Regional Climate, Extremes, & Impacts

Presented by
Keith Dixon & Andrew Wittenberg

Frontiers in Climate and Earth System Modeling: Advancing the Science
Geophysical Fluid Dynamics Laboratory
May 20, 2013
Under our regional climate, extremes, & impacts umbrella...

- DETECTION & ATTRIBUTION: GLOBAL, REGIONAL, GRID POINT
- ENSO: EXTREME ENSOS & TELECONNECTIONS
- SNOWPACK: WESTERN US WATER RESOURCES
- DOWNSCALING: Dynamical "STATIONARITY" etc.
- STATISTICAL
- Regional Aerosols
- Heat Extremes
- Monsoons
- Tropical Cyclones
- Sea Ice
- Marine Ecosystems
- Hydrology: Water Resources, Land/Atmos Coupling
- US Seasonal Forecasting System
- DOWNSCALING
- STATIONARITY
<table>
<thead>
<tr>
<th>Region</th>
<th>Duration</th>
<th># Events/yr</th>
<th># Heat wave days/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midwest</td>
<td>1.5</td>
<td>2.7</td>
<td>4.0</td>
</tr>
<tr>
<td>Northern Plains</td>
<td>1.3</td>
<td>3.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Pacific Northwest</td>
<td>1.3</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>SE Canada</td>
<td>1.2</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Texas-Oklahoma</td>
<td>1.8</td>
<td>2.6</td>
<td>4.5</td>
</tr>
<tr>
<td>Mid-Atlantic</td>
<td>1.4</td>
<td>2.7</td>
<td>3.8</td>
</tr>
<tr>
<td>California</td>
<td>1.9</td>
<td>2.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Gulf Coast</td>
<td>1.2</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Southwest</td>
<td>2.2</td>
<td>2.9</td>
<td>6.4</td>
</tr>
<tr>
<td>Wyoming/Montana/Idaho</td>
<td>2.2</td>
<td>2.6</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Panel expertise: LAU - Heat Extremes
Challenging GFDL models with reanalysis-based estimates of the
Triggering Feedback Strength: a measure of land-atmosphere coupling strength,
Assessing the sensitivity of afternoon convection to before-noon surface fluxes

From the North American Regional Reanalysis

From GFDL’s AM2.1

From Berg, Findell, Lintner, Gentine, and Kerr, 2013, J. Hydrometeorology
Panel expertise: MILLY – Water Resources, Land Surface Modeling

Chris Milly
USGS
Land model code development
Analysis of observed and simulated river flows

image source: http://pubs.usgs.gov/fs/2005/3020/
Panel expertise: KNUTSON – Hurricane-Climate Atlantic Downscaling, “D & A”

Tom Knutson

DYNAMICAL DOWNSCALING

Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes:

Bender et al., *Science*, 2010

Knutson et al., *J. Climate*, in press.
Under our regional climate, extremes, & impacts umbrella...

DETECTION & ATTRIBUTION
GLOBAL, REGIONAL, GRID POINT

ENSO
EXTREME ENSOS & TELECONNECTIONS

SNOWPACK
WESTERN US WATER RESOURCES

Heat Extremes

Hydrology
Water Resources, Land/Atmos Coupling

DOWNSCALING

Dynamical etc.

STATISTICAL
“STATIONARITY”

Panel member: Sarah Kapnick
Regional temperature trends, and the 2012 MAM warm anomaly over the eastern U.S.

and

Regional impacts of El Niño

Presented by
Andrew Wittenberg
What do the new **CMIP5 models** say about the causes of regional surface temperature trends?
Knutson, Zeng, and Wittenberg (J. Climate, 2013)

Global mean surface temperatures: Trends-to-2010

°C / century

90% of individual model realizations

CMIP5 all-forcing

CMIP5 natural

Obs

1901-2010 trend

1981-2010 trend

Knutson, Zeng, and Wittenberg (J. Climate, 2013)
U.S. surface temperatures: Trends-to-2010

Knutson, Zeng, and Wittenberg (J. Climate, 2013)
Regional surface temperature trends: 5°x5° boxes

Knutson, Zeng, and Wittenberg (J. Climate, 2013)
2012 warm anomalies over the eastern U.S.

Knutson, Zeng, and Wittenberg (BAMS, 2013 subm.)

Record heat in MAM

Areas where available 1850-2012 HADCRUT4 obs show record MAM surface temperatures in 2012.

MAM eastern U.S. surface temperatures show:
- long-term trend of nearly 1°C / century
- warming trend exceeding CMIP5 unforced variability
- trend consistent with CMIP5 forced runs

Ensemble-mean CMIP5 forced response explains ~35% of the 2012 MAM warm anomaly; remainder was likely internal variability.
Regional extremes are also driven by intrinsic modes of climate variability – the strongest of which is ENSO.
GFDL is leading groundbreaking research on ENSO

Science
- Teleconnections
- Natural variations
- Response to climate change
- Predictability
- Observing system evaluation
- Scale interactions
- Sensitivity to model formulation

Tools
- State-of-the-art GCMs
- Conceptual models
- Large ensembles
- Long runs

Products
- Forecasts
- Projections
- Data assimilation
- Paleo reconstructions

International engagement:
- IPCC Fifth Assessment (AR5)
- U.S. National Multi-Model Ensemble (NMME)
- Working Group on ENSO Diversity (U.S. CLIVAR)
- Working Group on ENSO Metrics (CLIVAR Pacific Panel)
- ENSO Task Team (CLIVAR)
ENSO improvements at high resolution

Delworth et al. (JC 2012)

SSTA weakens & shifts eastward

PNA response strengthens & shifts eastward
ENSO's impacts on regional climates

ERA-Interim (1979–2010)
correlation with NINO3 SST, for 10yr hi-pass annual (Jun–May) anomalies

CM2.5 1990 control run (years 1–100)
correlation with NINO3 SST, for 10yr hi-pass annual (Jun–May) anomalies
Extreme ENSO events have nonlinear impacts

Rainfall teleconnections in CM2.1 (4000yr)

Surface temperature teleconnections in CM2.1 (4000yr)

La Niña ➔ El Niño
Increasing CO$_2$ alters ENSO impacts

Rainfall teleconnections in CM2.1 (4000yr & 400yr)

Surface temperature teleconnections in CM2.1 (4000yr & 400yr)
Two key factors affecting future climate vulnerability:

1. Surface temperature trends
 a. CMIP5 models capture historical trends in surface temperatures
 - so long as both natural and anthropogenic forcings are included
 b. 2012 MAM temperature anomaly over the eastern U.S.
 - occurred against a backdrop of global & regional warming trends
 - models indicate anthropogenic warming accounted for ~35%

2. Intrinsic climate variability (e.g. ENSO)
 a. Major driver of regional climate variations
 b. ENSO & teleconnections improve with increasing resolution
 c. Teleconnections of extreme ENSO events
 - can be highly nonlinear
 - key to understanding regional climate vulnerability
Controls of Global Snow Under a Changed Climate
Kapnick & Delworth (2013), J. Climate

Results based on GFDL CM2.5 coupled climate model experiments
A better representation of topography...

Higher spatial resolution allows for a better representation of topography...

(a) CM2.5
(b) CM2.1
...yields a better simulation of snowfall & snowpack

...which allows for a more detailed simulation of snowfall in the western US.
Implications of snowpack changes

Changes in the seasonality of snowfall affect accumulation timing and amount, which has implications for summer and fall water supply, wildfire risk, and drought risk.
Statistical downscaling & the “stationarity assumption”

Statistical downscaling: when dynamical models don’t fully meet the requirements, an additional statistical refinement step may add value (analogous to the MOS in weather forecasting).

- GFDL’s angle – integrating efforts with others and leading an effort to assess uncertainty arising from what we refer to as ‘the stationarity assumption’.
aim to address GCM shortcomings + add finer scale detail

There are numerous statistical downscaling techniques, varying from the very simple, to intermediate complexity, to machine learning approaches, etc.
In our Perfect Model approach, we substitute hi-res GCM output for Observations -and- we substitute a coarsened (via interpolation) version of the hi-res model for the GCM.

HI RES (25km) GCM OBSERVATIONS
1979-2008
Downscaled vs. Hi ResGCM

COARSENED (200km) VERSION OF HI RES GCM SIMULATION
1979-2008

COARSENED (200km) VERSION OF HI RES GCM PROJECTION
2086-2095

DOWNSCALED EST. vs. Hi ResGCM
2086-2095
Statistical Downscaling

Area Mean Time Mean Absolute Downscaling Errors

\[\sum \left| \frac{\text{Downscaled Estimate} - \text{HiRes GCM}}{\text{NumDays}} \right| \]
For one method tested, downscaling errors were shown to be largest in coastal regions and during the summer (i.e., where & when the stationarity assumption did not hold well)
Research progress on matters of **regional climate, extremes, & impacts** has been a outgrowth of several factors including, but not limited to...

- Climate models’ higher spatial resolution
- Long model runs and ensembles of runs
- Synthesis of state-of-the-art models, high quality observations, and new theories/understanding of climate system mechanisms

...a combination of **hardware, software, & brainware**

Overall, these efforts map onto NOAA Strategic Goals to...

... advance the understanding of the Earth System across various space and time scales

...provide scientifically credible information that contributes to better informed decision-making and planning for climate variations and trends
Under our regional climate, extremes, & impacts umbrella...

- Regional Aerosols
- Heat Extremes
- Hydrology
 - Water Resources, Land/Atmos Coupling
- STATIONARITY
- Dynamical etc.
- Detection & Attribution
 - Global, Regional, Grid Point
- ENSO
 - Extreme ENSOs & Teleconnections
- Snowpack
 - Western US Water Resources
- Monsoons
- Sea Ice
- US Seasonal Forecasting System
- Marine Ecosystems
- Downscaling
- Statistical