
1

Pace and DSL Modeling
Oliver Elbert and Rusty Benson

Q1: Concerning GFDL’s core strength of building and improving models of the weather,
oceans, and climate for societal benefits, how can GFDL leverage advances in science and
computational capabilities to improve its key models? What are the strengths, gaps, and new
frontiers?

Performance Portability

GPU Supercomputing is dominant in exascale
machines. To take advantage of these performance
advances any application must be GPU-optimized.

Operational and research computers at NOAA1 are
primarily CPU-based; maintaining CPU capability and
performance is a necessity for current modeling
products and model development.

1NOAA HPCC Supercomputing

2

Sys t e m Node s P owe r
[MW]

Rm ax
[P Flop/s]

Chip
Te chnolog y

1 El Capitan 11,13 6 29 .6 1,74 2.0 1 x AMD, 4 x
MI 3 0 0 X

2 Front ie r 9 ,4 72 24 .6 1,3 5 3 .0 1 x AMD, 4 x
MI 2 5 0 X

3 Aurora 10 ,6 24 3 8 .7 1,0 12.0 2 x Xe on, 6 x
Int e l GP U

4 Eagle 3 ,6 0 0 – 5 6 1.2 1 x Xe on, 4 x
NVidia H10 0

5 HP C6 3 ,3 3 0 8 .4 6 4 77.9 1 x AMD, 4 x
MI 2 5 0 X*

6 Fugaku 15 8 ,9 7
6

29 .9 4 4 2.0 1 x A6 4 FX

7 Alps 10 ,4 0 0 7.12 4 3 4 .9 1 x G10 0 , 1 x
NVidia H10 0

8 Lum i 2,9 16 7.10 3 79 .7 1 x AMD, 4 x
MI 2 5 0 X*

9 Le onardo 3 ,4 5 6 7.4 9 24 1.2 1 x Xe on, 4 x
NVidia A10 0

10 Tuolum ne 4 ,6 0 8 3 .3 9 20 8 .1 1 x AMD, 1 x
MI 3 0 0 X

The top 10 fastest supercomputers as of November 2024. GPU accelerators are
highlighted in red. Credit: top500.org

https://www.noaa.gov/organization/information-technology/hpcc-locations-and-systems
http://top500.org

An Exascale Atmosphere
Weather and climate modeling can make excellent use of
exascale technologies. Increasing performance will allow
atmospheric models to increase resolution, improving
representations of orography, convection, and turbulence, and
will allow for larger ensembles to be run at current resolutions,
increasing the statistical power of ensemble forecasts.

GFDL will use GPU supercomputing to advance our scientific
modeling to advance our studies of tropical cyclones, extreme
weather, and air-land-sea interactions.

GPUs can be an order of magnitude more energy-efficient than
CPUs on a per-flop basis (~60,000 vs ~6,000 Mflops/Watt) but
models need to effectively use the GPUs to realize those gains

CPU performance is still necessary for NOAA as our primary
computational resources are still CPU-based1

3

Power efficiency of the top 500 supercomputers colored by hardware accelerator. Orange
triangles show unaccelerated machines which are almost entirely CPU-based. The latest
generation of GPU architectures are shown in teal, olive, and cyan, representing AMD MI300,
NVIDIA GH100, and NVIDIA H100 systems. Credit: top500.org

1NOAA HPCC
Supercomputing

http://top500.org
https://www.noaa.gov/organization/information-technology/hpcc-locations-and-systems

Domain Specific Languages, GT4Py, and DaCe
A domain specific language (DSL) is a programming language
or library that is designed for a particular set of tasks: e.g.
TensorFlow for machine learning, LaTeX for typesetting.

GT4Py is a DSL for weather and climate modeling developed
by a team of computer scientists at ETH Zurich.

Computation is done in stencils (stateless functions) that
express algorithms in a 3D domain. The GT4Py toolchain
automatically optimizes stencils for target hardware
architectures or can run stencils directly using NumPy.

DaCe is a separate compilation framework for optimizing
code based on data flow within an application. We use DaCe
to optimize infrastructure code between GT4Py stencils and
further optimize stencil code by analyzing data flow within
and between numerical operations. DaCe is developed by ETH
Zurich’s Scalable Parallel Computing Laboratory.

4

Generated
CodeUser Code Compilation​ Toolchain

GT4Py Pipeline

GT4Py
Stencil General

AnalysisGT4Py
Stencils Hardware

Specific
Analysis

aCe

Illustration of the GT4Py and DaCe toolchain. User code is written in Python with numerics expressed as GT4Py
stencils. The GT4Py compiler analyzes the stencils and either outputs NumPy code or optimizes them for the target
hardware. DaCe similarly optimizes the non-stencil code and the dataflow between GT4Py stencils. The compiler then
generates optimized code to run on the target HPC system.

HIP

C++

CUDA

NumPy

Python as a Modeling Language
Beyond GT4Py, Python is an attractive language for model development. It
has been widely adopted for post-processing and data analysis within the
scientific modeling community and is more accessible to non-specialists
than classical programming languages.

The Python ecosystem provides access to a wide range of tools for model
development. Pytest and pdb allow developers and engineers to easily test
and debug code. Jupyter notebooks allow for interactive model
development, where a scientist can immediately investigate and share the
results of any numerical or algorithmic changes.

Python is the language of choice for AI/ML, and a model written in Python
can easily be used to train an ML model or directly coupled to ML model
components. Python also provides access to libraries like JAX which can
calculate gradients of model code to introduce differentiability, opening
new avenues for inline AI/ML model development and data assimilation.

Continuing with Fortran specialization limits the diversity of
programmers we can hire and their ramp-up time to productivity.

5

The Pace model
Pace is a Python port of the SHiELD weather model written in GT4Py.

Initially developed as a proof-of-concept at the Allen Institute for
Artificial Intelligence in collaboration with GFDL, development and
ownership transferred to GFDL in January 2023.

Pace is comprised of PyFV3 dynamical core and PySHiELD physics,
and uses the NOAA/NASA DSL Middleware (NDSL) to interface with
GT4Py and DaCe.

Pace integrates into the GFDL modeling ecosystem via a Python
interface to FMS (PyFMS).

Pace and all components run out-of-the-box, within Docker containers,
and contain example Jupyter notebooks to demonstrate how to use
them.

6

Pace

PyFV3 PySHiELD

NDSL

PyFMS

https://github.com/NOAA-GFDL/pace

https://github.com/NOAA-GFDL/pace

Scientific Targets and Applications

Our initial targets for scientific applications of Pace are large
eddy simulations at 50-100 m resolution for cloud studies,
using the radiation, microphysics, and turbulence schemes in
SHiELD. This will allow us to probe the mechanisms of features
like anvil cloud formation and improve their representation in
GCMs.

Once full physics are implemented in Python, we will extend our
scientific efforts to high-resolution global studies of tropical
cyclones, with the goal of improving hurricane forecasts, and
further high resolution studies of weather and climate
dynamics.

7

Anvil clouds over the Bay of Bengal. Image credit: NESDIS

https://www.nesdis.noaa.gov/news/anvil-clouds-over-the-bay-of-bengal

PyFV3
AI2’s Climate Modeling DSL team prototyped the initial
port of the FV3 dynamical core and conducted
preliminary GPU performance engineering studies.
This port only supported high-resolution modeling on a
uniform-resolution cubed sphere, but did demonstrate
the viability of the Python DSL as a solution for
performance-portable climate modeling.

We are extending PyFV3 to cover doubly-periodic
domains, nested and stretched grids, and to encompass
the full breadth of the numerical schemes used in FV3
applications at multiple resolutions.

This development is a collaboration with NASA GSFC’s
Advanced Science & Technology group, who are
implementing it in the GEOS model.

8

Weak scaling performance comparison between the PyFV3 dynamical core and GFS microphysics and
the original Fortran code, from Dahm et al. 2022. Numbers above the blue line show horizontal
resolution in km. This analysis was performed on the Piz Daint supercomputer with one P100 GPU per
node

https://doi.org/10.5194/gmd-16-2719-2023

Applications of PyFV3
PyFV3 can be a drop-in dynamical core for other models both
within GFDL (e.g. AM5) and NOAA more broadly, such as the UFS
and HAFS.

As part of our collaboration with NASA, PyFV3 is integrated into
the GEOS model using a hybrid Python-Fortran paradigm yielding
good initial performance gains. Just like GFDL, NASA is developing
GT4Py ports of the GEOS physics to couple directly to PyFV3.

Until the full atmospheric system is implemented in GT4Py, data
transfer between PyFV3 on the GPU and the physics running on the
CPU limits the overall performance boost from PyFV3 to a factor of
2 speedup over existing Fortran.

This approach allows us to rewrite models for performance
portability component-by-component

9

R
es

ol
ut

io
n

22

14

9

6

N
od

es

PyFV3-based GEOS speedup compared to Fortran FV3 at multiple resolutions on two
ranks of Discover. Yellow shows speedup of the full model, green shows the boost to the
dynamical core including the Fortran-Python interface, red shows the speedup to the
ported sections of code

Strong scaling results from GEOS simulations at 12.5 km resolution, showing
performance boosts from using PyFV3 with increasing resources. Colors are the same as
in the above plot.

PySHiELD
PySHiELD is a GT4Py port of the atmospheric physical parameterizations from the SHiELD model family.

Preliminary ports of many physics schemes were written by the AI2 team using older versions of GT4Py, which lacked
many features that are now available, and many of the parameterizations have been updated in the subsequent years.

The list of physical parameterizations from SHiELD to be included are:
● the sea-ice and slab ocean models have been ported and validated, as has the surface flux parameterization
● version 3 of GFDL’s cloud microphysics (Zhou et al. 2022) has been ported, but is waiting on new features in

GT4Py to be released prior to integration into Pace
● a port of SHiELD’s TKE-EDMF PBL scheme is complete
● the shallow convection scheme port is finished
● the NOAH land-surface model has been rewritten in GT4Py and is currently in-test
● the orographic and convective gravity wave drag schemes have not yet been ported

Because our scientific targets will resolve deep convection explicitly, there is no need for a deep convection
parameterization. Radiation will use a GPU-capable version of the RTE-RRTMGP (Pincus et al. 2019) radiation scheme
via a Python interface under development.

10

https://repository.library.noaa.gov/view/noaa/44636
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001621
https://github.com/earth-system-radiation/pyRTE-RRTMGP

PySHiELD is Advancing Science Globally
Our work on PySHiELD is pushing forward the state-of-the-art in DSL modeling and computer science.

Early versions of GT4Py only supported numerical operations of simple stencils. As the AI2 team developed
PyFV3 more features were added to cover the algorithmic requirements of the FV3 dycore.

Our development of PySHiELD is similarly pushing GT4Py to support more computational motifs that are
needed for physical parameterizations, such as the GFDL microphysics. Incorporating these features into the
GT4Py compiler is compelling further developments in computer science to allow automatic optimization of
more complex numerical algorithms.

By providing access to the computational power of GPUs, PySHiELD enables more accurate model numerics,
e.g. directly calculating quantities like saturation vapor pressure in place of interpolated lookup tables.

PySHiELD is leading the way for other modeling centers that are adopting GT4Py and DaCe (ECMWF, NASA
GSFC, MeteoSwiss, etc.), prototyping DSL features for the other centers to use in their model development.

11

NDSL: The NOAA/NASA DSL Middleware
Developed in collaboration with NASA GSFC, NDSL is our foundation for building DSL models. It contains
everything needed in one interface.

NDSL gives model developers a simple interface to GT4Py functionality and smooths the incorporation of DaCe
within the GT4Py toolchain. NDSL also has entrypoints for performance engineers to access the DSL layers to
improve performance.

NDSL provides simple abstractions for common computational patterns such as GT4PY stencil compilation,
array allocation, domain decomposition, mpi communication, and halo exchanges. Stencils for frequently-used
numerical functions such as solving tridiagonal matrices, converting to lat-lon grids, and efficient array copies
are also included in NDSL.

NDSL can easily be extended to support the tightly-coupled use of machine learning applications or
differentiating model components via JAX, TensorFlow, etc.

12

NDSL Makes Modeling Easier

For example, the StencilFactory pattern abstracts the
compilation of GT4Py stencils, requiring only the
numerical function, the computational boundaries,
and any compile-time variables. Hardware targets
(e.g. CPU or GPU), optimization passes, and
configuration specifics are handled inside NDSL.

Similarly, halo exchanges are handled by invoking
NDSL’s WrappedHaloUpdater object by simply
specifying which variables are to be updated. The
defined methods in the NDSL will ensure the proper
data extents are communicated.

13

An Example stencil function computing horizontal fluxes in PyFV3

The model code that compiles the stencil using NDSL’s StencilFactory pattern. The stencil factory
takes the function and the computational boundaries for it, here specified as an origin and domain
for computation, and any compile-time variables –”externals”, and returns a compiled stencil. This
serves as a simple frontend for GT4Py’s more complex and detailed stencil compilation
infrastructure and abstracts the interface to DaCe as well.

PyFMS
Our long-term goal to bring Pace and GT4Py models fully into
the GFDL modeling ecosystem will require Pace to use the
Flexible Modeling System (FMS). Because FMS is not directly in
the computational path, we can interface to it without the need
for porting the logic to GPU.

Instead, we are constructing PyFMS, a Python interface to FMS.
This will allow Pace to couple to other GFDL model components
such as MOM6 and provide direct support of nested and
stretched grids targeted at high-resolution configurations, e.g.
T-SHiELD and C-SHiELD.

The development of PyFMS will also allow us to support future
models and products written in Python.

By building a C-layer (cFMS) between the Fortan and Python, we
provide a mechanism for calling FMS primitives directly from
NDSL.

FMS

cFMS

PyFMS

ctypes

Summary and Future Plans
Pace is a performance-portable version of SHiELD, with science-readiness within FY25, allowing us to
unlock new scales of modeling for atmospheric and meteorological research with the goal of improving
forecasts and projections. As we work towards the goal of using Pace for scientific research, we will
continue to enhance Pace components to support more numerical motifs and further model
development, while also improving the experience of modeling in Python.

The NDSL middleware layer is a powerful platform for model development and can be used to create
DSL versions of other atmospheric models within GFDL and NOAA broadly, letting them take full
advantage of leadership-class supercomputers.

PyFMS will bring Pace fully within the GFDL modeling system. Achieving this milestone will allow us to
seamlessly couple Pace to MOM6 and also facilitates using PyFV3 as the dynamical core for the next
generation of GFDL models (i.e. AM5).

Projects to support SHiELD’s full breadth of capabilities in Pace are underway. These projects will
enable the use of nested and stretched grids, regional modeling, as well as the duo-grid halo projection.

15

Collaborations and Funding Sources
PyFV3 and NDSL are being co-developed with NASA GSFC’s Advanced Science
and Technology Group, who are using PyFV3 and the NDSL in the GEOS model.

GFDL is a leading member of the GT4Py and DaCe communities, and we are
collaborating with ETH Zurich on their development.

NOAA’s Global Systems Laboratory has begun work on GT4Py ports of the
Community Common Physics Package and we are supporting them and their
efforts.

The Pace project is funded by the Global Nest Initiative and the Software
Engineering for Novel Architectures project.

16

https://www.gfdl.noaa.gov/noaa-research-global-nest-initiative/
https://www.noaa.gov/organization/information-technology/engineering

	Pace and DSL Modeling
Oliver Elbert and Rusty Benson
	Performance Portability
	An Exascale Atmosphere
	Domain Specific Languages, GT4Py, and DaCe
	Python as a Modeling Language
	The Pace model
	Scientific Targets and Applications
	PyFV3
	Applications of PyFV3
	PySHiELD
	PySHiELD is Advancing Science Globally
	NDSL: The NOAA/NASA DSL Middleware
	NDSL Makes Modeling Easier
	PyFMS
	Summary and Future Plans
	Collaborations and Funding Sources

