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Ecosystem Tipping Points

When incremental changes in
environmental conditions or human
activities result in large, and sometimes
abrupt, changes in ecosystem structure,
function, and often, benefits to people
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Productivity regime shifts in
marine fish stocks represent
tipping points
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Inherently nonlinear dynamics
can produce alternate
ecosystem states
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Recovery may be difficult and slow

Modified from
Ling et al. PNAS 2009

Kelp bed Sea urchin barren




Tipping and recovery
depend on.control processes
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1. Are control processes nonlinear?
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Meta-analysis of ecological thresholds
in the open ocean
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Hunsicker et al. Ecological Applications. Characterizing driver-response relationships in
marine pelagic ecosystems for improved ocean management. In press



Half of the studied relationships between drivers and
ecosystem components in the open ocean are nonlinear
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Major Findings
- 91 marine regime shifts have been documented from
9 major ecosystem types and all oceanbasins.

- Most marine ecosystem shifts persist for decades

- Climate is a key driver of most shifts, but acts
in concert with local drivers like fishing, nutrient addition

- History and feedbacks in persistence of regime shifts
and effects on eco. services remain poorly documented.

“More"attention on how drivers may alter species

interactions-and lead to regime shifts.
Kappel et al. Marine ecosystem shifts around the world. In revision



Marine ecosystem dynamics are
often driven by nonlinear
processes characterized by
tipping points, which require long
recoveries




Accurate prediction of ecosystem
tipping points requires
mechanistic understanding

Reviews in Fish Biology and Fisheries 8, 285-305 (1998)

When do environment-recruitment coirelations
work?

RANSOM A. MYERS

(obligatory RAM slide)




Fully coupled mechanistic
biophysical models are within
reach
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Impacts of climate change on marine ecosystem
production in societies dependent on fisheries

M. Barange'™, G. Merino"?, J. L. Blanchard3, J. Scholtens?, J. Harle5, E. H. Allison®, J. I. Allen’, J. Holt®
and S. Jennings’8
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Early warning indicators offer promise but
should be used cautiously where
mechanisms are poorly understood

Table 1| Early warning indicators of approaching bifurcation points and tests thereof.

Phenomenon Indicator System Data Source Signal Reference(s) h I
Critical slowing down Increasing autocorrelation, AR(1) Climate Models 8,10,12,53 S C eﬁe r et a- 2 OO 9

+
coefficient Palaeorecord + 10,12,53
0 1213 Scheffer et al. 2012
Ecological Models i 44
Increasing return time from Ecological Models + 39, 40, 45, 51 L e n to n 2 O 11
perturbations Lab experiments + 6,52
Increasing DFA exponent Climate Models + 9,1,12 '
Palaeorecord + 9,12
= 12
Spectral reddening Climate Models 1 7
Ecological Model 0 79
Increasing spatial correlation Ecological Models + 47
Lab experiments 1 52
Increased variability Increasing variance Climate Models Sl 12
0 12
Palaeorecord S 12 E
0 13 %
- 12 e
Ecological Models + 43-45,79
Lab experiments + 52
Increasing spatial variance Ecological Model Sl 48
Data < 49
Lab experiments + 52

Skewed responses Increasing skewness Climate Palaeodata 0 46
Ecological Model + 44-46

Lab experiments + 52

Increasing spatial skewness Ecological Model 1 48

'+'means indicator increased as expected; '~ means indicator decreased, contrary to expectation; '0' means there was no significant change in the indicator.




Early warning indicators offer promise but
should be used cautiously where
mechanisms are poorly understood

Perfect detection
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The predictability of surprise

Ecological Applications, 6(3), 1996, pp. 733-735
© 1996 by the Ecological Society of America

SURPRISE FOR SCIENCE, RESILIENCE FOR ECOSYSTEMS,
AND INCENTIVES FOR PEOPLE!?

C. S. HOLLING
Department of Zoology, University of Florida, Gainesville, Florida USA

Ecology, 89(4), 2008, pp. 952-961
© 2008 by the Ecological Society of America

UNDERSTANDING AND PREDICTING ECOLOGICAL DYNAMICS:
ARE MAJOR SURPRISES INEVITABLE?

DanNieL F. DOAK,LH JamES A. ESTES,2 BENnJAMIN S. HALPERN,3 UTE JACOB,4 Davip R. LINDBERG,5 JAMES LOVVORN,1
Danie H. Monson,” M. Tivortay Tinker,” TERRIE M. WiLLiams,’ J. TimotHY WootToNn,® Ian CARROLL,”
Mark EvmERrsoN,* Fiorenza MicHELL'® AND MaRk Novak®
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Depensatory population dynamics
(Allee effects)
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Stier et al. in prep



Potential for tipping increases the value of
Information
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Management and conservation in a
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Forage fish population dynamics
are inherently noisy...

Tsushima Strait Pilchard
CV=1.48; p=25

Chub Mackerel P. Coast
CV=1.28; p=2
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Cv=0.54; =1.9
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...................................................................................................................... . Atlantic Menhaden
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50 years

Essington et al. 2015



...and subject to collapse, even
In the absence of fishing

Modeled dynamics of Pacific herring &I
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These collapses matter to
dependent predators

“1/3 for-the birds”
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Some management strategies
can avoid population and
ecosystem tipping points
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Trophic sequences of community dis-assembly
lead to predictable ecosystem changes

Trophic Downgrading of Planet Earth

James A. Eftes,_l*‘ ]f)hn_Terbﬁorgﬁh,Z ]ustin’SL‘Bras_h.eu:esL3 Mary E. oPgw_er," lioe!ngrger,s
. . Absent Presen t
Fishing down and through the food web

®

Pauly et al. 1998, Essington et al. 2006,
Branch et al. 2010



Community dis-assembly: fish down the food web

Predator

Samhouri et al. in prep



Community dis-assembly: fish down the food web
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Community dis-assembly: fish down the food web
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Unordered recovery: fast and direct
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Predator first recovery
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Predator first recovery:
slow and direct

Predator
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Prey first recovery
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Prey first recovery:
moderate and noisy
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Trophic sequence of recovery matters
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Trophic sequence of recovery matters

Unordered Recovery .
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Strategic recovery is robust to differences in
productivity regimes and exploitation scenarios

A ~
o ol
] ]

Percent Change Relative to Next Best Strategy
o1
]

Unordered E_

always wins

o
]

Predator first
always wins

T

1 1
Return Time Amplification Volume

Community Response

fishing

Early

| warning
Overfished ] ]

| indicators
Sustainable

of
Underexploited
recovery?

Samhouri et al. in prep



Management and conservation in a
predictably surprlsk{g ocegm

. 0
3 vignettes X ‘O
1. The value of inforrq@brﬂ rbﬁ&/orld with tipping
points ‘\0
2. Robust manage 0|n a stochastic, threshold-
constragn’%tl
\S

Bgic Fec

— -; tr AL




Predictable surprises require adaptive
and robust management

Scheffer et al. 2012
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Fisheries and beyond:
a hierarchy of tipping points

Tier 2

Benchmark 1:
Declining catches

Benchmark 2:
Food web changes

Benchmark 3:
Recruitment failures

Safe Operating Space Selkoe et al. in press

Risk of Tipping Threat Monitoring
Point reduction Intensity

Low None Low

Moderate Light Moderate

Aggressive
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SUSTAINABILITY

Prediction, precaution, and
policy under global change

Emphasize robustness, monitoring, and flexibility

Schindler and Hilborn 2015




(\
e Model ensembles that include @S%B
e Mechanisms \S\
 Hysteresis \’6\6 Q

e Spatial dynamics

e Evaluate marﬁg proaches that are robust to a
range o%’&mntla ures

. I@*ance!@me form of heterogeneity

. ,tlo beyonduﬁshe

o TancatiC

,.,., “\”" R L. s
AR5 ‘(‘”, pred cfale soc .’.ﬂppl;
s g redictable

T .
v

plr‘fg p@ts arg u ‘p



Conclusion

 Assuming linear change sets us\wp forSurprises

* New approaches and togls*can-help integrate tipping

points into marmeawﬁ'a %ﬁ‘ént

e Doing so willwiel ecologlcal outcomes and
help sustem eco,sgé m benefits for the long run
. But@é ore real world tests of these ideas —
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Summary of principles for managing ecosystems prone to tipping points

Social-ecological observation Management Principle
1

Tipping points are common.

Intense human use may cause a
tipping point by radically altering
ecological structure and function.

Early warning indicators of
tipping points enable proactive
responses.

Crossing a tipping point may
redistribute ecosystem benefits.

Tipping points change the
balance between costs of action
and inaction.

Thresholds can guide target-
setting for management.

Tiered management can reduce
monitoring costs while managing
risk.

In the absence of evidence to the
contrary, assume non-linearity.

Address stressor intensity and
interactive, cross-scale effects of
human use to avoid tipping points.

Work towards identifying and
monitoring leading indicators of
tipping points.

Work to make transparent the

effects of tipping points on
benefits, burdens and preferences.

Tipping points warrant increased
precaution.

Tie management targets to
ecosystem thresholds.

Increase monitoring and
intervention as risk of a tipping
point increases.

Selkoe et al. In Press
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Far from bifurcation:

Small deviations

Fast

recovery
O—

Larger deviations

Approaching bifurcation: Slower

recovery

At bifurcation point:

No recovery
-—

/

Figure 2 | Heuristic basis for early warning of an approaching bifurcation
point. The valleys or potential wells represent stable attractors and the

ball represents the state of the system. Under gradual forcing, the right
potential well becomes shallower and finally vanishes (bifurcation) causing
the ball to role abruptly to the left. Picture the system being nudged around
by a short-term stochastic process (noise). The radius of the potential

well is directly related to the system’s response time to such small
perturbations, which tends towards infinity as bifurcation is approached,
that is, the system becomes more sluggish in response to perturbations
(‘critical slowing down’). Larger fluctuations are also expected as
bifurcation is approached.

Lenton 2011
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Table 1| Early warning indicators of approaching bifurcation points and tests thereof.

Phenomenon Indicator System Data Source Signal Reference(s)
Critical slowing down Increasing autocorrelation, AR(1) Climate Models + 8,10,12,53
coefficient Palaeorecord + 10,12, 53
0 12,13
Ecological Models + 44
Increasing return time from Ecological Models + 39,40, 45, 51
perturbations Lab experiments S 6,52
Increasing DFA exponent Climate Models + 9,1,12
Palaeorecord + 9,12
= 12
. & Spectral reddening Climate Models + 7
Ecological Model 0 79
w Increasing spatial correlation Ecological Models S 47
——— .
Lab experiments + 52
‘ < f = . Increased variability Increasing variance Climate Models + 12
: 0 12
Palaeorecord a 12
0 13
= 12
Ecological Models + 43-45,79
Lab experiments 1 52
Increasing spatial variance Ecological Model + 48
Data + 49
Lab experiments 1 52
Skewed responses Increasing skewness Climate Palaeodata 0 46
Ecological Model + 44-46
Lab experiments + 52
Increasing spatial skewness Ecological Model + 48

'+'means indicator increased as expected; '~ means indicator decreased, contrary to expectation; '0' means there was no significant change in the indicator.

Lenton 2011
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