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Global climate change is leading to more hot and dry weather
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Devastating impacts of “Hot Drought” on natural and human systems
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Human Heatstroke + Air Pollution:
- 70,000 deaths (2003, W. Europe)

- 55,000 deaths (2010, Russia)
- 3418 deaths (2006, W. Europe) : :
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Drought-induced tree mortality
[Schuldt et al., 2020]

Sources: Robine et al. (2008); Barriopedro et al. (2011), BBC News


https://www.sciencedirect.com/science/article/pii/S1439179120300414

Western N. American wildfires in a changing climate

https://www.flickr.com/photos/41284017@N08/7408428768
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Tens of billions of agricultural losses due to drought

U.S. Drought Monitor
August 21, 2012

[ ] D2 severe Drought
- D3 Extreme Drought
Il D4 Exceptional Drought

The 2011 Texas drought caused $8 billion agricultural losses % SRR
The 2012 Midwest drought caused $35 billion agricultural losses  cegit: NBC News: Photo

Meiyun Lin, Rutgers Environmental Science Seminar




Increasing dust emissions from drier soils, anthropogenic land
cover changes, and post-wildfire bare lands

Post-fire dust events detected from satellltes
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How does air quality respond to

heatwaves, drought, and Earth system feedbacks?
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Scientific challenges in understanding Earth system feedbacks

The lack of interactivity of atmospheric composition with land-biosphere in
current models, e.g.:

- Many AQ models rely on prescribed land cover and vegetation characteristics
- Atmospheric chemistry in CMIP6 climate models are not coupled to interactive wildfire emissions

- Simulated pollution removal by vegetation does not account for stomatal closure under soil drying or elevated CO,

Large uncertainties in modeling pyrogenic and biogenic emissions, e.g.:
- Challenges in representing wildfire occurrence, spread, duration, and emission variability
- Uncertainties in both empirical and photosynthesis-based BVOC emission models

The lack of long-term (i.e., multi years and decades) flux measurements over
various types of terrestrial ecosystems

Poor representation of regional hydroclimate extremes in global climate models
Heterogeneity in land-surface-atmosphere coupling

Meiyun Lin, Rutgers Environmental Science Seminar



Addressing the challenges: Process-level understanding across time
scales from days to decades and from global to urban spatial scales

Today'’s talk:

A  How does drought-stress in vegetation affect ozone air
GFDL AM4VR pollution extremes and trends during past half-century?
- Enhanced biosphere-atmosphere coupling under observed climate

¥ « The GFDL variable-resolution global chemistry-climate model
Field campaigns for research at the nexus of US climate & air quality extremes
-> The value of increased model resolution in representing natural feedbacks

% « Particulate and ozone pollution from western wildfire smoke in

Joxelltes  present and future climate
i : - Uncertainties and future directions




Why is ozone pollution persisting in Europe

despite stringent controls on regional precursor emissions?
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New, interactive dry deposition scheme in GFDL Earth System Models

Atmospheric Chemistry & Climate
(e.g., Turbulence, CO,, T Iight, water
~availability ..

Harvesf\

Feedbacks

Cropland

* Incorporated into GFDL’s dynamic vegetation land models [Sheviiakova2009; Paulot2018]
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« Stomatal deposition responds mechanistically to photosynthesis (4,), soil water 0 02 04 06 08
availability (¢,,), vapor pressure deficit (D;s), and atmos. CO, concentration (C).
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Lin M. et al. (Global Biogeochemical Cycles, 2019)



Observed and modeled reductions in Oz removal by forests during drought
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Declining ozone removal by vegetation in Europe during past half-century
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GFDL Land Model (100 km grid) driven by observation-based atmospheric forcings (incl. precipitation)
Simulation of soil water availability is dynamic, not depending on any drought index



Reduced ozone removal by drought-stressed vegetation worsens

air pollution extremes during heatwaves
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Increasing ozone air pollution due to reduced removal by vegetation

Hohenpeissenberg, Germany
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Lin M. et al. (Nature Climate Change, 2020)

2010

: Under 1980 high emission conditions

IAVDEPV: Ozone V, varying with climate and vegetation state

FIXDEPV: Ozone V4 held constant at 1960 levels;
Varying biogenic isoprene emissions (MEGAN2.1)
Varying anthropogenic emissions

All simulations are forced by reanalysis meteorology

2020

- Need to include this feedback in coupled CCMs
- First need to improve simulation of precipitation
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Key Points:

e A new variable-resolution global
chemistry-climate model has been
developed for research at the nexus of
US climate and air quality extremes
This model unifies component
advances in physics, chemistry and
land-atmosphere interactions within a
seamless variable-resolution
framework
This model features much improved
US regional precipitation, drought, and
air quality extremes compared to
previous models
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The GFDL Variable-Resolution Global Chemistry-Climate
Model for Research at the Nexus of US Climate and Air
Quality Extremes
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Challenges in Predicting U.S. Air Quality in a Changing Climate

Ok ' Challenges:
. * More hot & dry weather
‘ Large land-biosphere feedbacks
Transported plus local pollution
Diverse air basins & complex terrain

imitations in current tools:
Poor representation of precipitation
The “stationarity” assumption in statistical

llllll

.-} Agricultural Emissions |~ downs_caling . ..
poRecouisted SRRl LT Dust storms® * \ X Prescribed vegetation characteristics
s o G X Issues with imposing global model BCs
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17 mRATE 3 ’ Future:

v" Need a seamless modeling system that
can provide detailed info over a targeted
region, while still integrating global Earth
system components

v Increased coupling of atmospheric
composition with dynamic vegetation

Lin et al. (2012ab, 2015ab, 2017, 2019, 2020); Jaffe et al. (2018, 2020); Ginoux et al. (2012); Xie et al. (2022)
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The GFDL Variable-Resolution Global Chemistry-Climate Model (AM4VR)

Higher Model Resolution (km)

Key Features:

GFDL FV3 Dynamical Core with regional grid refinement to 13 km
over CONUS; sub-grid tiles for land surface heterogeneity

Retuned moist physics from GFDL AM4.0

Comprehensive gas-phase & aerosol chemistry from AM4.1
High-resolution anthropogenic emissions from CEDS-2021-04-21
(0.1°x0.1°), 1980-2020

Interactive dust emissions from a dynamic vegetation land model
(LM4.0), with retuned params

Interactive dry deposition of gases, responding to hydroclimate,
land cover, and photosynthesis in a dynamic vegetation model
Revised interactive BVOC emissions (MEGANZ2.1), with revised hi-res
emission potential maps and land cover data

Revised biomass burning emissions from GFED4s (0.25°x0.25°), with
reactive nitrogen partitioning and increased oxygenated VOCs

1990-2020 AMIP simulations with prescribed ocean
50% of the computational cost for a 25 km uniform-res grid

Lin M. et al. [JAMES 2024]




AM4VR maintains a good simulation of global-scale circulation and

climate comparable to AM4.1 (CMIP6) at uniform 100 km resolution

(¢) AMAVR = GPCP ( rmse = 1,00, r = 0,93 ) (e) AM4VR - CERES=-0.76, rmse = 7.73, r =0.9907 (f) C96 - CERES=-0.13, rmse = 6.97, r =0.9923
=1.00,r=0.
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Marked improvements in U.S. regional precipitation patterns

1990-2020 ANN Precip [mm/day]
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Improved skill in simulating the central US warm-season precipitation

from mesoscale convective systems
» Limited skill from recent models at 25 km resolution, e.g. DOE E3SM (Tang et al., 2019; 2023); CMIP6 HiresMIP (Dong et al., 2023)

AM4VR at 13 km resolution exhibits:

- superior fidelity in representing the nocturnal peak of
precipitation driven by mesoscale convective systems

- reduced drizzling bias and increased rainfall extremes

Seasonal cycle Diurnal cycle (JJAS) Daily distribution (JJAS)
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Summer ozone pollution in the western US

JJA 2000-2014
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Lin M. et al. [JAMES, 2024]

Improved representation of:
1) air pollution meteorology
2) urban-rural chemical regimes
3) BVOC emissions

4) drought

5) ozone removal by vegetation




Winter Haze and Formation of Tule Fog in the Central Valley

DJF, 2000-2020

Tule Fog (MODIS)

22 3354 5 7 101

N

« Strong temperature inversion 100 km = ©
T T T o

« NH/,NO; aerosol as an efficient CCN 6 9 12 15 PM, 5 [ug/m3]

—> Impacts from large-scale circulation and climate change? Lin M. et al. [JAMES, 2024]



ENSO - Southwest US Hydroclimate and Dustiness

SWUS Sprlngtlme Dust
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- AM4VR driven by observed SSTs captures SWUS dust variability, implying seasonal forecast potential
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Wildfire Impacts on Air Quality

A man pauses to look at the smoke and haze shrouding One World Trade Center building in New York City,
Wednesday, June 7, 2023. Intense Canadian wildfires are blanketing the northeastern U.S. in a haze, turning
the air acrid and the sky yellowish gray. (AP Photo/J. David Ake)




Increasing wildfire activity in US West in future climate
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Increasing smoke pollution from western wildfires

under 21st century climate change

Aug-Sep mean PM, 5 (ug/m?3) in Pacific Northwest

PM_ 5 pollution in 2080-2100 ugm?
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- SSP5-8.5: CO; emissions tripled by 2075

SSP2-4.5: The world would surpass 2 °C warming by 2050
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Likelihood of the 2018/2020 smoke extremes in late 21st century

US Pacific Northwest, August-September
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The complex impacts of wildfire smoke on ozone formation

RO long-range M/
a&e\“‘ O NO3' transport Tf :/ \-‘
71\
VOCs, NO, NH; aerosols VOCs + NO,+ OH —> O3 SOA
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Observed:

» Fires emit an enormous diversity of VOCs

» Rapid conversion of NO, to PAN and NOs"in fresh
plumes (e.g., Xu et al., 2021)

* Ozone formation is enhanced when VOC-rich
smoke plumes mix with NOy-rich urban pollution
(e.g., Jaffe et al., 2020; Jin et al., 2023)

Model problems:

* Underestimation of VOCs, PAN, and aerosols

* Overestimation of NO, and O3 close to the fires

* Underestimation of downwind O3 in aged plumes




Parameterization of NO, partitioning based on aircraft observations

BASE: Fires emitting 100% NO

WE-CAN 2018 AM4VR: Fires emitting 37% PAN, 27% NO3 and 36% NO
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-> Improve simulation of PAN and reduce excessive O; production in fresh plumes

Lin M., LW Horowitz, Lu Hu, W. Permar [submitted to GRL, 2024]



Thermal decomposition of PAN fuels downwind O; formation in aged smoke

Surface daily max 8-h ozone on August 20, 2018
LD ) = <P

Surface 24-h PM, 5 (ug/m3)
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Lin M. et al. [submitted to GRL, 2024]
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Towards prognostic daily wildfire emissions coupled to atmospheric chemistry:

Improved representation of Western US snowpack and summer drought
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Lin M. et al. [JAMES, 2024]



Towards seamless prediction of Earth system feedbacks

on air quality extremes in a changing climate

Highlights:

» Increased interactivity of atmos. composition with biosphere

= Integrating global Earth System components within a seamless
variable-resolution framework

= Improved representation of hydroclimate and AQ extremes

Applications:

= Develop seasonal air quality forecasting
Atmosphere » Multidecadal projections from global to urban scales
» |Impact-oriented research

Particles
Organics

Future developments:

= Prognostic daily wildfire emissions coupled to atmos. chemistry
= Effects of agricultural irrigation
= Urban heat island effects

Lithosphere

Email: Meiyun.Lin@noaa.gov



