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Physics and chemistry in high-resolution models

* Key to reducing model biases and uncertainties;

Affirmed by the 20712 National Research Council
(NRC) Report on Advancing Climate Modeling and the
2010 NOAA Next-generation Strategic Plan (NGSP).

* Relevant to NOAA's climate adaptation and
mitigation goal,;

* Striving for a healthy balance between resolution and
complexity;

* New opportunities created by “marrying” more
advanced physics and chemistry with finer spatial
resolutions.
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Recent research projects

Overarching theme: Understanding the complex
roles of short-lived species and clouds in
influencing climate and air quality.

1. Atmospheric Composition

 High resolution modeling of aerosol emissions and transport
[Paul Ginoux];

* Influence of inter-continental transport and stratospheric
intrusion on the western U.S. air quality [Meiyun Lin]
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Recent research projects (2)

2. Radiation and climate forcing
« Parameterization of water vapor continuum [David Paynter];

 Validation of modeled surface radiative flux [Stuart
Freidenreich];

» Surface radiative flux trends (global dimming) [Geeta Persad];

* Active participation in the Atmospheric Chemistry and Climate
Model Intercomparsion Project (ACCMIP) [Vaishali Naik and
Larry Horowitz];

3. Climate response

» Aerosol effects on South Asian monsoon [Massimo Bollasina];

* Non-local aerosol effects on the Atlantic Meridional Overturning
Circulation (AMOC) [Dan Schwarzkopf];
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Recent research projects (3)

4. Cloud Processes

 Large-scale clouds and aerosol-cloud interactions [Chris
Golaz];

* Deep cumulus and satellite/process-level observations [Leo
Donner];

« Shallow cumulus and climate sensitivity [Ming Zhao].

Outline of this talk

1. Yi Ming: overview, and the first three research fields
(atmospheric composition, radiation and climate response);

2. Chris Golaz: cloud processes, and future research directions.
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Continental dust plumes and land use

Nudged 50-km AM3 with land use dust sources (Ginoux et al., 2012)

Dust Optical Depth and emission from
agrlculture (Oct 18, 2012)

Accidents US I-60 near
Tulsa (Oct 19, 2012)
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Continental dust plumes and land use (2)

Emission (mg/m2/day) by land use type
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Stratospheric influence on western U.S. surface ozone

5Southern California (May 23)
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Surface shortwave radiative (SSR) flux trend
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The GFDL AM3/CM3 model has the best representation of the

dimming trends among all CMIP5 model (Allen et al., 2012).
Credit: G. Persad
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Surface shortwave radiative flux (SSR) trend (2)
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Anthropogenic aerosols and South Asian monsoon

SEPORTS Linear trends of

Anthropogenic Aerosols and the  gverage JJAS rainfall

Weakening of the South Asian over central-northern
Summer Monsoon
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Anthropogenic influences on tropical circulation change

Climatology GG

Climatology
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Aerosol impact on monsoon onset

Linear trends of precipitation [mm day-! 50 yr]
June JAS (JuIy-Aug-Sep)
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1. Aerosols tend to
increase rainfall
in May and June,
while
suppressing it in
JAS;

 An earlier
monsoon onset;

« Consistent with
observations.
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Aerosol impact on monsoon onset (2)
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Why do clouds matter? Sensitivity and forcing

Adjusted Forcing in 2003 vs. Equilibrium Climate Sensitivity (K)
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response per unit of forcing. Forster et al. (2013); Kiehl (2007).

» Clouds impact both. Anti-correlation between sensitivity
and forcing among models that
reproduce observed warming.
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Climate sensitivity and cloud feedback

* Increased climate sensitivity 15
in HIRAM (and AM3) Red: tropical average
compared to AM2. Blue: global average
= Sensitivity highly correlated
with cloud feedback (change
in cloud radiative effect).

Sensitivity
A (Km2wW™)

Cloud feedback
» impacted by details of
convective parameterization,

> linked to convective —r=0.98
ma . s —r=0.96
precipitation efficiency. 05/ r : =
"~ ATCRF/G '

*x  AM2 Cloud feedback parameter
0 c48 HiIRAM : :
1-4  perturbed cumulus mixing Zhao (2013, J. Climate, submitted)
5-8 perturbed cumulus microphysics Credit: M. Zha
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Clouds and forcing: indirect effect

15 Global surface air temperature anomaly MOdElS
— NOAA NCDC]| | CM3: official GFDL CMIP5
1.0r| — NASA GISS — Observations model.
HadCRUT3 _
0.8r —  GFDL CM3w CM3w,c: configurations
— GFDL CM3 — Models with alternate but plausible
0.6 .
GFDL CM3c parameter choices.
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Clouds: have we made progress?

Evaluation of CFMIP1 and CFMIP2 models
Klein et al. (2013, JGR)

Shortwave relevant cloud properties Longwave relevant cloud properties
g2: AM2 -~

(GAMDT, 2004, Models

J. Climate)

%3: AM3t | CFMIP2

(Donner et al., H2 Models

2011, J. Climate) &3 ™ ©4
0 0.5 1 15 ' 0 0.5 1 15 2
Better <€ Better <€ Worse

AM3/CM3 results are being widely analyzed (53 citations to date).
GFDL CFMIP credit: L. Donner, C. Seman, L. Horowitz, B. Hurlin
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New cloud and turbulence parameterization

CLUBB* (NOAA/NSF Climate Process Team)
Short-wave cloud forcing error [W m-?]
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New cloud and turbulence parameterization

CLUBB* (NOAA/NSF Climate Process Team)
Indirect effect for different stratocumulus cases

Large eddy simulations CLUBB
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> Full liquid water path response to aerosols could
potentially decrease magnitude of indirect effect.

*Cloud Layers Unified by Bi-Normals Credit: H. Gu

>
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Future research directions

Improved understanding and new modeling capabilities:
» Aerosol-ice cloud interactions (e.g., black carbon as ice nuclei);
* Double-moment aerosol/cloud microphysics;

» Aerosols (e.g., black carbon and dust) on snow;

» Aerosol-vegetation-biogeochemistry coupling (e.g., dust and
wild fires);

* Chemistry-climate interactions (e.g., methane lifetime);

* Improvement of radiative transfer parameterization (e.g., water
continuum);

« More unified and physically sound cloud and convective
parameterizations (e.g., CLUBB coupled with double-moment
cloud microphysics).
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Relevance to the NOAA’s NGSP goals

* Our process-oriented research generates

1) mechanistic understanding of existing
model biases and uncertainties,

2) new modeling capabillities that enhance the
realism of regional climate and Earth
System simulation.

* Both aspects are crucial for developing the
next-generation GFDL Earth System Model, an
essential tool for advancing NOAA's climate
adaptation and mitigation goal.




