Rutgers University, Environmental Science Department Seminar, 26-April-2024

Earth System Feedbacks on Air Quality Extremes in a Changing Climate

MEIYUN LIN Physical Scientist, NOAA GFDL

Acknowledgements to: J. Dunne, P. Ginoux, L.W. Horowitz, L. Harris, S. Malyshev, F. Paulot, A. Pouyaei, E. Shevliakova, Y. Xie, N. Zadeh, M. Zhao, and L. Zhou (NOAA GFDL); Lu Hu (U. Montana), S. Smith (DOE/PNNL), Leiming Zhang (Environment Canada); G. Gerosa and A. Finco (Italy), S. Fares (Italy), T. Mikkelsen and K. Pilegaard (Technical U of Denmark), Dagmar Kubistin (Germany)

Geophysical Fluid Dynamics Laboratory

Global climate change is leading to more hot and dry weather

Devastating impacts of "Hot Drought" on natural and human systems

Human Heatstroke + Air Pollution:

- 70, 000 deaths (2003, W. Europe)
- 55,000 deaths (2010, Russia)
- 3418 deaths (2006, W. Europe)
- 2500 deaths (2018/2019, C. Europe)

Sources: Robine et al. (2008); Barriopedro et al. (2011), BBC News

Drought-induced tree mortality [Schuldt et al., <u>2020</u>]

Western N. American wildfires in a changing climate

Tens of billions of agricultural losses due to drought

The 2011 Texas drought caused \$8 billion agricultural losses The 2012 Midwest drought caused \$35 billion agricultural losses

Credit: NBC News; AP Photo

Meiyun Lin, Rutgers Environmental Science Seminar

Increasing dust emissions from drier soils, anthropogenic land cover changes, and post-wildfire bare lands

Haboob covering Phoenix, 8/2/2018

Blowing dust from an Illinois farmland led to car crashes, 5/1/2023

CUL DELIVERY XPRES

Post-fire dust events detected from satellites

(Y. Yu and P. Ginoux, Nature Geo. 2022)

Scientific challenges in understanding Earth system feedbacks

- The lack of interactivity of atmospheric composition with land-biosphere in current models, e.g.:
 - Many AQ models rely on prescribed land cover and vegetation characteristics
 - Atmospheric chemistry in CMIP6 climate models are not coupled to interactive wildfire emissions
 - Simulated pollution removal by vegetation does not account for stomatal closure under soil drying or elevated CO₂
- Large uncertainties in modeling pyrogenic and biogenic emissions, e.g.:
 - Challenges in representing wildfire occurrence, spread, duration, and emission variability
 - Uncertainties in both empirical and photosynthesis-based BVOC emission models
- The lack of long-term (i.e., multi years and decades) flux measurements over various types of terrestrial ecosystems
- Poor representation of regional hydroclimate extremes in global climate models
- Heterogeneity in land-surface-atmosphere coupling

Meiyun Lin, Rutgers Environmental Science Seminar

Addressing the challenges: Process-level understanding across time scales from days to decades and from global to urban spatial scales

GFDL AM4VR

Field campaigns

- Today's talk:
- How does drought-stress in vegetation affect ozone air pollution extremes and trends during past half-century?
 → Enhanced biosphere-atmosphere coupling under observed climate
 - The GFDL variable-resolution global chemistry-climate model for research at the nexus of US climate & air quality extremes → The value of increased model resolution in representing natural feedbacks
 - Particulate and ozone pollution from western wildfire smoke in present and future climate
 - → Uncertainties and future directions

Why is ozone pollution persisting in Europe despite stringent controls on regional precursor emissions?

The trend of O_3 does not mimic that in NO_x +VOCs emissions

- Observed O₃ increases with rising temperature
- Long-standing challenges in modeling EU O₃ trends

[e.g., Lelieveld2000; Fusco2003; Lamarque2010; Koumoutsaris2012; Parrish2014]

→ Unknown "climate penalty" feedback mechanism?

New, interactive dry deposition scheme in GFDL Earth System Models

Incorporated into GFDL's dynamic vegetation land models [Shevliakova2009; Paulot2018] ٠ Stomatal deposition responds mechanistically to photosynthesis (*A_n*), soil water •

availability (φ_W), vapor pressure $M(O_2)$

e deficit (
$$D_s$$
), and atmos. CO₂ concentration (C_i).

0.2 0.4 0.6 0.8

0

V_{d,O3} [cm s⁻¹]

$$R_{stom} = \frac{\sqrt{\frac{M(O_3)}{M(H_2O)}}}{g_s(H_2O)} \quad g_s(H_2O) = max\left(\frac{mA_n}{(C_i - \Gamma_*)(1 + D_s/D_0)}, g_{s,min}\right) \cdot \psi_i \cdot \psi_w \cdot LAI$$

Lin M. et al. (Global Biogeochemical Cycles, 2019)

Observed and modeled reductions in O₃ removal by forests during drought

Lin M. et al. (Nature Climate Change, 2020)

Declining ozone removal by vegetation in Europe during past half-century

- GFDL Land Model (100 km grid) driven by observation-based atmospheric forcings (incl. precipitation)
- Simulation of soil water availability is dynamic, not depending on any drought index

Reduced ozone removal by drought-stressed vegetation worsens air pollution extremes during heatwaves

Lin M. et al. (Nature Climate Change, 2020)

Increasing ozone air pollution due to reduced removal by vegetation

Lin M. et al. (Nature Climate Change, 2020)

 \rightarrow Need to include this feedback in coupled CCMs \rightarrow First need to improve simulation of precipitation

JAMES

Journal of Advances in Modeling Earth Systems[®]

RESEARCH ARTICLE 10.1029/2023MS003984

Key Points:

- A new variable-resolution global chemistry-climate model has been developed for research at the nexus of US climate and air quality extremes
- This model unifies component advances in physics, chemistry and land-atmosphere interactions within a seamless variable-resolution framework
- This model features much improved US regional precipitation, drought, and air quality extremes compared to previous models

The GFDL Variable-Resolution Global Chemistry-Climate Model for Research at the Nexus of US Climate and Air Quality Extremes

Meiyun Lin¹, Larry W. Horowitz¹, Ming Zhao¹, Lucas Harris¹, Paul Ginoux¹, John Dunne¹, Sergey Malyshev¹, Elena Shevliakova¹, Hamza Ahsan², Steve Garner¹, Fabien Paulot¹, Arman Pouyaei³, Steven J. Smith², Yuanyu Xie⁴, Niki Zadeh¹, and Linjiong Zhou³

¹NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA, ²Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park, MD, USA, ³Cooperative Institute for Modeling the Earth System, Princeton University, Princeton, NJ, USA, ⁴Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA

Selected for AGU Editors' Highlight

Challenges in Predicting U.S. Air Quality in a Changing Climate

Challenges:

- More hot & dry weather
- Large land-biosphere feedbacks
- Transported plus local pollution
- Diverse air basins & complex terrain

Limitations in current tools:

- X Poor representation of precipitation
- X The "stationarity" assumption in statistical downscaling
- X Prescribed vegetation characteristics

X Issues with imposing global model BCs on regional models

Future:

- Need a seamless modeling system that can provide detailed info over a targeted region, while still integrating global Earth system components
- Increased coupling of atmospheric composition with dynamic vegetation

Lin et al. (2012ab, 2015ab, 2017, 2019, 2020); Jaffe et al. (2018, 2020); Ginoux et al. (2012); Xie et al. (2022)

The GFDL Variable-Resolution Global Chemistry-Climate Model (AM4VR)

Key Features:

- GFDL FV3 Dynamical Core with regional grid refinement to 13 km over CONUS; sub-grid tiles for land surface heterogeneity
- Retuned moist physics from GFDL AM4.0
- Comprehensive gas-phase & aerosol chemistry from AM4.1
- High-resolution anthropogenic emissions from CEDS-2021-04-21 (0.1°x0.1°), 1980-2020
- Interactive dust emissions from a dynamic vegetation land model (LM4.0), with retuned params
- Interactive dry deposition of gases, responding to hydroclimate, land cover, and photosynthesis in a dynamic vegetation model
- Revised interactive BVOC emissions (MEGAN2.1), with revised hi-res emission potential maps and land cover data
- Revised biomass burning emissions from GFED4s (0.25°x0.25°), with reactive nitrogen partitioning and increased oxygenated VOCs

1990-2020 AMIP simulations with prescribed ocean 50% of the computational cost for a 25 km uniform-res grid

Lin M. et al. [JAMES 2024]

AM4VR maintains a good simulation of global-scale circulation and climate comparable to AM4.1 (CMIP6) at uniform 100 km resolution

Marked improvements in U.S. regional precipitation patterns

1990-2020 ANN Precip [mm/day]

Improved skill in simulating the central US warm-season precipitation from mesoscale convective systems

• Limited skill from recent models at 25 km resolution, e.g. DOE E3SM (Tang et al., 2019; 2023); CMIP6 HiresMIP (Dong et al., 2023)

AM4VR at 13 km resolution exhibits:

- → superior fidelity in representing the nocturnal peak of precipitation driven by mesoscale convective systems
- \rightarrow reduced drizzling bias and increased rainfall extremes

Summer ozone pollution in the western US

JJA 2000-2014

Improved representation of:

- 1) air pollution meteorology
- 2) urban-rural chemical regimes
- 3) BVOC emissions
- 5) ozone removal by vegetation

NORR

Winter Haze and Formation of Tule Fog in the Central Valley

Tule Fog (MODIS)

- Strong temperature inversion
- NH₄NO₃ aerosol as an efficient CCN

 \rightarrow Impacts from large-scale circulation and climate change?

Lin M. et al. [JAMES, 2024]

ENSO → Southwest US Hydroclimate and Dustiness

-> AM4VR driven by observed SSTs captures SWUS dust variability, implying seasonal forecast potential

Wildfire Impacts on Air Quality

A man pauses to look at the smoke and haze shrouding One World Trade Center building in New York City, Wednesday, June 7, 2023. Intense Canadian wildfires are blanketing the northeastern U.S. in a haze, turning the air acrid and the sky yellowish gray. (AP Photo/J. David Ake)

Increasing wildfire activity in US West in future climate

Increasing smoke pollution from western wildfires under 21st century climate change

Aug-Sep mean PM_{2.5} (µg/m³) in Pacific Northwest

Likelihood of the 2018/2020 smoke extremes in late 21st century

Xie Y. and Lin M. et al. (PNAS, 2022)

The complex impacts of wildfire smoke on ozone formation

Parameterization of NO_v partitioning based on aircraft observations

WE-CAN 2018

BASE: Fires emitting 100% NO AM4VR: Fires emitting 37% PAN, 27% NO₃⁻ and 36% NO

 \rightarrow Improve simulation of PAN and reduce excessive O₃ production in fresh plumes

Lin M., LW Horowitz, Lu Hu, W. Permar [submitted to GRL, 2024]

Thermal decomposition of PAN fuels downwind O₃ formation in aged smoke

Surface daily max 8-h ozone on August 20, 2018

Towards prognostic daily wildfire emissions coupled to atmospheric chemistry: Improved representation of Western US snowpack and summer drought

Lin M. et al. [JAMES, 2024]

Towards seamless prediction of Earth system feedbacks on air quality extremes in a changing climate

Highlights:

- Increased interactivity of atmos. composition with biosphere
- Integrating global Earth System components within a seamless variable-resolution framework
- Improved representation of hydroclimate and AQ extremes

Applications:

- Develop seasonal air quality forecasting
- Multidecadal projections from global to urban scales
- Impact-oriented research

Future developments:

- Prognostic daily wildfire emissions coupled to atmos. chemistry
- Effects of agricultural irrigation
- Urban heat island effects

Email: Meiyun.Lin@noaa.gov