Seasonal to Decadal Variability & Predictability:
Oceans & Cryosphere

John Krasting and Mitch Bushuk

Q2: Concerning NOAA's key mission element of understanding, predicting, and projecting
changes in the Earth System, how can GFDL drive further advances in these areas, including
extremes and environmental hazards, through scientific innovation based on observations,
theory, and modeling? Where are the strengths, gaps, and new frontiers?
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Using SPEAR to predict sea level anomalies

Seasonal prediction models struggle with sea level anomalies, especially along the US East Coast. Recent
studies demonstrate that SPEAR has skill on seasonal to decadal timescales
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Using self-organizing maps, SPEAR
exhibits predictability of N. Atlantic sea
level anomalies on decadal timescales -
Gu et al. 2024, Nat. Clim. Atm. Sci

GFDL's SPEAR model captures the observed north-south
tripole of sea surface height variability in the North
Atlantic - Zhang et al. 2024 Nat. Clim. Atm. Sci
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Improving Gulf Stream Representation for Sea Level

The Gulf Stream plays an important role in coastal-open ocean interactions important for sea level, yet global
models suffer from common biases in its representation.
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Zhao et al. JTECH (in
rev.) developed a new
three-cornered-hat
methodology for using
tide gauge data to
evaluate ocean
models.

CM4 captures the North-South gradient of sea
level better than most global climate models.
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Ross et al., 2023 GMD and Steinberg et al. 2024, JGR
Oceans show regional MOM6 configurations (NWA12)
excel in representing the Gulf Stream, and found a
predictable link between steric sea level anomalies and
offshore subtropical mode water warming.
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Simulating Extreme Sea Level Events

Stakeholders are increasingly seeking information on how extreme sea level might change in a
warming world.
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Yin et al. (2020), J. Clim linked future changes in As part of work funded by the Bipartisan
extreme sea level events in CM4 to Nor'easter events Infrastructure Law, GFDL is developing a coupled
while also establishing that stations along the Gulf 4-km SHIELD and Regional MOM6 configuration
Coast are sensitive to tropical cyclone wind anomalies. along the East Coast that incorporates a wave
Rising sea levels with a weakening AMOC circulation model in order to forecast and study surge and
compounds extremes along the Atlantic and Gulf coasts inundation events both now and in the future.
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Skillful Seasonal Arctic Sea Ice Predictions with SPEAR
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The GFDL SPEAR seasonal prediction system can skillfully SPEAR has prediction skill for Arctic shipping
predict Arctic sea ice on the Pan-Arctic, regional, and local routes through summer sea ice in the
scale'2. GFDL submits real-time SPEAR predictions each Northwest and Northeast passages®.

summer to the Arctic sea ice outlook?.

Bushuk et al. (2022), J. Climate; 2Zhang et al. (2022), J. Climate; *Blanchard-Wrigglesworth et al. (2023), GRL: “Winton et al. (2022), J. Climate
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https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0544.1.xml
https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0548.1.xml
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022GL102531
https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0634.1.xml

SPEAR is a Top-Performing Sea Ice Prediction System
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A recent international
intercomparison’ of seasonal sea ice
prediction systems found that SPEAR
systems were the second and third
most skillful out of 17 participating
dynamical models (the blue dashed
line is the standard SPEAR system;
red dashed line is SPEAR with sea ice
data assimilation). SPEAR also shows
a notable skill improvement over
GFDL's previous generation prediction
system, GFDL-FLOR (green dashed
line).
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https://journals.ametsoc.org/view/journals/bams/105/7/BAMS-D-23-0163.1.xml

Skillful Seasonal Predictions of Antarctic Sea Ice

Pan-Antarctic
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content anomalies. GFDL submits SPEAR
predictions to SIPN-South, which collects
December-initialized predictions of summer
Antarctic sea ice?.

'Bushuk et al. (2021), J. Climate; *Massonnet et al. (2023), Fron. Mar. Sci.
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https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0544.1.xml
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1148899/full

SPEAR Sea Ice Data Assimilation System
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Developed a novel sea ice data assimilation system based on an Ensemble Kalman Filter methodology®. Assimilation
of satellite sea ice concentration observations improves subseasonal predictions of Arctic? and Antarctic* sea ice.
Assimilation of satellite sea ice thickness observations improves seasonal predictions of summer Arctic sea ice.

1Zhanq et al. (2021), J. Climate; ?Zhang et al. (2022), J. Climate; 3Zhang et al. (2023), GRL; “Zhang et al., in prep for The Cryosphere
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https://journals.ametsoc.org/view/journals/clim/34/6/JCLI-D-20-0469.1.xml
https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0548.1.xml
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023GL105672

A Spring Predictability Barrier for Summer Sea Ice Predictions

" CESM: SIA-SIM Commelations Sea Ice Mass Budget Contributions
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Predictions of summer Arctic sea ice are limited by a spring predictability barrier, in which forecast skill drops off substantially
for forecasts initialized prior to June 1'. The spring predictability barrier results from a competition between unpredictable

variations in sea ice export and thermodynamic growth in winter and predictable variations associated with melt onset and
ice-albedo feedback in late spring?.

'Bonan et al. (2019), GRL; *Bushuk et al. (2020), GRL
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082947
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088335

Data assimilation increments provide information on structural model errors. A convolutional neural network was trained to
skillfully predict sea ice data assimilation increments using local sea ice, ocean, and atmosphere state variables'. When

Improving Sea Ice Models Using Machine Learning
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applied online as a state-dependent sea ice model correction in free-running global ice-ocean simulations, the neural network
provides a substantial sea ice error reduction in both the Arctic and the Antarctic?.

Gregory et al. (2023), JAMES; 2Greqory et al. (2024), GRL
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