GFDL Contributions to the Intergovernmental Panel on Climate Change 5th Assessment Report (IPCC AR5)

Presented by RJ Stouffer and L Horowitz

Frontiers in Climate and Earth System Modeling: Advancing the Science

Geophysical Fluid Dynamics Laboratory

May 20, 2013

Coupled Model Intercomparison Project (CMIP)

- CMIP5 is an international scientific activity
 - Consists of a set of coordinated experiments
 - Database supports IPCC and other assessments
 - Distributed data system
- CMIP5 goals and new activities
 - Provide data for new science
 - 100s or more peer-reviewed papers
 - Investigate decadal prediction
 - Include carbon response/feedbacks in climate change
 - Include atmospheric chemistry and stratospheretroposphere interactions

GFDL contributions to CMIP5

- 4 streams or activities with independent models
 - Investigate decadal prediction (CM2.1)
 - Include carbon response/feedbacks in climate change
 - Earth System Models (ESM2M and ESM2G)
 - Include atmospheric chemistry and stratospheretroposphere interactions – Atmosphere-Ocean-GCM (CM3)
 - Understanding changes in weather extremes – High resolution atmosphere-only model (HiRAM)

All simulations are forced by prescribed concentrations

GFDL contributions to CMIP5: Process

- Model development (4 streams)
 - Lab-wide activity
 - Several Year Activity
- Running models for CMIP5
 - Core people
 - B Wyman, W Hurlin, R Gudgel, F Zeng, J Krasting, L Sentman, S Malyshev plus Modeling Services
 - Large fraction of lab computer resources

 Computer time
 - Storage (3 Pb internally for ESM alone)
 - About 1 year activity

GFDL Contributions to CMIP5: Process

- Preparing data for public distribution
 - Large activity involving most of lab
 Lots of data manipulations
 Meeting standards not easy
 - Quality Control
 Checking each model variable for correctness
 Requires high degree of technical and scientific skill
 - Transferring data from servers inside GFDL to servers available from outside GFDL

Earth System Grid Federation and distributed data serving

- About 1 year – completed in summer 2012

GFDL Contributions to CMIP5: Process

METAFOR

- Community standard for model documentation
- Few people involved, few weeks of effort
- Peer reviewed papers
 - Model documentation1 or 2 for each streamLarge number of authors
 - New science papers (focus of this day)
 Papers describing models and new science
 Much of the lab involved as authors

GFDL has many contributions to IPCC AR5

- Science papers
 - Many papers are integral parts of the IPCC reports
- Model data
 - More later
- Chapter Lead Authors (LAs)
 - Gabriel Vecchi, Gabriel Lau, Ram (SPM)
- Review editors
 - Ramaswamy, Held
- Contributors and reviewers
- Other important assessments: e.g. US National Assessment

GFDL's CMIP5 contribution about equal to all modeling groups for CMIP3/AR4

- GFDL data available
 - Decadal Prediction 10TB
 - Earth System Models 128TB
 - CM3 30TB
 - High Resolution atm-only (HiRam) 22TB
 - Total = 188TB
 Comparable to whole CMIP3 archive used to support IPCC 4th Assessment

Accomplishments: Data actively being used

- GFDL data server January 1, 2012 to April 22, 2013
 - 800,000+ requests for data
 - 700,000+ different files downloaded
 - 1,200+ different IP addresses accessing the data
 - 300+ TB of data downloaded
 - GFDL model data widely used in IPCC and other new assessments

Accomplishments: Science

- ESM Stouffer
 - Compare CMIP5 ESMs to IAMs (WG1 and 3 models)
 - Investigate role of ocean formulation
- CM3 Horowitz
 - Role of aerosols in historical and future climate
 - Stratospheric ozone and temperatures

Important CMIP5/IPCC science question

How well do the simple models (IAMs) used by WG3 emulate the complex ESMs used by WG1?

Integrated Assessment Models (IAMs) - Predict own emissions and contain simple climate model which emulates ESM climate and carbon response. The IAM emissions are used as input to the ESMs.

=> Compare ESM allowable cumulative carbon emissions to those found in IAMs (Jones et al. 2013)

ESM results similar to historical estimates and future projections for RCP2.6 and RCP4.5

Allowable Cumulative Carbon Emissions

Uncertainty in climate projections

Major uncertainties:

- Clouds
- Carbon Feedbacks
- Oceanic heat uptake
 - Role of oceanic eddies
 - Role of ocean formulation

ESM2M and ESM2G differ only in ocean physics

Goal: Comparison of implications of ocean vertical coordinate choice

z L_x

z* (MOM4.1):

- Depth-based vertical coordinate
- Over 40 years of experience

- ρ **(GOLD)**:
- Density-based vertical coordinate
- Easy to preserve water masses

ESMs concentration (C1) and emissions (E1) driven runs show similar Global Surface Air Temperature Response

Surface Air Temperature Response

- Two different forcings (C & E) give very similar responses
- Both models
 (M&G) do good job
 of simulating
 observed trend
 using emissions
 and
 concentrations.

ESM2M has larger sea level response compared to ESM2G in future at the global scale

Globally averaged steric sea level rise since 1861-1900 (mm)

Both models capture historical SLR.

ESM2M has larger SLR than **ESM2G** during this century.

Hallberg et al. 2013

Uncertainty due to the ocean vertical coordinate is relatively small

CM3 Coupled Climate Model

CM3 warms more strongly than ESMs in response to greenhouse gases

Late 20th century cooling from aerosols and volcanoes in CM3

Aerosols and greenhouse gases have competing effects on Atlantic circulation

Atlantic meridional overturning (AMOC) in CM3 responds strongly to greenhouse gases (-) and aerosols (+)

Strong warming projected by CM3 following RCP scenarios

Aerosol reductions warm climate over 21st century

Projected aerosol changes (RCP4.5) will impact temperature and precipitation

Hemispheric response for temperature, more localized response for precipitation

(2091-2100 versus 2005)

Levy et al., *JGR*, 2013

Stratospheric ozone distributions and trends are well simulated

Greenhouse gases warm troposphere, but cool stratosphere

Stratospheric cooling, resulting from CO₂ increases and ozone depletion, is simulated well by CM3

Austin et al., J.Clim., 2013

Stratospheric ozone and temperature respond strongly to volcanic eruptions

Ozone Column

Sign of ozone response to volcanic aerosols depends on atmospheric chlorine loading

Temperature

Post-volcanic warming and longterm cooling in stratosphere are well simulated by CM3

Austin et al., J.Clim., 2013

Stratospheric ozone recovery sensitive to greenhouse gases

Strongest global ozone recovery in high-forcing RCP8.5 scenario:

- increased Brewer-Dobson circulation (increases ozone at high latitudes, decreases ozone in tropical lower stratosphere)
- decreased chemical loss

(increases ozone at high latitudes and high altitudes)

Eyring et al., JGR, 2013

Future Directions

- Science results from other streams in later talks
 - Decadal prediction
 - High resolution atmosphere-only
 - and more ESM and CM3
- Model development (CM4) activity starting looking forwards towards AR6/CMIP6
 - Merge ocean models into MOM6
 - Merge atmospheric models into AM4
 - New sea ice model
 - New land surface component
 - New ocean biogeochemistry (COBALT)

