Using Models and Observations to Understand

Climate Processes: Aerosols, Chemistry, Clouds and Radiation

Speakers: Yi Ming and Chris Golaz Moderator: Leo Donner

Frontiers in Climate and Earth System Modeling: Advancing the Science

Geophysical Fluid Dynamics Laboratory

Physics and chemistry in high-resolution models

- Key to reducing model biases and uncertainties;
 Affirmed by the 2012 National Research Council (NRC) Report on Advancing Climate Modeling and the 2010 NOAA Next-generation Strategic Plan (NGSP).
- Relevant to NOAA's climate adaptation and mitigation goal;
- Striving for a healthy balance between resolution and complexity;
- New opportunities created by "marrying" more advanced physics and chemistry with finer spatial resolutions.

Recent research projects

Overarching theme: Understanding the complex roles of short-lived species and clouds in influencing climate and air quality.

1. Atmospheric Composition

- High resolution modeling of aerosol emissions and transport [Paul Ginoux];
- Influence of inter-continental transport and stratospheric intrusion on the western U.S. air quality [Meiyun Lin]

Recent research projects (2)

2. Radiation and climate forcing

- Parameterization of water vapor continuum [David Paynter];
- Validation of modeled surface radiative flux [Stuart Freidenreich];
- Surface radiative flux trends (global dimming) [Geeta Persad];
- Active participation in the Atmospheric Chemistry and Climate Model Intercomparsion Project (ACCMIP) [Vaishali Naik and Larry Horowitz];

3. Climate response

- Aerosol effects on South Asian monsoon [Massimo Bollasina];
- Non-local aerosol effects on the Atlantic Meridional Overturning Circulation (AMOC) [Dan Schwarzkopf];

Recent research projects (3)

4. Cloud Processes

- Large-scale clouds and aerosol-cloud interactions [Chris Golaz];
- Deep cumulus and satellite/process-level observations [Leo Donner];
- Shallow cumulus and climate sensitivity [Ming Zhao].

Outline of this talk

- **1. Yi Ming**: overview, and the first three research fields (atmospheric composition, radiation and climate response);
- 2. Chris Golaz: cloud processes, and future research directions.

Continental dust plumes and land use

Nudged 50-km AM3 with land use dust sources (Ginoux et al., 2012)

Dust Optical Depth and emission from agriculture (Oct 18, 2012)

Accidents US I-60 near Tulsa (Oct 19, 2012)

Credit: P. Ginoux

Continental dust plumes and land use (2)

Stratospheric influence on western U.S. surface ozone

Surface shortwave radiative (SSR) flux trend

Global Energy Balance Archive (GEBA) stations used in Norris and Wild (2009)

The GFDL AM3/CM3 model has the best representation of the dimming trends among all CMIP5 model (Allen et al., 2012).

Credit: G. Persad

Surface shortwave radiative flux (SSR) trend (2)

+

Ext.→Int. Mixing

More absorption

More dimming

More → Less Aerosol

Less absorption

Less dimming

Similar trends

Anthropogenic aerosols and South Asian monsoon

REPORTS

Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon

Massimo A. Bollasina, Yi Ming, 2* V. Ramaswamy 2

Linear trends of average JJAS rainfall over central-northern Indian (mm day-1)

Anthropogenic influences on tropical circulation change

Aerosol impact on monsoon onset

Linear trends of precipitation [mm day-1 50 yr-1]

Aerosols tend to increase rainfall in May and June, while suppressing it in JAS;

 Consistent with observations.

Aerosol impact on monsoon onset (2)

Why do clouds matter? Sensitivity and forcing

Sensitivity and forcing are key climate properties. At equilibrium:

$$\Delta T = \lambda F$$

F (adjusted) forcing: radiative perturbation (GHGs, aerosols, clouds, land-use, ...)

 λ sensitivity: temperature response per unit of forcing.

Clouds impact both.

Forster et al. (2013); Kiehl (2007).

Anti-correlation between sensitivity and forcing among models that reproduce observed warming.

Climate sensitivity and cloud feedback

- Increased climate sensitivity in HiRAM (and AM3) compared to AM2.
- Sensitivity highly correlated with cloud feedback (change in cloud radiative effect).

Cloud feedback

- impacted by details of convective parameterization,
- linked to convective precipitation efficiency.

- 0 c48 HiRAM
- 1-4 perturbed cumulus mixing
- 5-8 perturbed cumulus microphysics

Cloud feedback parameter

Zhao (2013, *J. Climate*, submitted)

Credit: M. Zhao

Clouds and forcing: indirect effect

Golaz et al. (2013, GRL)

Models

CM3: official GFDL CMIP5 model.

CM3w,c: configurations with alternate but plausible parameter choices.

Net warming

NOAA NCDC	0.59 °C
NASA GISS	0.53 °C
HadCRUT3	0.56 °C
CM3w	0.57 °C
CM3	0.22 °C
CM3c	-0.01 °C

Credit: C. Golaz

Clouds: have we made progress?

Evaluation of CFMIP1 and CFMIP2 models Klein et al. (2013, JGR)

AM3/CM3 results are being widely analyzed (53 citations to date). GFDL CFMIP credit: L. Donner, C. Seman, L. Horowitz, B. Hurlin

New cloud and turbulence parameterization

CLUBB* (NOAA/NSF Climate Process Team) Short-wave cloud forcing error [W m⁻²]

- Long-standing stratocumulus biases are reduced in AM3-CLUBB.
- Overall performance slightly lags AM3.

*Cloud Layers Unified by Bi-Normals

New cloud and turbulence parameterization

CLUBB* (NOAA/NSF Climate Process Team) Indirect effect for different stratocumulus cases

Ackerman et al. (*Nature*, 2004)

Droplet concentration (cm⁻³) Guo et al. (*GRL*, 2011)

Full liquid water path response to aerosols could potentially decrease magnitude of indirect effect.

*Cloud Layers Unified by Bi-Normals

Credit: H. Guo

Future research directions

Improved understanding and new modeling capabilities:

- Aerosol-ice cloud interactions (e.g., black carbon as ice nuclei);
- Double-moment aerosol/cloud microphysics;
- Aerosols (e.g., black carbon and dust) on snow;
- Aerosol-vegetation-biogeochemistry coupling (e.g., dust and wild fires);
- Chemistry-climate interactions (e.g., methane lifetime);
- Improvement of radiative transfer parameterization (e.g., water continuum);
- More unified and physically sound cloud and convective parameterizations (e.g., CLUBB coupled with double-moment cloud microphysics).

Relevance to the NOAA's NGSP goals

- Our process-oriented research generates
 - 1) mechanistic understanding of existing model biases and uncertainties,
 - new modeling capabilities that enhance the realism of regional climate and Earth System simulation.
- Both aspects are crucial for developing the next-generation GFDL Earth System Model, an essential tool for advancing NOAA's climate adaptation and mitigation goal.

