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Motivation

Are these variations predictable? 
What are the driving mechanisms?

Large year to year variations 
superimposed on the long-term 
trend

Sept. 
2007

Strongest downward 
trend in September!



http://www.arcus.org/sipn

Contribution to the 
2014 sea ice outlook 

The median of the outlooks is a good 
prediction when the observed value is 
close to the trend (Stroeve et al. 2014) 

http://nsidc.org/arcticseaicenews/
http://nsidc.org/arcticseaicenews/


Two suite of retrospective coupled predictions initialized every month (Jan. 1) 
since 1982 and run for 1 yr:

Same ocean (MOM4) and sea ice model (SIS), but different atmosphere:
-GFDL-CM2.1 low-res atmosphere (2º) 
-GFDL-FLOR  high-res atmosphere (50km cubed sphere)

Same ocean/ice initial conditions:

Full field initialization using the GFDL ensemble coupled data assimilation ECDA 
(Zhang et al. 2007). 
Ocean constrained by XBT, CTD, Argo, satellites. 
Atmosphere constrained by NCEP.
Sea ice not directly assimilated

10-member ensemble
Historical radiative forcing prior to 2005. RCP4.5 after 2005

GFDL forecast systems



Most of the skill comes from the trend
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Significant skill in the year to year variations up to 6 month ahead 
for summer SIE
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MSADEK ET AL.: SEASONAL FORECAST OF ARCTIC SEA ICE X - 9
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Figure 3. September mean sea ice thickness (in m) in ECDA (a), in the CM2.1 free-running

1990 control simulation (b), and in the FLOR free-running 1990 control simulation (c). The

mean is estimated over the period 1982-2012 for ECDA and using a 31-yr segment of the 1990

control simulation for CM2.1 and FLOR.
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Figure 3. September mean sea ice thickness (in m) in ECDA (a), in the CM2.1 free-running

1990 control simulation (b), and in the FLOR free-running 1990 control simulation (c). The

mean is estimated over the period 1982-2012 for ECDA and using a 31-yr segment of the 1990

control simulation for CM2.1 and FLOR.
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FLOR

Mean state of CM2.1 and FLOR

Better climatology of sea ice extent 
and thickness in the high-res model.
Does it imply higher skill?

Geophysical Research Letters 10.1002/2014GL060799
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Figure 2. (a) Seasonal cycle of Arctic SIE simulated in the 1990 control
simulations of CM2.1 and FLOR, compared with NSIDC observations. The
climatology is computed over the 1982–2012 period for observations
and using a 31 year segment of the control simulation for the models.
(b) Evolution of the predicted seasonal cycle with lead time (from 0 to
11 months denoted by L0 to L11 in the legend) in the CM2.1 initialized
predictions. (c) Same as Figure 2b but in the FLOR initialized predictions.

linear trend is removed, but it remains
statistically significant at 95% for sev-
eral months in summer, fall, early
winter, and spring (Figure 3b). The
largest skill is found in summer and
fall with correlations significant up
to 7 months ahead in September
and 8 months in November. Hints of
reemergence of skill consistent with
the perfect predictability results of
Blanchard-Wrigglesworth et al. [2011]
are also illustrated by the weak but
positive correlations for August and
September SIE initialized in October of
the previous year. Limited skill is found
in predicting June and December SIE
even at short lead times, which points
to a possible barrier of predictabil-
ity during the melting and growing
seasons. The comparison with a persis-
tence forecast indicates that at short
lead times in summer, skill can partly
be explained by the persistence of SIE
anomalies. The improved skill in CM2.1
at longer lead times in summer, with
respect to the persistence forecast,
suggests dynamical evolution of the
initialized signal as the origin of skill.
The persistence forecast also shows
high skill in winter, up to 11 month
lead, consistent with Sigmond et al.
[2013]. This skill is underestimated in
CM2.1 because of deficiencies in rep-
resenting the winter reemergence
mechanism in ECDA.

The initialized FLOR predictions show
nearly similar skill to CM2.1, with
slightly smaller correlations in summer
and larger in early winter (Figure 3c),
though the difference with CM2.1 is
not statistically distinguishable from
zero (Figure S7). Improved skill was
expected given the better atmospheric
circulation and sea ice mean state
(Figures 2 and S2–S5). Given that the
CM2.1 and FLOR predictions share
the same ocean-ice models and initial
conditions, we hypothesize that the
similarity between the two predictions
is because initial conditions play a key
role in the predictions of seasonal SIE
in particular during summer, and 12
months is too short a time for the cou-
pled models differences to manifest in

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5211



Geophysical Research Letters 10.1002/2014GL060799

Figure 3. Skill scores of Arctic SIE anomalies for each predicted month as a function of initial month for the verification period 1982–2012 in the CM2.1 and FLOR
initialized predictions. Skill scores are estimated by the anomaly correlation coefficients (ACC) and the mean squared skill score (MSSS), using NSIDC as a refer-
ence. (a) ACC of predicted CM2.1 raw anomalies, (b) ACC of predicted CM2.1 detrended anomalies, (c) ACC of predicted FLOR detrended anomalies, (d) ACC of a
persistence forecast model based on detrended observed anomalies, (e) MSSS of CM2.1 detrended anomalies, and (f ) MSSS of FLOR detrended anomalies. The
linear trend is defined over the whole period. In Figures 3a–3d, black dots indicate that correlations are statistically significant at the 95% level.

forecast skill. This hypothesis is currently being tested using an ensemble Kalman filter state estimate built
on FLOR and longer-lead predictions with common initial conditions.

Large correlations do not necessarily coincide with accurate predictions, since models may overpredict
or underpredict the magnitude of extremes (Figure S8). A perfect agreement is also not expected as we
compare the model ensemble mean to a single realization in observations, and there are inherent limits to
predictability of a chaotic system. To assess and compare the accuracy of the CM2.1 and FLOR predictions,
we compute another measure of skill, the mean squared skill score (MSSS), which is a function of both the
correlation and the conditional bias [Murphy, 1988]. Positive MSSS indicates an improvement with respect
to climatology and negative MSSS means no skill. In both models, positive MSSS values are found in spring,
summer, and fall with a clear barrier of predictability in June and December (Figures 3e and 3f). Comparing

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5212

Some of the skill comes from persistence but dynamical models do a better job
The higher-res model does not perform better (for these lead times and for total extent)
=> Importance of initial conditions (similar in the two systems)
What about regionally? 

Msadek et al. 2014
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Geophysical Research Letters 10.1002/2014GL060799

Figure 3. Skill scores of Arctic SIE anomalies for each predicted month as a function of initial month for the verification period 1982–2012 in the CM2.1 and FLOR
initialized predictions. Skill scores are estimated by the anomaly correlation coefficients (ACC) and the mean squared skill score (MSSS), using NSIDC as a refer-
ence. (a) ACC of predicted CM2.1 raw anomalies, (b) ACC of predicted CM2.1 detrended anomalies, (c) ACC of predicted FLOR detrended anomalies, (d) ACC of a
persistence forecast model based on detrended observed anomalies, (e) MSSS of CM2.1 detrended anomalies, and (f ) MSSS of FLOR detrended anomalies. The
linear trend is defined over the whole period. In Figures 3a–3d, black dots indicate that correlations are statistically significant at the 95% level.

forecast skill. This hypothesis is currently being tested using an ensemble Kalman filter state estimate built
on FLOR and longer-lead predictions with common initial conditions.

Large correlations do not necessarily coincide with accurate predictions, since models may overpredict
or underpredict the magnitude of extremes (Figure S8). A perfect agreement is also not expected as we
compare the model ensemble mean to a single realization in observations, and there are inherent limits to
predictability of a chaotic system. To assess and compare the accuracy of the CM2.1 and FLOR predictions,
we compute another measure of skill, the mean squared skill score (MSSS), which is a function of both the
correlation and the conditional bias [Murphy, 1988]. Positive MSSS indicates an improvement with respect
to climatology and negative MSSS means no skill. In both models, positive MSSS values are found in spring,
summer, and fall with a clear barrier of predictability in June and December (Figures 3e and 3f). Comparing

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5212

Persistence forecast

Skill of Pan Arctic sea ice extent
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2011

atmosphèreatmosphèreatmosphère

Similar SIE but different 
regional patterns

Importance of regional assessments
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Significant skill in summer for 
few months

Comparable in the two models

Anomaly correlations of detrended sea 
ice extent in the Eastern Arctic 
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Anomaly correlations of detrended sea 
ice extent in the Labrador Sea

Significant skill in winter/spring 
for few months

Comparable in the two models
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In FLOR: slightly higher skill in 
winter at longer lead times. More 
evidence of reemergence

Better ocean heat flux 
convergence?

Anomaly correlations of detrended sea 
ice extent in the Barents Sea
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Anomaly correlations of detrended 
sea ice extent in the Pacific Arctic

Comparable skill in the two models 
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Better representation of the 
reemergence with a better 
SST climatology 

Anomaly correlations of detrended 
sea ice extent in the Pacific Arctic



SST anomalies

Summer 2007

Heat transport from the 
Atlantic and Pacific oceans 
contribute to the year to 
year variations of sea ice

atmosphere

ocean 
surface

sea ice

pycnocline

Complex mechanisms



NASA
Thickness is a source of skill for 
summer sea ice extent.
Is predictability decreasing as ice 
gets thinner?
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Better year-to-year predictability 
in the 1990s than in the 2000s.
But record too short to assess the 
effect of thinning 

Complex mechanisms



(Some) current limitations for seasonal sea ice predictions:

-Biased models (missing dynamical ice processes e.g. melt ponds, atmosphere, ocean)
-Uncertain initial conditions (especially thickness): lack of data to assimilate.
-Poor understanding of the mechanisms contributing to predictability

Potential predictability of sea ice extent
 ˜1yr in perfect model experiments 
(Blanchard et al. 2011, Tietsche et al. 2014)

Skill limited to few months in operational-
like systems 
(Sigmond et al. 2013, Chevallier et al. 2013, Wang 
et al. 2013, Msadek et al. 2014)

Tietsche et al. 2014

Current limitations

Potential predictability studies suggest that we could extend the skill for longer
What are we missing?



Summary

Seasonal sea ice predictions are challenging due to the variable nature of 
weather and ocean on this timescale as well as the current limitations in data 
and modeling capabilities

Higher atmospheric resolution does not necessarily imply higher skill in 
Arctic for lead times less than 12 months, even regionally.  

Our results suggest that improving initial conditions is key for improving 
skill. 

Reduced SST biases can lead to higher correlations in the regions where 
reemergence mechanisms play a role (Bering Sea, Atl.)

There are interesting regional differences in the structure of the lead-
dependent skill, which reflects different mechanisms that are seasonally 
dependent

=> Need to identify the processes (ocean, atmosphere, ice) that contribute 
or limit skill for each region of the Arctic and assess the model dependence
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Figure 4. March mean sea ice concentration in NSIDC observational estimates (a), in ECDA,

which is used to initialize the predictions (b), in the CM2.1 free-running 1990 control simulation

(c), in the FLOR free-running 1990 control simulation (d). The mean is estimated over the period

1982-2012 for NSIDC and ECDA and using a 31-yr segment of the 1990 control simulation for

CM2.1 and FLOR. The white line indicated the 15% concentration value which defines the edge

of sea-ice extent.
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Figure 2. (a) Seasonal cycle of Arctic SIE simulated in the 1990 control
simulations of CM2.1 and FLOR, compared with NSIDC observations. The
climatology is computed over the 1982–2012 period for observations
and using a 31 year segment of the control simulation for the models.
(b) Evolution of the predicted seasonal cycle with lead time (from 0 to
11 months denoted by L0 to L11 in the legend) in the CM2.1 initialized
predictions. (c) Same as Figure 2b but in the FLOR initialized predictions.

linear trend is removed, but it remains
statistically significant at 95% for sev-
eral months in summer, fall, early
winter, and spring (Figure 3b). The
largest skill is found in summer and
fall with correlations significant up
to 7 months ahead in September
and 8 months in November. Hints of
reemergence of skill consistent with
the perfect predictability results of
Blanchard-Wrigglesworth et al. [2011]
are also illustrated by the weak but
positive correlations for August and
September SIE initialized in October of
the previous year. Limited skill is found
in predicting June and December SIE
even at short lead times, which points
to a possible barrier of predictabil-
ity during the melting and growing
seasons. The comparison with a persis-
tence forecast indicates that at short
lead times in summer, skill can partly
be explained by the persistence of SIE
anomalies. The improved skill in CM2.1
at longer lead times in summer, with
respect to the persistence forecast,
suggests dynamical evolution of the
initialized signal as the origin of skill.
The persistence forecast also shows
high skill in winter, up to 11 month
lead, consistent with Sigmond et al.
[2013]. This skill is underestimated in
CM2.1 because of deficiencies in rep-
resenting the winter reemergence
mechanism in ECDA.

The initialized FLOR predictions show
nearly similar skill to CM2.1, with
slightly smaller correlations in summer
and larger in early winter (Figure 3c),
though the difference with CM2.1 is
not statistically distinguishable from
zero (Figure S7). Improved skill was
expected given the better atmospheric
circulation and sea ice mean state
(Figures 2 and S2–S5). Given that the
CM2.1 and FLOR predictions share
the same ocean-ice models and initial
conditions, we hypothesize that the
similarity between the two predictions
is because initial conditions play a key
role in the predictions of seasonal SIE
in particular during summer, and 12
months is too short a time for the cou-
pled models differences to manifest in

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5211
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Geophysical Research Letters 10.1002/2014GL060799

Figure 3. Skill scores of Arctic SIE anomalies for each predicted month as a function of initial month for the verification period 1982–2012 in the CM2.1 and FLOR
initialized predictions. Skill scores are estimated by the anomaly correlation coefficients (ACC) and the mean squared skill score (MSSS), using NSIDC as a refer-
ence. (a) ACC of predicted CM2.1 raw anomalies, (b) ACC of predicted CM2.1 detrended anomalies, (c) ACC of predicted FLOR detrended anomalies, (d) ACC of a
persistence forecast model based on detrended observed anomalies, (e) MSSS of CM2.1 detrended anomalies, and (f ) MSSS of FLOR detrended anomalies. The
linear trend is defined over the whole period. In Figures 3a–3d, black dots indicate that correlations are statistically significant at the 95% level.

forecast skill. This hypothesis is currently being tested using an ensemble Kalman filter state estimate built
on FLOR and longer-lead predictions with common initial conditions.

Large correlations do not necessarily coincide with accurate predictions, since models may overpredict
or underpredict the magnitude of extremes (Figure S8). A perfect agreement is also not expected as we
compare the model ensemble mean to a single realization in observations, and there are inherent limits to
predictability of a chaotic system. To assess and compare the accuracy of the CM2.1 and FLOR predictions,
we compute another measure of skill, the mean squared skill score (MSSS), which is a function of both the
correlation and the conditional bias [Murphy, 1988]. Positive MSSS indicates an improvement with respect
to climatology and negative MSSS means no skill. In both models, positive MSSS values are found in spring,
summer, and fall with a clear barrier of predictability in June and December (Figures 3e and 3f). Comparing

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5212

Smaller error at longer lead times in the high res model
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Figure 2. (a) Seasonal cycle of Arctic SIE simulated in the 1990 control
simulations of CM2.1 and FLOR, compared with NSIDC observations. The
climatology is computed over the 1982–2012 period for observations
and using a 31 year segment of the control simulation for the models.
(b) Evolution of the predicted seasonal cycle with lead time (from 0 to
11 months denoted by L0 to L11 in the legend) in the CM2.1 initialized
predictions. (c) Same as Figure 2b but in the FLOR initialized predictions.

linear trend is removed, but it remains
statistically significant at 95% for sev-
eral months in summer, fall, early
winter, and spring (Figure 3b). The
largest skill is found in summer and
fall with correlations significant up
to 7 months ahead in September
and 8 months in November. Hints of
reemergence of skill consistent with
the perfect predictability results of
Blanchard-Wrigglesworth et al. [2011]
are also illustrated by the weak but
positive correlations for August and
September SIE initialized in October of
the previous year. Limited skill is found
in predicting June and December SIE
even at short lead times, which points
to a possible barrier of predictabil-
ity during the melting and growing
seasons. The comparison with a persis-
tence forecast indicates that at short
lead times in summer, skill can partly
be explained by the persistence of SIE
anomalies. The improved skill in CM2.1
at longer lead times in summer, with
respect to the persistence forecast,
suggests dynamical evolution of the
initialized signal as the origin of skill.
The persistence forecast also shows
high skill in winter, up to 11 month
lead, consistent with Sigmond et al.
[2013]. This skill is underestimated in
CM2.1 because of deficiencies in rep-
resenting the winter reemergence
mechanism in ECDA.

The initialized FLOR predictions show
nearly similar skill to CM2.1, with
slightly smaller correlations in summer
and larger in early winter (Figure 3c),
though the difference with CM2.1 is
not statistically distinguishable from
zero (Figure S7). Improved skill was
expected given the better atmospheric
circulation and sea ice mean state
(Figures 2 and S2–S5). Given that the
CM2.1 and FLOR predictions share
the same ocean-ice models and initial
conditions, we hypothesize that the
similarity between the two predictions
is because initial conditions play a key
role in the predictions of seasonal SIE
in particular during summer, and 12
months is too short a time for the cou-
pled models differences to manifest in

MSADEK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5211
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Figure 2. (a) Seasonal cycle of Arctic SIE simulated in the 1990 control
simulations of CM2.1 and FLOR, compared with NSIDC observations. The
climatology is computed over the 1982–2012 period for observations
and using a 31 year segment of the control simulation for the models.
(b) Evolution of the predicted seasonal cycle with lead time (from 0 to
11 months denoted by L0 to L11 in the legend) in the CM2.1 initialized
predictions. (c) Same as Figure 2b but in the FLOR initialized predictions.

linear trend is removed, but it remains
statistically significant at 95% for sev-
eral months in summer, fall, early
winter, and spring (Figure 3b). The
largest skill is found in summer and
fall with correlations significant up
to 7 months ahead in September
and 8 months in November. Hints of
reemergence of skill consistent with
the perfect predictability results of
Blanchard-Wrigglesworth et al. [2011]
are also illustrated by the weak but
positive correlations for August and
September SIE initialized in October of
the previous year. Limited skill is found
in predicting June and December SIE
even at short lead times, which points
to a possible barrier of predictabil-
ity during the melting and growing
seasons. The comparison with a persis-
tence forecast indicates that at short
lead times in summer, skill can partly
be explained by the persistence of SIE
anomalies. The improved skill in CM2.1
at longer lead times in summer, with
respect to the persistence forecast,
suggests dynamical evolution of the
initialized signal as the origin of skill.
The persistence forecast also shows
high skill in winter, up to 11 month
lead, consistent with Sigmond et al.
[2013]. This skill is underestimated in
CM2.1 because of deficiencies in rep-
resenting the winter reemergence
mechanism in ECDA.

The initialized FLOR predictions show
nearly similar skill to CM2.1, with
slightly smaller correlations in summer
and larger in early winter (Figure 3c),
though the difference with CM2.1 is
not statistically distinguishable from
zero (Figure S7). Improved skill was
expected given the better atmospheric
circulation and sea ice mean state
(Figures 2 and S2–S5). Given that the
CM2.1 and FLOR predictions share
the same ocean-ice models and initial
conditions, we hypothesize that the
similarity between the two predictions
is because initial conditions play a key
role in the predictions of seasonal SIE
in particular during summer, and 12
months is too short a time for the cou-
pled models differences to manifest in
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What is the mechanism that contributes to skill on regional scale?
Correlation between predicted concentration and predicted thickness
May initialization. 
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Correlation between the predicted concentration initialized in May and obs.
We see skill for Aug-Sep-Oct concentration in the Laptev/Kara/East Siberian regions
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The rmse in summer remain quite small until lead 6-8 months
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