well as standard deviation across the nine
months in JJA 2018-2020, is reported on each graph.
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Figure 18. JJA mean surface organic matter (OM) concentrations (µg m−3) for 1995-2014 from IMPROVE
observations, AM4VR and AM4.1 simulations (a,b,f), along with the simulated contributions from biogenic
precursors (c,g) and from anthropogenic and biomass burning emissions (d,h). Also shown is observed and
simulated monthly climatology (1995-2014) of OM for the southeast US (box on map), with the vertical
bars representing interannual standard deviations (e). JJA mean values for the Southeast are reported on
the top right corner of (a), (b), and (f).
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Figure 19. (a-b) Monthly climatology (1995-2014) of surface organic and NH4NO3 aerosol concentrations
in the Midwest US from IMPROVE observations and model simulations. The vertical bars represent
interannual standard deviation. (c) Springtime climatology of surface NH4NO3 aerosol concentrations from
AQS observations and AM4VR simulation.
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Figure 20. (a) Monthly climatology of surface sulfate concentrations for 1995-2009 versus 2010-2020 from
IMPROVE observations and AM4VR simulations. Results from C96 and AM4.1 for the 1995-2009 period
are also shown for comparison. (b) Time series of monthly mean sulfate concentrations from 1995 to 2020
from observations and model simulations.



Figure 21. Summer PM2.5 concentrations in US surface air averaged over 2000-2014 from IMPROVE
and AQS observations and from model simulations. The observed-model correlations (r) and means (mn)
sampled at IMPROVE sites are reported. For illustrative purposes, AQS sites with PM2.5 greater than 17
µg/m3 are ploted as larger circles.
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(a) SWUS Dust

Figure 22. (a) Monthly climatology (1995-2014) of surface fine dust concentrations at IMPROVE sites in
Arizona (box on map) from observations and model simulations. The vertical bars represent interannual
standard deviation. (b) Difference in top 15-cm soil moisture between AM4VR and C96 (regridded to 50
km for comparison) for March-April and July-August.



(a) SEUS Dust
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SEUS

Figure 23. (a) Monthly climatology (1995-2014) of surface fine dust concentrations in the Southeast US
from IMPROVE observations and AMIP simulations with AM4.1, C96, and AM4VR. The vertical bars
represent interannual standard deviation. (b) Climatology (1990-2020) of JJA mean dust optical depth in
AM4VR AMIP simulation. (c) Surface concentrations of 24-h average PM2.5 on June 26-27, 2020 from
AQS observations (filled circles) and an AM4VR nudged simulation.



Figure 24. Summer mean surface daily maximum 8-hour average (MDA8) ozone (ppb) for the northern
hemisphere from observations, AM4.1 (100 km) and AM4VR (remapped to 50 km globally) AMIP
simulations (2000-2014) sampled in the lowest model layer, and differences between AM4VR and AM4.1.
The rmse and model means (mn) sampled at observational sites are shown.



Figure 25. (a-b) Differences from AM4.1 for long-term JJA mean MDA8 ozone in C96 and AM4VR AMIP
simulations sampled in the lowest model layer. (c) Differences in simulated summer daytime (9-15LT)
mean ozone dry deposition velocities (Vd,O3) to secondary vegetation between AM4VR and C96 AMIP
simulations. (d) Summer daytime (9-15 LT) mean Vd,O3 averaged across all land-cover types simulated in
AM4VR. The color-coded symbols denote values derived from ozone flux measurements for forests (circles),
croplands (triangles), and grasslands (squares). (e-f) JJA mean MDA8 ozone from AQS observations and
AM4VR computed at the 2m level (Text S7).
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Figure 26. (a) JJA mean surface MDA8 ozone for 2000-2014 from observations, AM4.1 (100 km) sampled
in the lowest model layer, and AM4VR (13 km) computed at the 2m level. Spatial correlations between
observed and simulated results are reported. (b) Probability distributions for observed and simulated
JJA daily MDA8 ozone sampled in the lowest model layer at sites in Southern California (32.5-37.5N;
120-114W). The median (q50), the 90th percentile (q90), standard deviation (σ), and the percentage of
site-days ≥ 70 ppb (D70) are shown.



Figure 27. Surface concentrations of DJF 24-h average NO2, DJF 24-h average ozone, and JJA 24-h average
ozone in California during 2000-2014 from observations and model simulations sampled in the lowest model
layer.



Figure 28. Wintertime (DJF) surface concentrations of total PM2.5 and NH4NO3 aerosols in California
during 2000-2020 from observations (25 km), C96 (100 km) and AM4VR (13 km) AMIP simulations. The
circles denote locations of Fresno and Visalia analysed in Fig. 29.
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Figure 29. Monthly mean PM2.5 and NH4NO3 aerosols sampled at Fresno and Visalia in the San Joaquin
Valley for 2000-2010 and 2011-2020 from observations and model simulations. The vertical bars represent
interannual standard deviations.



DJF

Figure 30. Wintertime (DJF) precipitation and 2 m relative humidity in California averaged over 1990-2020
from PRISM observation-based estimates (4 km), C96 (100 km) and AM4VR (13 km) AMIP simulations.


