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Take-­‐home	
  messages	
  
1.  Tipping	
  points	
  are	
  common,	
  but	
  will	
  be	
  difficult	
  to	
  

predict.	
  

2.  Develop	
  a	
  variety	
  of	
  biological	
  models,	
  including	
  
those	
  that	
  are	
  mechanis@c,	
  spa@al,	
  and	
  inherently	
  
nonlinear.	
  

3.  Design	
  ecosystem-­‐based	
  management	
  approaches	
  
robust	
  to	
  a	
  range	
  of	
  poten@al	
  futures.	
  



Ecosystem	
  Tipping	
  Points	
  
When	
  incremental	
  changes	
  in	
  
environmental	
  condi2ons	
  or	
  human	
  
ac2vi2es	
  result	
  in	
  large,	
  and	
  some2mes	
  
abrupt,	
  changes	
  in	
  ecosystem	
  structure,	
  
func2on,	
  and	
  o9en,	
  benefits	
  to	
  people	
  
	
  

	
  





Fishery collapses as tipping points!
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The production of sustainable yield depends not only on re-
cruitment but on the growth of young fish and survival from nat-
ural mortality. To understand changes in productivity, we need to
look at all three processes. Surplus production, the net change in
biomass from one year to the next in the absence of fishing,
incorporates recruitment, growth, and natural mortality, and it can
easily be calculated from available fish stock assessments (17).
Worm et al. (18) assembled a database with the history of

abundance and catch from published assessments that now includes
355 stocks (19). There is sufficient information on 230 stocks in
these data to calculate the history of surplus production for each
year, defined as the change in total biomass plus the catch for the

year. We pose four competing hypotheses: (i) the abundance
hypothesis, where production is always related to population
abundance through a biomass dynamics model; (ii) the regimes
hypothesis, where production shifts irregularly between high- and
low-productivity regimes that are unrelated to abundance; (iii) the
mixed hypothesis, where even though production is related to
population abundance, there are irregular changes in this re-
lationship; and (iv) the random hypothesis, where production is
random from year to year and is not explained by either pro-
ductivity regime changes or population abundance. These four
models can best be thought of as broad classes of models, and
embedded within each is a range of different ecological

Fig. 1. Surplus production data plotted against model predictions showing individual fish stocks best explained by the abundance (A–C; Atlantic cod
in the Kattegat and Skagerrak), regimes (D–F; Atlantic cod in Iceland), mixed (G–I; Petrale sole from Southern California), and random (J–L; common
European sole in the Kattegat and Skagerrak) hypotheses. The first column is the fit under the abundance model, the second column is the fit under the
mixed model, and the third column is the fit under the regimes model or, if no breakpoints are found, the random model (l). The area shaded in each pie
diagram shows the AIC weight assigned to each model, such that a pie diagram that is 90% shaded indicates that 90% of the AIC weight was assigned to
that model. mt metric tons. Points are shaded from dark (earliest data) to light (latest data).
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of 1–4  °C of global warming2,28–30. Given the large uncertainties, 
expert elicitation1,3,31,32 has also been used to quantify and combine 
the subjective judgements of experts regarding the proximity of 
di"erent climate tipping points. Even with the most conservative 
assumptions, the results3 suggest it is more likely than not that at 
least one of #ve tipping points considered will be passed in a >4 °C 
warmer world. 

So, can the proximity of individual thresholds be more accurately 
tied down? Without a precise past analogue of future climate change, 
predictive models are needed. However, weaknesses of recent global 
climate models limit their usefulness in this context. First, some 
potential tipping elements, for example, large ice sheets, have been 
missing from global coupled models. Second, even speci#c models 
of, for example, ice sheets, have been missing key processes and 
feedbacks that could generate nonlinear dynamics33. $ird, at the 
regional scales of interest here, global models have been poor at 
capturing some tipping elements, for example, the West African 
monsoon34, and even among those few models that have captured 
its present pattern, future predictions diverge in sign34 (let alone 
magnitude). Fourth, for some well-studied tipping elements, for 
example, the Atlantic THC, models seem to be systematically 
biased with respect to data regarding its stability regime35. Also, 
where the joint uncertainties of a model and data have been 
formally combined, for example, for the Atlantic THC, the resulting 

uncertainty in tipping threshold (or lack of it) is large36. Finally, no 
model used for future projection has yet been able to simulate the 
most abrupt shi%s in the palaeoclimate record. Although several of 
these issues are being addressed, given the current limitations of 
climate models, interest has grown in statistically based methods of 
directly diagnosing proximity to a tipping point.

Predictability and early warnings
$e trigger of any future climate tipping point is likely to involve 
some combination of natural variability on top of an underlying 
forcing due to human activities. $is suggests a probabilistic 
approach to forecasting is most appropriate, based on a paradigm 
where short-term variability in the climate system is characterized 
as a stochastic process (‘noise’) interacting with longer-term 
deterministic dynamics37. For a given abrupt change, the balance 
of deterministic and stochastic (random) processes driving it will 
determine its predictability. $is can be highlighted by the following 
two, idealized, limiting cases (Fig.  1), although in reality, steady 
forcing and noise are both likely to play a role in tipping  phenomena.

Bifurcations. Slow forcing past a bifurcation point (Fig. 1a) #ts the 
de#nition1 of a tipping point (Box 1) and shows greatest promise 
for early warning. In general (and nearly universally38), as a system 
approaches a bifurcation point where its current state (or mode of 
variability) becomes unstable, and it switches to some other state 
(or mode), one can expect to see it become more sluggish in its 
response to small perturbations5,6,8,39,40. $is can be visualized for a 
system in a potential well that is getting shallower as it approaches 
a saddle-node bifurcation (Fig.  2); the ball representing the pre-
sent state of the system, rolls back ever slower from perturbations, 
as bifurcation is approached. Mathematically, for systems that are 
gradually approaching a bifurcation point in their equilibrium 
solutions, the leading eigenvalue tends towards zero, indicating 
a tendency towards in#nitely slow recovery from perturbations. 
$is phenomenon — termed ‘critical slowing down’ in dynamical 
systems theory  — is widely known6,41, but has only recently been 
applied to climate dynamics7,8. 

Slowing down causes the intrinsic rates of change in a system 
to decrease, and therefore the state of the system at any given 
moment should become more like its past state. $is increase in 
memory can be measured in a variety of ways. As slowing down 
occurs, time-series data becomes more correlated with itself 
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Figure 1 | Two sources of abrupt change. a, Bifurcation, where a small 
change in forcing (δρ) past a critical threshold ρcrit causes a large, nonlinear 
change in system state (ΔF) (thus meeting the tipping point definition in 
Box 1). b, Noise-induced transition, where internal short-term variability 
(δF) passing an unstable steady state Fcrit causes a large, nonlinear change 
in system state (ΔF) without any change in forcing control (ρ). Solid lines 
are stable steady states, dashed lines are unstable steady states.

$e phrase ‘tipping point’ captures the colloquial notion that ‘little 
things can make a big di"erence’81, that is, at a particular moment 
in time, a small change can have large, long-term consequences 
for a system. $e term ‘tipping element’ was introduced1 to 
describe large-scale subsystems (or components) of the Earth 
system that can be switched — under certain circumstances — 
into a qualitatively di"erent state by small perturbations. $ese 
must be at least sub-continental in scale (length scale of order 
~1,000  km). $e tipping point is the corresponding critical 
point — in forcing and a feature of the system — at which the 
future state of the system is qualitatively altered. To de#ne this, 
it must be possible to identify a single control parameter (ρ), for 
which there exists a critical control value (ρcrit), from which a 
small perturbation (δρ > 0) leads to a qualitative change (F) in 
a crucial feature of the system (F), a%er some observation time 
(T > 0). $e actual change (ΔF) is measured with respect to a 
reference state of the feature at the critical value:

In this de#nition, the critical threshold (ρcrit) is the tipping 
point, beyond which a qualitative change occurs, and the change 
may occur immediately a%er the cause or much later.

$e subset of ‘policy-relevant’ tipping elements is de#ned1 by 
the following (additional) conditions. (1) Human activities are 
interfering with the system such that decisions taken within a 
‘political time horizon’ (TP ~100 years) can determine whether 
the tipping point (ρcrit) is crossed. If it is crossed, (2) the time 
to observe a qualitative change (including the time to trigger 
it) lies within an ‘ethical time horizon’ (TE ~1,000 years). (3) A 
signi#cant number of people care about the fate of the system 
because either it contributes signi#cantly to the overall mode of 
operation of the Earth system, or it contributes signi#cantly to 
human welfare, or it has great value in itself as a unique feature 
of the biosphere.

Box 1 | Defining climate tipping points

  F(ρ ≥ ρcrit + δρ T) – F(ρcrit T) ≥ F > 0∆F = 
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Inherently nonlinear dynamics 
can produce alternate 

ecosystem states 
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Recovery	
  may	
  be	
  difficult	
  and	
  slow 
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Tipping and recovery 
depend on control processes 

processes, including Allee effects (Bourbeau-
Lemieux et al. 2011), trophic cascades (Carpenter
et al. 1999, Carpenter et al. 2011), habitat
fragmentation and extinction cascades (Swift
and Hannon 2010, He and Hubbell 2011), land
surface-climate feedbacks (Foley et al. 2003, Cook
et al. 2009), or spreading desertification (Peters et
al. 2004). Data on response mechanisms are
derived most frequently from manipulative
experiments, natural history observations, and
expert knowledge (Choy et al. 2009).

Finally, contextual information documents
characteristics of the environmental setting that
can influence driver-response relationships and
that can vary among case studies. For example,
lake morphometry (Genkai-Kato and Carpenter
2005), stream channel geometry (Heffernan et al.
2008), soil texture (Bestelmeyer et al. 2006), and
distance to source populations (Hughes et al.

1999) result in spatial variation in biological
responses to drivers and triggers. Similarly, the
timing of disturbance events with respect to
seasonal period can determine their effects on
biological responses (Nystrom et al. 2000).
Understanding spatiotemporal context can help
to reconcile differences among case studies
illustrating general types of transitions and state
changes (e.g., Petraitis et al. 2009). Contextual
information also can help translate scientific
analyses into meaningful policy recommenda-
tions and management interventions (Carpenter
et al. 2011).

An approach for identifying abrupt transitions
and state changes in ecological systems

Three general classes of mechanisms are
postulated to produce abrupt transitions: linear
tracking, threshold response, and hysteresis

Fig. 2. Three classes of driver-response relationships and analytical indicators of transitions and state changes.
The top row (A) illustrates time series of driver and response variables in linear tracking, threshold, and
hysteretic systems. The second row (B) illustrates that the frequency distribution of the observations should shift
from unimodal to bimodal when a threshold or hysteretic change occurs. The third row (C) illustrates how one
leading indicator, the variance of the time series, should differ among the three classes of driver-response
relationships. As the transition becomes more abrupt and the post-transition state becomes more distinctive from
the pre-transition state, the variance should become more peaked at the transition point. The bottom row (D)
illustrates changes in the driver-response relationships from linear (in the linear tracking class) to nonlinear (in
the threshold class) to hysteretic.
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1.  Are control processes nonlinear? 
 
2.  How common are tipping points? 

3.  How long do recoveries require? 
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  Major	
  Findings	
  
-­‐	
  91	
  marine	
  regime	
  shiRs	
  have	
  been	
  documented	
  from	
  	
  
9	
  major	
  ecosystem	
  types	
  and	
  all	
  ocean	
  basins.	
  	
  
	
  
-­‐	
  Most	
  marine	
  ecosystem	
  shiRs	
  persist	
  for	
  decades	
  
	
  
-­‐	
  Climate	
  is	
  a	
  key	
  driver	
  of	
  most	
  shiRs,	
  but	
  acts	
  	
  
in	
  concert	
  with	
  local	
  drivers	
  like	
  fishing,	
  nutrient	
  addi@on	
  
	
  
-­‐	
  History	
  and	
  feedbacks	
  in	
  persistence	
  of	
  regime	
  shiRs	
  	
  
and	
  effects	
  on	
  eco.	
  services	
  remain	
  poorly	
  documented.	
  	
  
	
  
-­‐	
  More	
  aVen@on	
  on	
  how	
  drivers	
  may	
  alter	
  species	
  	
  
interac@ons	
  and	
  lead	
  to	
  regime	
  shiRs.	
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Marine ecosystem dynamics are 
often driven by nonlinear 
processes characterized by 
tipping points, which require long 
recoveries 



Accurate prediction of ecosystem 
tipping points requires 
mechanistic understanding 

(obligatory RAM slide) 



Fully coupled mechanistic 
biophysical models are within 
reach 

Mar Ecol Prog Ser 521: 217–235, 2015224

Fig. 3. (a) Temperature scaling functions, ƒ(T), for maximum consumption, Cmax = CA · WCB · ƒ(T) of three Alaskan ground fish 
species, and (b) Cmax (g g−1d−1) of a 1 kg fish of each species

Fig. 4. Annual individual ration estimates (kg yr−1) as a function of fish weight (kg) from various methods for walleye pollock,
Pacific cod, and arrowtooth flounder in the eastern Bering Sea (EBS), Aleutian Islands (AI), and Gulf of Alaska (GOA). Mean
stomach content weight is shown by light gray shading. Field-based (C1

d and C2
d; medium and dark gray shading, respectively)

and Wisconsin bioenergetics ration estimates (C3
d; line and point) were multiplied by estimated foraging days needed to match

C1
d to generalized von Bertalanffy growth function (VBGF) based estimates of consumption (C4

d; solid line). Note that bioener-
getics based rations (C3

d) represent maximum consumption rates. C5
d (dashed line) represents the specialized VBGF-based 

estimate of annual ration. The vertical dashed line indicates the approximate juvenile breakpoint for each species
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Impacts of climate change on marine ecosystem
production in societies dependent on fisheries
M. Barange1*, G. Merino1,2, J. L. Blanchard3, J. Scholtens4, J. Harle5, E. H. Allison6, J. I. Allen1, J. Holt5

and S. Jennings7,8

Growing human populations and changing dietary preferences
are increasing global demands for fish1, adding pressure to
concerns over fisheries sustainability2. Here we develop and
link models of physical, biological and human responses to
climate change in 67 marine national exclusive economic
zones, which yield approximately 60% of global fish catches,
to project climate change yield impacts in countries with
di�erentdependenciesonmarinefisheries3.Predictedchanges
in fish production indicate increased productivity at high
latitudes and decreased productivity at low/mid latitudes,
with considerable regional variations. With few exceptions,
increases and decreases in fish production potential by 2050
are estimated to be<10% (mean+3.4%) from present yields.
Among the nations showing a high dependency on fisheries3,
climate change is predicted to increase productive potential
in West Africa and decrease it in South and Southeast Asia.
Despite projected human population increases and assuming
that per capita fish consumption rates will be maintained1,
ongoing technological development in theaquaculture industry
suggests that projected global fish demands in 2050 could
be met, thus challenging existing predictions of inevitable
shortfalls in fish supply by the mid-twenty-first century4.
This conclusion, however, is contingent on successful im-
plementation of strategies for sustainable harvesting and
e�ective distribution of wild fish products from nations and
regions with a surplus to those with a deficit. Changes in
management e�ectiveness2 and trade practices5 will remain
the main influence on realized gains or losses in global
fish production.

Marine fisheries provide 80Mt of protein and micronutrient-
rich food for human consumption per year and contribute US$230
billion to the global economy, o�ering livelihood support to 8% of
the world’s population5. With demand for fish products predicted
to increase, e�orts to support food and livelihood security need to
be informed by predictions of changes in fish production and their
societal and economic consequences. Biological predictions based
on ocean–atmosphere general circulation models (OA-GCMs)
have demonstrated that climate change will modify the physical
and chemical properties of the oceans, a�ecting the productivity,
distribution, seasonality and e�ciency of food webs, from primary
producers6 to fish7,8. However, using GCMs to predict fish

production has several uncertainties, in addition to their structural
and natural variability uncertainties9. First, the resolution of GCMs
is too coarse (typically 1�–2�) to capture the processes that dominate
the dynamics of the world’s coastal and shelf regions, such as
coastal upwelling and tidal mixing10, which exhibit significantly
di�erent responses to climate than the open ocean. Directly
addressing the e�ects of these processes is an important challenge
because coastal and shelf regions contribute a quarter of the global
primary production and most global fish production11. Second,
predicting the impacts of climate change on the ecosystem and
fish production remains a challenge, as it depends on the transfer
of energy through complex and often compensatory food chain
processes12. Approaches at present either make strong habitat or
energy transfer assumptions8,13, or focus on predicting impacts on
individual species14.

Herewe directly address these challenges by developing and appl-
ying a highly resolved coupled physical–biological shelf-seas model
to 67 marine national exclusive economic zones (EEZs). The model
was forced using a single GCM (Institute Pierre Simon Laplace
Global Climate Model; IPSL-CM4) under the Intergovernmental
Panel on Climate Change (IPCC) SRES (Special Report on Emis-
sions Scenarios) A1B scenario, providing ten-year mean outputs
for the present day and 2050. These were used to drive a dynamic
size-based food web model to estimate the ecological conseque-
nces of climate change on fish production capacity. Finally, we
evaluate the societal relevance of these results by looking at the depe-
ndency of individual countries on their fisheries sectors in terms
of food and livelihood security, as well as at the expected global
demand for fish products for an increasing human population.

Our results show that in all the shelf regions considered themixed
layer depth temperature (MLDT, the depth to which the density
di�erence from the surface is less than 0.03 kg m�3) is expected
to increase when referenced to the present day. By 2050, predicted
warming of the mixed layer of shelf seas will range from a moderate
0.2 �C in the Irish EEZ to 2.9 �C o� Korea and East China (Figs 1a
and 2a).

Our models predict average increases in net primary production
of shelf seas of about 14%, slightly larger but still consistent with
existing estimates of global primary production change based on
coarse-scale GCMs (ref. 6). Ecosystems in higher (lower) latitudes
will generally experience production increases (decreases; Figs 1b

1Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK, 2AZTI-Tecnalia, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110
Pasaia, Spain. 3Department of Animal and Plant Sciences, University of She�eld, Western Bank, She�eld S10 2TN, UK. 4MARE Centre for Maritime
Research, Amsterdam Institute for Social Science Research, University of Amsterdam, Plantage Muidergracht 14, 1018 Amsterdam, The Netherlands.
5National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, UK. 6School of Marine and Environmental A�airs,
University of Washington, 3707 Brooklyn Avenue Northeast, Seattle, Washington 98105, USA. 7Centre for Environment, Fisheries and Aquaculture Science,
Lowestoft Laboratory, Pakefield Road, Lowestoft NR33 0HT, UK. 8School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
*e-mail: m.barange@pml.ac.uk
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its present state before a bifurcation is reached. Some of the proposed 
early warning indicators of bifurcation have been tested in climate 
models of varying complexity and in palaeoclimate data approaching 
abrupt transitions (Table 1, Figs 3 and 4). "e absolute values of the 
indicators considered (Figs 3 and 4) are a#ected by the frequency of 
sampling; hence it is just any upwards trend that provides an early 
warning signal. "e Kendall tau rank correlation coe$cient is used 
here (insets in Figs 3 and 4) to measure the strength of the tendency of 
an indicator to increase (positive values) or decrease (negative values) 
with time, against the null hypothesis of randomness for a sequence of 
measurements against time60 (value approximately zero).

Model tests. Climate model tests have shown that early warn-
ing methods based on detecting critical slowing down work in 
principle, in simple7,10, intermediate complexity8,9,12 (Fig. 3a) and 
fully three-dimensional (3D)11,12 (Fig. 3b) models. Rising variance 
also provides early warning in intermediate complexity models12 
approaching thresholds (Fig. 3a), but is less clear in a 3D model12 
(Fig. 3b). Existing model tests focus largely on the example of a 
slowly forced collapse of the Atlantic THC, in which freshwater 
input to the North Atlantic Ocean is steadily increased by chang-
ing a forcing parameter. Either imposed white noise (Fig. 3a) or 
internal short-term variability (Fig. 3b) are used to diagnose decay 
rates in the model systems. "e 3D model example (Fig.  3b) is 
most instructive for what may happen in real-world applications, 
as it couples dynamical components with very di#erent internal 
timescales; the atmosphere and ocean. "ere is large interannual 
variability in overturning strength in the model ocean (as there 

is in observational data61), which primarily re%ects coupling to 
the overlying atmosphere. If one inadvertently samples corre-
sponding rapid decay modes that are not pertinent to bifurcation 
detection (for example, by de-trending with a short &ltering band-
width before examining autocorrelation), these actually speed 
up in the example, leading to a ‘missed alarm’12 (Fig. 3b, middle 
panel inset). However, consistent with the short memory of the 
atmosphere, using either a longer &ltering bandwidth or aggre-
gating data to a longer (for example, decadal) timescale is su$-
cient to reveal underlying slowing down in ocean dynamics12. "is 
shows the importance of carefully selecting the parameters for 
statistical analysis.

Palaeorecord tests. Palaeoclimate data tests show mixed but 
encouraging results. Initial tests9 detected critical slowing down dur-
ing the ending of the last ice age in ice-core data from the Greenland 
Ice Sheet Project 2 (GISP2). Subsequent work10 showed increas-
ing autocorrelation in eight palaeoclimate time series’ approach-
ing transitions. However, there are no signs of slowing down or 
increased variability in North Greenland Ice Core Project (NGRIP) 
data approaching individual Dansgaard–Oeschger events during 
the last ice age13. "e glacial Greenland climate can be character-
ized54 by a stable, cold (stadial) climate state and a marginally stable, 
warm (interstadial) state, with the Dansgaard–Oeschger events rep-
resenting unpredictable noise-induced switches between them13,55. 
However, the cold state became progressively more stable, and the 
warm state less stable, as the ice age progressed, until sometime 
before ~25  kyr bp the warm state passed a bifurcation point and 

Table 1 | Early warning indicators of approaching bifurcation points and tests thereof.
Phenomenon Indicator System Data Source Signal  Reference(s)
Critical slowing down Increasing autocorrelation, AR(1) 

coefficient 
Climate 

Ecological

Models
Palaeorecord

Models

+
+
0
+

8, 10, 12, 53
10, 12, 53
12, 13
44

Increasing return time from 
perturbations

Ecological Models
Lab experiments

+
+

39, 40, 45, 51
6, 52

Increasing DFA exponent Climate Models
Palaeorecord

+
+
−

9, 11, 12
9, 12
12

Spectral reddening Climate
Ecological

Models
Model

+
0

7
79

Increasing spatial correlation Ecological Models
Lab experiments

+
+

47
52

Increased variability Increasing variance Climate Models

Palaeorecord

+
0
+

12
12
12

0 13
− 12

Ecological Models + 43–45, 79
Lab experiments + 52

Increasing spatial variance Ecological Model
Data
Lab experiments

+
+
+

48
49
52

Skewed responses Increasing skewness

Increasing spatial skewness

Climate
Ecological

Ecological

Palaeodata
Model
Lab experiments
Model

0
+
+
+

46
44–46
52
48

'+' means indicator increased as expected; '−' means indicator decreased, contrary to expectation; '0' means there was no significant change in the indicator.
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Of course, stochastically driven regime shifts may occur
in systems where bifurcations are also possible, and it may
be difficult to distinguish between the two. Renne et al.
(2013), for example, suggest that ecosystems were under
near-critical stress due to climate changes just prior to the
Chicxulub meteor impact, which resulted in mass extinc-
tion. In such a case, EWS may precede the regime shift even
if it is ultimately triggered by a stochastic event.

Statistical problems in detecting early warning signals

The above cases show that behavior providing EWS before
regime shifts may only be present in certain types of eco-
logical systems (e.g., see the conditions outlined in Scheffer
et al. (2009)). An additional important consideration is
whether these behaviors will be detectable. To be usable as
EWS, system behavior must be detectable well enough in
advance of a regime shift to serve in decision making and
be reliably distinguishable from other patterns.

Ecological data are often sparse, noisy, autocorrelated,
and subject to confounding driving variables, in contrast to
much of the experimental or simulated data used to test
EWS. Under common levels of noise found in field data,
CSD-based EWS often fail (Perretti and Munch 2012).

A wide variety of statistical summary indicators have
been examined as potential detectors of CSD. The most
common are variance and autocorrelation. Others include
skewness (Guttal and Jayaprakash 2008b) and conditional
heteroscedasticity (Seekell et al. 2011). These statistics are
typically calculated on sliding windows of time series data
and tested formally or informally for trends. The rela-
tive power of these tests varies considerably with context;
no indicator has consistently outperformed others (Dakos
et al. 2011b, 2012; Lindegren et al. 2012; Perretti and
Munch 2012). Also, measuring these indicators requires
making sometimes arbitrary calculations. For instance, the
power of lag-1 autocorrelation to detect a regime shift may
be modified by changing methods of data aggregation, de-
trending, changing sliding window length, filtering signal
bandwidth (Lenton et al. 2012). These choices may be
optimized when enough calibration data are available, as
Lenton et al. (2012) were able to do with several sets of
paleoclimate data. However, such calibration may not be
possible with many ecological data sets. Multiple-method
(Lindegren et al. 2012) and composite indices (Drake and
Griffen 2010) have been proposed, but their power relative
to other indicators is unknown.

Another approach to detecting CSD has been fitting time
series data to models. Two approaches have been used for
these model-based methods. First, models may be used to
calculate summary statistics related to CSD, such as eigen-
values (Lade and Gross 2012) or diffusion terms in jump-

diffusion models (Carpenter 2011; Brock and Carpenter
2012). These statistics are then examined for trends in the
same fashion as the summary statistics above. Alternatively,
models representing both deteriorating and stable condi-
tions may be fit to the data and in order to determine which
is more likely (Dakos et al. 2012). Boettiger and Hastings
(2012b) found that likelihood ratio tests were more power-
ful than trend-based summary statistic tests across several
real and simulated ecological data sets. This approach is
also more robust than summary statistic methods to spurious
correlations that arise when collapses are driven by purely
stochastic events (Boettiger and Hastings 2012a).

Care is required in the criteria used to ju dge the power
of warning signal methods. The trade-off between false neg-
atives and false positives is a matter of not just statistical
but also economic efficiency. For instance, a large num-
ber of false positives may be acceptable if they reduce the
probability of a false warning that would result in an oth-
erwise avoidable catastrophic regime shift, and the costs of
failing to detect such a shift exceed that of the false posi-
tives. Boettiger and Hastings (2012a, b) suggest the use of
receiver-operating characteristic (ROC) curves to describe
the performance of various EWS. ROC curves (Fig. 5) rep-
resent the false-positive rate at any true positive rate. The
area under the curve (AUC) is a useful metric of over-
all performance. AUC will be one if the signal is perfect
and 0.5 if the signal performs no better than random. The

Fig. 5 Receiver-operating characteristic (ROC) curves illustrate the
trade-off between false-positive and true-positive detection rates of an
early warning signal. Perfect warning signals (solid curve) would iden-
tify all thresholds while generating no false positives, while very poor
signals would have no ability to distinguish false from true signals
(dotted line). In reality, warning signals have a trade-off between the
two, which is described by a curve (dotted line) or summarized by the
area under the ROC curve
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UNDERSTANDING AND PREDICTING ECOLOGICAL DYNAMICS:
ARE MAJOR SURPRISES INEVITABLE?
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Abstract. Ecological surprises, substantial and unanticipated changes in the abundance of
one or more species that result from previously unsuspected processes, are a common outcome
of both experiments and observations in community and population ecology. Here, we give
examples of such surprises along with the results of a survey of well-established field ecologists,
most of whom have encountered one or more surprises over the course of their careers. Truly
surprising results are common enough to require their consideration in any reasonable effort to
characterize nature and manage natural resources. We classify surprises as dynamic-, pattern-,
or intervention-based, and we speculate on the common processes that cause ecological systems
to so often surprise us. A long-standing and still growing concern in the ecological literature is
how best to make predictions of future population and community dynamics. Although most
work on this subject involves statistical aspects of data analysis and modeling, the frequency
and nature of ecological surprises imply that uncertainty cannot be easily tamed through
improved analytical procedures, and that prudent management of both exploited and
conserved communities will require precautionary and adaptive management approaches.

Key words: adaptive management; ecological dynamics; food webs; prediction; stochasticity; surprises;
uncertainty.

INTRODUCTION

Surprising, or at least unanticipated, outcomes are the
norm in many areas of science. If we did not routinely
face surprising results, we would have little reason to
continue formulating, rejecting, and recasting our views
of nature. Therefore, it is not surprising, so to speak,
that we frequently face outcomes of experiments and
observations that leave us scratching our heads,
wondering how we could have been so wrong in our
expectations. Still, while a lack of perfect predictive
power is to be expected, it is not so obvious why

ecologists and conservation biologists frequently face
results that directly contradict their general expecta-
tions. Although such results provide fertile ground for
further scientific research, they are less welcome in the
context of resource management, where being at least
approximately correct in our predictions is the most
basic premise upon which decisions are made.

Over the last decade, there has been increasing
recognition that ecological predictions must be ad-
vanced with clear statements of their uncertainty. How
best to choose the model or models for predicting
population and community dynamics, and how best to
then define and present the uncertainties in these
predictions, have been active and contentious topics in
statistical and ecological research (e.g., Hilborn and
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Forage fish population dynamics 
are inherently noisy… 

of 15% of average biomass. There was no discernable trend in
probability of collapse by decade (from the 1950s to the 2000s; P =
0.47), and there was no difference in the probability of a stock
collapse among five main regions (North Atlantic, South Atlantic,
North Pacific, South Pacific, and Mediterranean Sea; P = 0.79) or
finer oceanic regions (SI Methods). We conducted multiple sen-
sitivity analyses to determine whether results were robust to our
operational definition of stock collapse. Although specific results
varied by alternative method, none revealed systematic trends
through time or among regions in collapse frequency (Methods
and SI Methods). Collectively, these results indicate that severe
collapses of forage fish populations have been relatively common
and that no particular time period or region is unambiguously
more prone to collapses than others.
We examined stock collapses in more detail to identify com-

mon patterns of fishing rate (fraction of fish biomass caught) and
natural stock productivity (new biomass produced), finding that
a combination of sustained high fishing rate, rapid decline in
natural productivity, and delayed response of the fishery to low
productivity contributed to population collapses. For this anal-
ysis, we only used populations for which we could estimate
fishing rate and natural population productivity, which was a
subset (n = 15) of 27 populations that collapsed. For these col-
lapsed populations, periods preceding collapses were associated
with exceptionally high fishing rates (50–200% higher than av-
erage annual fishing rates), with one-third of the populations
experiencing fishing rates that exceeded 0.75 y−1 (Fig. 2). High
fishing rates continued until after stock collapse, when fishing
was eventually reduced to lower levels. We compared fishing
rates with natural stock productivity, which is the rate of change
that the population would have experienced in the absence of
fishing, and therefore, it provides a signal for the integrated ef-
fects of environmental conditions and population biomass (the

latter of which is minimal) (Fig. S1). Average population pro-
ductivity declined sharply beginning 2–3 y before collapse,
plummeting to −0.02 y−1 (expressed as the fraction of average
population biomass) immediately before collapse and rebound-
ing shortly thereafter. For stocks that did not collapse (defined as
minimum biomass > 0.3 to clearly separate collapsed and non-
collapsed stocks; n = 19), we observed different patterns of
fishing and natural productivity preceding the year of minimum
population biomass. There was little trend in fishing mortality
rate among these populations, and overall fishing rates were
lower than those documented in collapsed stocks (Fig. 2). As was
the case for collapsed stocks, natural population productivity
declined before the year of minimum biomass (Fig. 2).
We conducted two additional analyses of the populations

where we had time series of population productivity and fishing
rates to quantify the role of fishing in stock collapses. First, we
asked whether mean fishing rates and mean natural population
productivity differed between collapsed and noncollapsed pop-
ulations. We used the mean fishing and productivity rates during
2 y before collapse or minimum biomass, because this time
interval seemed to be a key period when fishing was sharply
greater than natural productivity and could, thereby, contribute
to collapses (Fig. 2). The mean fishing rate during these periods
was significantly different (P = 0.014) between collapsed and
noncollapsed populations, with mean rates of 0.44 and 0.26 y−1
in collapsed and noncollapsed populations, respectively. The
differences in mean natural productivities, 0.022 and 0.15 y−1 for
collapsed and noncollapsed populations, respectively, were not
significantly different (P = 0.12), largely because of high variance
across stocks. Second, we used time series of natural population
productivity of collapsed stocks to quantify the likely minimum
biomass and collapse frequency had there been no fishing for 2 y
before collapse using standard population modeling techniques.

Tsushima Strait Pilchard
CV=1.48; β = 2.5

Chub Mackerel P. Coast
CV=1.28; β = 2

Norwegian Spring Spawn Herring
CV=0.7; β = 2.2

0

3

Peru Anchovetta
CV=0.54; β = 1.9

Queen Charlotte Island Herring
CV=0.82; β = 0.5

Atlantic Menhaden
CV=0.38; β = 0.4

50 years

Fig. 1. Examples of forage fish biomass trends showing magnitudes and characteristics of population fluctuations. Dotted lines denote the long-term mean
biomass for each stock, and horizontal and vertical bars show time and biomass scale (expressed as a ratio of annual biomass to mean biomass), respectively.
Time series are not aligned according to actual start and end date; β is the Fourier spectral scaling exponent, where variance scales with frequency as f −β. Five
stocks show the range of population fluctuations from extreme long- (Tsushima Strait Pilchard) to short-term (Atlantic Menhaden) variability. Across all 40
stocks for which there were sufficiently long biomass time series to estimate β, the average coefficient of variation (CV) and β were 0.5 and 1.9, respectively.
For comparison, a common decadal scale environmental index, the Pacific Decadal Oscillation (33), has β near 1.0.
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…and subject to collapse, even 
in the absence of fishing 

always limits harvest rates). Therefore, harvest rate combinations
that avoid fishery closures more than 10% of the time would always
be consistent with those that satisfy this choice of Becosystem (Fig. 6b).

Discussion
Ecologists and fisheries scientists have long recognized that changes
in the densities of strongly interacting species have disproportio-
nately large influences on the communities and ecosystems of which
they are a part28,29. In the marine realm, it is increasingly apparent
that forage fish can play this key role and that fisheries targeting them
therefore require special consideration22,27. But awareness of the big
impact these little fishes can have in general provides little guidance
on how different types of human activities and natural envir-
onmental variation combine to modify their dynamics in more spe-
cific and management-relevant contexts. Developing such an
understanding is a necessary step toward providing conservationists

and fisheries managers with the counsel they need to make informed
decisions about the sustainability and impacts of their actions.

This study adds to a growing body of work showing that stage-
specific exploitation can have disproportionately strong or weak
effects on population dynamics, depending on the point in the life
history at which it occurs8,30,31. It also underscores the potential for
conflict among user groups that target different life stages.
Specifically, our model predicts that egg and adult fishing have none-
quivalent effects on herring population dynamics and fisheries
yields. Harvest of adult herring reduced mean spawning biomass,
and increased variability in herring spawning biomass, much more
so than harvesting eggs (Fig. 2). As a consequence, increasing harvest
of adult herring caused precipitous declines in egg catch, whereas
increasing harvest of herring eggs produced much slower declines in
adult catch (Fig. 3a, 3b). This asymmetry arises in part because of the
order in which harvest occurs - reproductively mature adult fish

Figure 1 | Examples of simulated herring time-series. Three simulated time series from the age-structured model: (a) simulations with no fishing (b)
simulations with moderate levels of herring harvest. Both (a) and (b) were conducted with CV 5 0.8 and r 5 0.5. Panels (c) and (d) show simulation in the
absence of fishing but contrasting levels of temporal autocorrelation in recruitment: (c) simulations with no temporal autocorrelation in recruitment r 5
0.0, (d) three simulations with strong positive autocorrelation r 5 0.7. Both (c) and (d) were conducted with CV 5 0.8. In all panels, grey shaded area
indicates biomass levels at which the fishery is closed.

www.nature.com/scientificreports
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These collapses matter to 
dependent predators 

predator populations is an objective (2, 11, 12),
will remain controversial until these relationships
are more fully quantified.

To improve our understanding of the effects
of LTL fisheries on marine ecosystems, more
information on predator-prey relationships across
a range of species and ecosystems is required (6).
Seabirds are conspicuous members of marine
ecosystems globally. Many aspects of seabird
ecology have been measured consistently for dec-
ades, encompassing ecosystem change at mul-
tiple scales (13). Substantial long-term data sets
on seabird breeding success have been compiled
for many taxa in several marine ecosystems
around the world (14–16), but for relatively few
has independent information on prey availability
been obtained concurrently. For those where prey
data are available, temporal covariance in pred-
ators and their prey suggests that seabirds can be
used as indicators of forage fish population
fluctuations (7, 16, 17). Here, we used data
collected contemporaneously over multiple dec-
ades from seabirds and forage fish to test the
hypothesis that the form of the numerical
response between seabird breeding success and
forage fish abundance is consistent across species
and ecosystems. We used data from seabird
species that have strong dietary dependencies on
forage fish prey and where the time series for
both the predator and the prey have high spatial
and temporal congruence. We compiled data from
19 time series covering seven marine ecosys-
tems, nine sites, and 14 seabird species and their
major prey (Fig. 1 and table S1). The data set in-
cluded 438 data points spanning 15 to 47 colony-
years per breeding site (table S1). The abundance
of principal prey for each seabird species was
estimated independently of the data collected from
the birds, usually as part of population assess-
ments conducted in support of fisheries manage-
ment (table S1).

To examine empirical relationships between
seabird breeding success and prey abundance, we
used nonparametric statistical methods that fa-
cilitate nonlinear modeling by making no a priori
assumptions about the form of the relationships
(generalized additive models, or GAMs). Initial-
ly, each time series (seabird breeding success and
prey abundance) was normalized by expressing
the measurements as the number of standard de-
viations from the mean; this enables robust com-
parisons across species and ecosystems. Once
the numerical relationship was established, we
used a change-point analysis (sequential t tests
that find the most likely point at which the slope
of breeding success changes in relation to prey
abundance) to identify thresholds within non-
linear relationships (18) (Fig. 2A). A bootstrap
analysis was used to calculate confidence inter-
vals of the threshold, and the variance in seabird
breeding success was calculated for each prey
abundance class. Last, a selection of a priori
parametric models ranging from linear, sigmoid,
asymptotic, to hierarchical (table S2) was fitted to
the general relationship. The most parsimonious

model was then used to fit the relationship be-
tween seabird breeding success and forage fish
population size for each ecosystem (pooling all
species) and each seabird species (pooling all
ecosystems).

Seabird breeding success showed a nonlinear
response to changes in prey abundance (Fig. 2A).
The threshold at which breeding success began to
decline from the asymptote was not significantly
different from the long-term mean of prey abun-
dance (range –0.30 and +0.13, standard deviation
of the mean, Fig. 2A). The threshold was 34.6%
(95% confidence interval 31 to 39%), or approx-
imately one-third of the maximum observed prey
abundance. The coefficient of variation between
the different thresholds among species and eco-
systems was 28% (table S1). All time series were
of sufficient duration to identify the threshold
(detection is possible after 13 years of observation,
fig. S1) and the maximum biomass (detection
is possible after 11 years, fig. S2). Variance in
breeding success increased significantly (F test,
P < 10−4) below the threshold of prey abun-
dance (Fig. 2B). Fitting parametric models to
individual responses showed a similar inflection
point and similar asymptotic values across eco-
systems and species (Figs. 2, C and D, and 3),
indicating that the functional form was a general
feature of the seabird–forage fish relationship.

The asymptotic form of the relationship
between seabird breeding success and forage

fish abundance has been reported previously
(15, 16, 19–24), but the common scaling across
species and ecosystems and the consistency of
threshold values are new observations. The glob-
al pattern shows a threshold below which the
numerical response declines strongly as food
abundance decreases and above which it reaches
a plateau and does not change even as food abun-
dance increases. This pattern is apparently ro-
bust to the varying life-history strategies, habitat
preferences, and population sizes of the seabird
species considered. Nonetheless, we acknowl-
edge that a range of factors may interact to
weaken or possibly accentuate the relationship
between seabird breeding performance and prey
species abundance. Alternative drivers of change
in breeding success include changes in habitat
characteristics or predation pressures, or com-
plex intercolony dynamics. Predators may also
show more or less capacity to switch to alterna-
tive prey items, which may buffer productivity
against declines in any single prey species (25).

Periods of consistently high or low breeding
success, or occasional complete breeding fail-
ures, are normal in seabirds, and most species are
adapted to fleeting anomalous environmental
conditions. However, chronic food scarcity, as
potentially defined by prey abundance below the
threshold described here for seabirds, will com-
promise long-term breeding success, and this
may affect the trajectory of their populations.

Fig. 1. Map of the distribution of seabird and prey species considered in our analysis.

23 DECEMBER 2011 VOL 334 SCIENCE www.sciencemag.org1704
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Fig. 2. (A) Relationship between normalized annual
breeding success of seabirds and normalized prey
abundance. Each data point from all the time series
was plotted with the predictions of a generalized
additive model (GAM) (solid line). The gray area
represents the 95% confidence interval of the fitted
GAM. The threshold in the nonlinear relationship
(black solid vertical line) and its 95% confidence
interval (black dashed vertical lines) were detected
from a change-point analysis. (B) Change in
variance across the range of normalized food
abundance ranging from –1.5 to 2 standard
deviations in eight classes. Variance below the
threshold was 1.8 times higher than above it. (C
and D) Similar relationships were present when
data were pooled (C) for species within ecosystems
and (D) for species pooled among ecosystems using
the best-fitting asymptotic model (table S2). The
Arctic Tern (not shown) model fit was not significant
(table S1). The colors in (A) and (C) represent the
data set for each ecosystem and in (D) for each
seabird species.
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Fig. 3. Relationship between normalized annual breeding success of pooled seabird species and normalized prey abundance for the seven different
ecosystems using the most parsimonious asymptotic model (table S2).
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conservation goals; the values we provide here are intended to be
illustrative, not definitive.

Our work is meant to strategically explore the consequences of
different harvest regimes in the face of varying environmental con-
ditions. The uncertainties and simplifications inherent in our mod-
eling framework make it inappropriate for tactical use. In particular,
we based our simulations on reasonable values of stochastic recruit-
ment that bracket current uncertainty about recruitment variability.
However, as Fig. 5 illustrates, small differences in assumed recruit-
ment variability can radically affect the fisheries risk profiles (also see
Figs. A1–A4). Beyond recruitment, our model does not incorporate
measurement uncertainty– fish biomass and catch are assumed to be
precisely known. While the simulation and visualization methods
used in this paper are robust to the inclusion of measurement error,
the process of measuring fish biomass and catch adds a further layer
of uncertainty to the management of fisheries39.

Our simulations show how natural environmental variation can
cause herring fisheries closures in the absence of harvest (e.g. Fig. 1a),
contrasting with40 who use archeological data to assert hyperstability
in herring populations. Our results are consistent with basic popu-
lation dynamic principles and show how environmental variation, in

the absence of human influence, affects population persistence41.
Thus our model agrees with other authors in showing that it is
impossible to accurately generate harvest guidelines without
accounting for changes in the environment in which a stock occurs42,
and reinforces the challenge faced by fisheries managers to make
good decisions under uncertainty about current environmental
conditions.

At its core, ecosystem management must confront conflict. In this
case, we explore the conflicts inherent in fisheries on different life
history stages, and conflicts intrinsic to forage fishes that are both
important fishery targets and ecosystem components. Our work
highlights that safe operating spaces exist that will allow the main-
tenance of stock biomass at levels that facilitate the persistence of
forage fish predators and forage fish fisheries. Importantly, however,
our work also emphasizes the fact that many trade-offs are non-
linear, as is illustrated in the asymmetry in the trade-off between
the harvest of herring eggs and adults. We contend that an analysis
of risk- whether of a fishery closure or to another ecosystem com-
ponent (e.g. mammals or birds)- provides a transparent and straight-
forward decision support tool to address such non-linearities. Thus,
this tool can highlight opportunities for collaboration and coopera-

Figure 5 | Risk plots for two probability of fisheries closure under harvesting scenarios. Shaded areas and isoclines indicate levels of harvest that
maintain below a specified risk tolerance for three different levels of recruitment variability (CV 5 0.6, 0.8 or 1.0) and r 5 0.5. (a) Isoclines for 25%
probability of fishery closure. (b) Isoclines for 10% probability of fishery closure. Note that that there are no scenarios with CV 5 1.0 that result in ,10%
probability of fishery closure in panel (b).

Figure 6 | Risk plot comparing the probability of fisheries closure and Becosystem for all combinations of egg and adult harvest. Shaded areas indicate
harvest levels that satisfy the risk of fishery closure (pink; ,25% probability in closure in left panel, ,10% probability of closure in right panel) or average
herring biomass is more than Becosystem 5 8,000 mt (blue in both panels). Harvest rates satisfying both criteria are shown in purple. Both plots show results
for recruitment variability of CV 5 0.8 and r 5 0.5.

www.nature.com/scientificreports
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Trophic sequences of community dis-assembly 

lead to predictable ecosystem changes!
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The loss of apex consumers reduces food chain
length, thus altering the intensity of herbivory and
the abundance and composition of plants in large-
ly predictable ways (10). The transitions in ecosys-
tems that characterize such changes are often
abrupt, are sometimes difficult to reverse, and com-
monly lead to radically different patterns and path-
ways of energy andmaterial flux and sequestration.

The Cryptic Nature of Trophic Downgrading
The omnipresence of top-down control in ecosys-
tems is not widely appreciated because several of
its key components are difficult to observe. The
main reason for this is that species interactions,
which are invisible under static or equilibrial
conditions, must be perturbed if one is to witness
and describe them. Even with such perturbations,
responses to the loss or addition of a species may
require years or decades to become evident be-
cause of the long generation times of some spe-
cies. Adding to these difficulties is the fact that
populations of large apex consumers have long
been reduced or extirpated from much of the
world. The irony of this latter situation is that we
often cannot unequivocally see the effects of large
apex consumers until after they have been lost
from an ecosystem, at which point the capacity to
restore top-down control has also been lost. An-
other difficulty is that many of the processes asso-
ciated with trophic downgrading occur on scales
of tens to thousands of square kilometers, whereas
most empirical studies of species interactions
have been done on small or weakly motile species

Sea otter

Consumer

Bass

Bass

Large reef fish

Seastar 

Absent

A

B

C

D

E

Present

Fig. 1. Landscape-level effects of trophic cascades
from five selected freshwater and marine ecosys-
tems. (A) Shallow seafloor community at Amchitka
Island (Aleutian archipelago) before (1971; photo
credit: P. K. Dayton) and after (2009) the collapse
of sea otter populations. Sea otters enhance kelp
abundance (right) by limiting herbivorous sea ur-
chins (left) (20). (B) A plot in the rocky intertidal
zone of central California before (September 2001,
right) and after (August 2003, left) seastar (Pisaster
ochraceous) exclusion. Pisaster increases species
diversity by preventing competitive dominance
of mussels. [Photo credits: D. Hart] (C) Long Lake
(Michigan) with largemouth bass present (right)
and experimentally removed (left). Bass indirectly
reduce phytoplankton (thereby increasing water
clarity) by limiting smaller zooplanktivorous fishes,
thus causing zooplankton to increase and phyto-
plankton to decline (26). (D) Coral reef ecosystems
of uninhabited Jarvis Island (right, unfished) and
neighboring Kiritimati Island (left, with an active
reef fishery). Fishing alters the patterns of predation
and herbivory, leading to shifted benthic dynamics,
with the competitive advantage of reef-building
corals and coralline algae diminished in concert
with removal of large fish (66). (E) Pools in Brier
Creek, a prairie margin stream in south-central Okla-
homa with (right) and lacking (left) largemouth and
spotted bass. The predatory bass extirpate herbiv-
orous minnows, promoting the growth of benthic
algae (67).
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Trophic Downgrading of Planet Earth
James A. Estes,1* John Terborgh,2 Justin S. Brashares,3 Mary E. Power,4 Joel Berger,5
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Risto Virtanen,22 David A. Wardle23

Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years.
The loss of these animals may be humankind’s most pervasive influence on nature. Although such
losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading
effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This
empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also
highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of
disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings
emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading
on process, function, and resilience in global ecosystems.

Thehistory of life on Earth is punc-
tuated by several mass extinction
events (2), during which global

biological diversity was sharply reduced.
These events were followed by novel
changes in the evolution of surviving
species and the structure and function of
their ecosystems. Our planet is presently
in the early to middle stages of a sixth
mass extinction (3), which, like those be-
fore it, will separate evolutionarywinners
from losers. However, this event differs
from those that preceded it in two fun-
damental ways: (i) Modern extinctions are largely
being caused by a single species, Homo sapiens,
and (ii) from its onset in the late Pleistocene, the
sixth mass extinction has been characterized by
the loss of larger-bodied animals in general and of
apex consumers in particular (4, 5).

The loss of apex consumers is arguably human-
kind’s most pervasive influence on the natural
world. This is true in part because it has occurred
globally and in part because extinctions are by their
very nature perpetual, whereas most other envi-
ronmental impacts are potentially reversible on
decadal to millenial time scales. Recent research
suggests that the disappearance of these animals
reverberates further than previously anticipated
(6–8), with far-reaching effects on processes as
diverse as the dynamics of disease; fire; carbon
sequestration; invasive species; and biogeochem-
ical exchanges among Earth’s soil, water, and
atmosphere.

Here, we review contemporary findings on the
consequences of removing large apex consumers
from nature—a process we refer to as trophic down-
grading. Specifically, we highlight the ecological
theory that predicts trophic downgrading, consider
why these effects have been difficult to observe, and
summarize the key empirical evidence for trophic
downgrading, much of which has appeared in the
literature since the beginning of the 21st century. In

so doing,we demonstrate the influence of predation
and herbivory across global ecosystems and bring
to light the far-reaching impacts of trophic down-
grading on the structure and dynamics of these
systems. These findings suggest that trophic down-
grading acts additively and synergistically with other
anthropogenic impacts on nature, such as climate
and land use change, habitat loss, and pollution.

Foundations in Theory
Ecological theory has long predicted that major
shifts in ecosystems can follow changes in the
abundance and distribution of apex consumers
(9, 10). Three key elements of that theory provide
the foundation for interpreting recurrent patterns
suggestive of trophic downgrading in more re-
cent empirical work across ecosystems. First is the
idea that an ecosystem may be shaped by apex
consumers, which dates back more than a century
but was popularized in the 1960s (9). This concept
was later formalized as the dynamic notion of
“trophic cascades,” broadly defined as the propa-
gation of impacts by consumers on their prey down-
ward through food webs (11). Theoretical work
on factors that control ecosystem state resulted
in a second key advance, the recognition of “alter-
native stable states.” The topology of ecosystem
dynamics is now understood to be nonlinear and
convoluted, resulting in distinct basins of attraction.

Alternative stable states occur when perturbations
of sufficient magnitude and direction push ecosys-
tems from one basin of attraction to another (12).
Tipping points (also known as thresholds or break-
points), aroundwhich abrupt changes in ecosystem
structure and function (a.k.a. phase shifts) occur,
often characterize transitions between alternative
stable states. Ecosystem phase shifts can also dis-
play hysteresis, a phenomenon in which the loca-
tions of tipping points between states differ with
the directionality of change (13). A third key con-
cept, connectivity, holds that ecosystems are built
around interaction webs within which every spe-
cies potentially can influence many other species.
Such interactions, which include both biological
processes (e.g., predation, competition, and mutu-
alism) and physicochemical processes (e.g., the
nourishing or limiting influences of water, temper-
ature, and nutrients), link species together at an
array of spatial scales (from millimeters to thou-
sands of kilometers) in a highly complex network.

Taken together, these relatively simple concepts
set the stage for the idea of trophic downgrading.
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Management and conservation in a 
predictably surprising ocean 

3 vignettes 
1. The value of information in a world with tipping 

points 
2. Robust management in a stochastic, threshold-

constrained world 
3. Strategic recovery once tipping points are 

crossed 
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Anticipating Critical Transitions
Marten Scheffer,1,2* Stephen R. Carpenter,3 Timothy M. Lenton,4 Jordi Bascompte,5

William Brock,6 Vasilis Dakos,1,5 Johan van de Koppel,7,8 Ingrid A. van de Leemput,1 Simon A. Levin,9

Egbert H. van Nes,1 Mercedes Pascual,10,11 John Vandermeer10

Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities
for positive change. Our capacity to navigate such risks and opportunities can be boosted by
combining emerging insights from two unconnected fields of research. One line of work is
revealing fundamental architectural features that may cause ecological networks, financial
markets, and other complex systems to have tipping points. Another field of research is uncovering
generic empirical indicators of the proximity to such critical thresholds. Although sudden
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these
emerging fields offers new approaches for anticipating critical transitions.

About 12,000 years ago, the Earth sud-
denly shifted from a long, harsh glacial
episode into the benign and stable Hol-

ocene climate that allowed human civilization to
develop. On smaller and faster scales, ecosystems
occasionally flip to contrasting states. Unlike grad-
ual trends, such sharp shifts are largely unpre-
dictable (1–3). Nonetheless, science is now carving
into this realm of unpredictability in fundamental
ways. Although the complexity of systems such
as societies and ecological networks prohibits ac-
curate mechanistic modeling, certain features turn
out to be generic markers of the fragility that may
typically precede a large class of abrupt changes.
Two distinct approaches have led to these in-
sights. On the one hand, analyses across networks
and other systems with many components have
revealed that particular aspects of their structure
determine whether they are likely to have critical
thresholds where they may change abruptly; on
the other hand, recent findings suggest that cer-
tain generic indicators may be used to detect if a
system is close to such a “tipping point.”We high-
light key findings but also challenges in these

emerging research areas and discuss how excit-
ing opportunities arise from the combination of
these so far disconnected fields of work.

The Architecture of Fragility
Sharp regime shifts that punctuate the usual fluc-
tuations around trends in ecosystems or societies
may often be simply the result of an unpredict-
able external shock. However, another possibility
is that such a shift represents a so-called critical
transition (3, 4). The likelihood of such tran-
sitions may gradually increase as a system ap-
proaches a “tipping point” [i.e., a catastrophic
bifurcation (5)], where a minor trigger can invoke
a self-propagating shift to a contrasting state. One
of the big questions in complex systems science
is what causes some systems to have such tipping

points. The basic ingredient for a tipping point
is a positive feedback that, once a critical point
is passed, propels change toward an alternative
state (6). Although this principle is well under-
stood for simple isolated systems, it is more chal-
lenging to fathom how heterogeneous structurally
complex systems such as networks of species,
habitats, or societal structures might respond to
changing conditions and perturbations. A broad
range of studies suggests that two major features
are crucial for the overall response of such sys-
tems (7): (i) the heterogeneity of the components
and (ii) their connectivity (Fig. 1). How these
properties affect the stability depends on the na-
ture of the interactions in the network.

Domino effects. One broad class of networks
includes those where units (or “nodes”) can flip
between alternative stable states and where the
probability of being in one state is promoted by
having neighbors in that state. Onemay think, for
instance, of networks of populations (extinct or
not), or ecosystems (with alternative stable states),
or banks (solvent or not). In such networks, het-
erogeneity in the response of individual nodes
and a low level of connectivity may cause the net-
work as a whole to change gradually—rather than
abruptly—in response to environmental change.
This is because the relatively isolated and differ-
ent nodes will each shift at another level of an en-
vironmental driver (8). By contrast, homogeneity
(nodes beingmore similar) and a highly connected
network may provide resistance to change until a
threshold for a systemic critical transition is reached
where all nodes shift in synchrony (8, 9).

This situation implies a trade-off between lo-
cal and systemic resilience. Strong connectivity
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Fig. 1. The connectivity and homogeneity of the units affect the way in which distributed systems with
local alternative states respond to changing conditions. Networks in which the components differ (are
heterogeneous) and where incomplete connectivity causes modularity tend to have adaptive capacity in
that they adjust gradually to change. By contrast, in highly connected networks, local losses tend to be
“repaired” by subsidiary inputs from linked units until at a critical stress level the system collapses. The
particular structure of connections also has important consequences for the robustness of networks,
depending on the kind of interactions between the nodes of the network.

19 OCTOBER 2012 VOL 338 SCIENCE www.sciencemag.org344

CORRECTED 23 NOVEMBER 2012; SEE LAST PAGE

 o
n 

Ap
ril

 8
, 2

01
3

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fro

m
 

Scheffer et al. 2012 
 
 
 
 
 
 
 

Also see Levin 2001  
“Immune systems  

as ecosystems” 



Fisheries	
  and	
  beyond:	
  	
  
a	
  hierarchy	
  of	
  @pping	
  points	
  

Selkoe	
  et	
  al.	
  in	
  press	
  



Take-­‐home	
  messages	
  
1.  Tipping	
  points	
  are	
  common,	
  but	
  will	
  be	
  difficult	
  to	
  

predict.	
  

2.  Develop	
  a	
  variety	
  of	
  biological	
  models,	
  including	
  
those	
  that	
  are	
  mechanis@c,	
  spa@al,	
  and	
  inherently	
  
nonlinear.	
  

3.  Design	
  ecosystem-­‐based	
  management	
  approaches	
  
robust	
  to	
  a	
  range	
  of	
  poten@al	
  futures.	
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           A 
great deal of research to inform envi-

ronmental conservation and manage-

ment takes a predict-and-prescribe 

strategy in which improving forecasts 

about future states of ecosystems is 

the primary goal. But sufficiently thor-

ough understanding of ecosystems needed 

to reduce deep uncertainties is probably not 

achievable, seriously limiting the potential 

effectiveness of the predict-and-prescribe 

approach. Instead, research should integrate 

more closely with policy development to 

identify the range of alternative plausible fu-

tures and develop strategies that are robust 

across these scenarios and responsive to un-

predictable ecosystem dynamics.

Calls for improving forecasts of future 

ecosystem states are common [e.g., ( 1)]. It 

is often assumed that poor performance of 

forecasting models ( 2) derives from weak 

understanding of ecological complexity and 

that developing richer mechanistic appre-

ciation of ecological interactions 

will improve forecasts ( 3). There 

is also belief that statistical 

down-scaling of global climate models will 

improve the accuracy of coupled climate-

ecosystem models [e.g., ( 4)]. The utility of 

this information for improving forecasts of 

ecosystems is likely small; it is most useful 

for explaining observed ecological dynamics 

post hoc. The primary values of ecosystem 

models are as heuristic tools for communica-

tion and for developing scenarios to express 

uncertainties and test policies; reliable fore-

casts will remain elusive.

Scenario planning is used in many disci-

plines to assist policy development in situa-

tions with deep and irreducible uncertainties 

( 5– 7). A range of information sources, which 

can include models, is used to develop alter-

native plausible trajectories of ecosystems; 

uncertainties about the future are repre-

sented by the range of conditions captured 

by the ensemble of scenarios. In contrast, 

forecasts narrowly limit uncertainties to 

those associated with a single potential 

outcome that is assumed to be predictable; 

policy developed under this premise will 

prepare us poorly for the unpredictable ( 7).

LIMITS OF MODELS. Ecosystems are orga-

nized around a seemingly infinite number of 

biological, chemical, and physical processes 

that play out across enormous ranges of 

space and time scales ( 8). Feedback mecha-

nisms provide stability such that ecosystems 

appear stable during some time frames but 

can abruptly shift to express new structures 

in others ( 9). Our abilities to make observa-

tions are limited to a small range of space 

and time scales ( 8), limiting our capacity for 

understanding ecosystems and forecasting 

how they will respond to local and global 

change. Thus, environmental management 

will always operate in a realm where uncer-

tainties dominate ( 10). Although more de-

tailed knowledge about ecological processes 

will certainly be produced, reliable forecasts 

will likely accumulate much slower than will 

be useful for contributing to effective policy 

for sustainability or conservation, and eco-

systems will likely change faster than knowl-

edge accumulates.

A wide range of modeling approaches is 

used to explore and forecast ecosystem dy-

namics. However, models are prone to er-

rors that can mislead policy if not treated 

with appropriate skepticism ( 11). For ex-

ample, in statistical models, historical time 

series are often compared to quantify cause-

and-effect relationships between resources 

and environmental variables. Without con-

trolled manipulations and appropriate ref-

erence systems, such comparisons can lead 

to false conclusions, based on spurious 

correlations, about cause-and-effect rela-

tionships. For example, a reanalysis of 47 

previously published relationships between 

environmental variation and recruitment in 

marine fish—after including an additional 

decade of new data—revealed that only one 

of the previous statistically determined rela-

tionships was still used in management be-

cause the initial correlations failed to persist 

through time ( 12).

Nonstationarity in ecosystem relation-

ships (i.e., evolution of parameters that 

quantify them) adds substantial uncertainty 

to models, even if statistical relationships are 

based on real interactions in ecosystems. For 

example, changing climate and land-use are 

fundamentally changing the statistical rela-

tionships (e.g., between precipitation and 

river flow) that provide the foundation for 

water resource planning ( 13). Retrospective 

analyses of relationships between interacting 

variables are often used as the basis for fore-

casting tools. However, in ecological models, 

statistical parsimony often selects retrospec-

tive models that have more mechanistic de-

tail than can be supported when evaluating 

their forecast performance; the best forecast 

models are typically mechanism-free, relying 

on emergent statistical properties of data to 

make short-term projections ( 2,  14).

It is typical to validate or verify a nu-

merical model by assessing its ability to ac-

curately simulate observed changes in an 

ecosystem. However, in even modestly com-

plicated models, simulations can recapture 

observed dynamics, but for entirely wrong 

mechanistic reasons ( 11,  15). Thus, current 

approaches to verification and validation 

of ecosystem models likely produce overly 

optimistic impressions of the reliability of 

forecasts underlying management and con-

servation prescriptions.

Prediction, precaution, and 

policy under global change

By Daniel E. Schindler * and Ray Hilborn   

Emphasize robustness, monitoring, and flexibility
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Missed alarms. Missed alarms can occur if abrupt transitions 
happen without underlying bifurcation (for example, noise-
induced transitions13), but they can also occur even when bifurca-
tion is approaching, for several reasons. First, to achieve an early 
warning, the time it takes to !nd out proximity to a threshold 
must be shorter than the time in which noise would be expected to 
cause a system to change state (the ‘mean !rst exit time’7). Hence 
where internal variability in a system is high, it may exit its present 
state well before a bifurcation point is reached. "e noise level can 
be taken account of, and early warning estimates adjusted accord-
ingly53. However, in the worst case, a high noise level could pre-
vent the detection of any early warning signals. Second, existing 
tests of bifurcation early warning (Table 1) are generally based on 
very gradual forcing of the systems in question, whereas human 
activities are forcing certain ‘slow’ parts of the climate system, 
for example, the ocean, ice sheets and biomes, faster than their 
internal dynamics allow them to respond. Hence they will be lag-
ging their equilibrium solutions and may be committed to much 
greater changes than are observed at present64. "is means a 
dynamical model simulating transient behaviour will be needed to 
establish proximity to a threshold. Also, for such ‘slow’ systems, a 
long record of their natural behaviour is needed to ascertain their 
slowest response timescale, but this demands longer palaeorecords 
than are available for, for example, the Atlantic THC. 

Towards early warning systems
Despite these limitations, scienti!c tests show early warning sig-
nals exist for at least some climate tipping points, suggesting 
there is merit in building on them. Early warning systems should 
ultimately combine risk assessment, scienti!c prediction, careful 
warning formulation, e$ective communication and an appropriate 
response capability17,20. Here the research needed on risk assess-
ment, improving scienti!c prediction and assessing response strate-
gies is considered.

Risk assessment. "e overall objective of any early warning sys-
tem is to reduce risk20, so the !rst step is to identify risks and assess 
their (relative) magnitude. Technically, risk is the product of the 
likelihood (or probability) of something happening and its nega-
tive impact (the magnitude of the potential loss). "e focus above 
has been on improving information on the likelihood of passing 
a given tipping point, but ignorance regarding the correspond-
ing impacts is arguably greater, and research on this is urgently 
needed65. Passing a climate tipping point is generally expected 
to have large negative impacts, but these have only begun to be 
quanti!ed for some elements and scenarios66, notably a collapse of 
the Atlantic THC67–69. "e translation into societal impacts typi-
cally involves several intervening steps and variables, and under-
estimation problems arise because studies tend to only consider a 
subset of consequences or impacted sectors (for example, insur-
ance66). For a collapse of the Atlantic THC67,68, the magnitude and 
even sign of impacts has been contested69, as have questionable 
extrapolations70 to national security concerns71. Such disagree-
ment68–71 is to be expected, as impacts depend on human responses 
and are thus more epistemologically contested than assigning like-
lihoods to events72. 

With these caveats in mind, a ‘straw man’ tipping-point 
risk matrix is presented (Fig.  5). "is illustrates some familiar 
dilemmas for the would-be risk manager: relatively high-impact 
low-probability events, such as West African monsoon shi%, come 
out with a similar risk to relatively lower-impact high-probability 
events, such as Arctic summer sea-ice loss. However, what stands 
out are the high-impact high-probability scenarios as a priority for 
risk management e$ort — in this example, Greenland ice-sheet 
meltdown and West Antarctic ice-sheet collapse. To get a more 
scienti!cally credible and socially legitimate assessment of the 

risks, a wider team of experts and relevant stakeholders should be 
engaged72, including those likely to be most impacted, as well as 
those responsible for formulating and implementing policy. Such 
an assessment could then be used as a guide in prioritizing where to 
develop and deploy early warning systems. 

Improving scienti!c prediction. "e targets for early warning 
systems should also be guided by scienti!c considerations. In prin-
ciple, the best prospects for bifurcation early warning should exist 
for relatively ‘fast’ systems with little internal memory, for exam-
ple, monsoons, because anthropogenic forcing is slow relative to 
their internal timescales, and only relatively short records of their 
past behaviour should be needed. However, they demand relatively 
higher resolution data, which must reveal the underlying dynamics 
of the system. Models can be used to help identify direct indica-
tors of vulnerability to tipping behaviour for speci!c systems (for 
example, indicators of bi-stability of the Atlantic THC35), which can 
then be sought in data. Also, models can be used to identify which 
variables already being monitored are best related to early warn-
ing indicators65. Where the connection is weak, theory could guide 
what data should be collected and where. In many cases, the dura-
tion and/or resolution of past data records will need to be improved. 
Real-time monitoring systems may also need to be improved (fol-
lowing the example of monitoring61 of the Atlantic meridional over-
turning circulation at 26.5° N). 

Generic early warning indicators warrant further development. 
Tests on ecological models47 suggest it would be worth looking 
for increasing spatial correlation as an early warning indicator in 
climate data and models. Indicators that make combined use of 

Figure 5 | A ‘straw-man’ risk matrix for climate tipping points. Relative 
likelihoods and impacts are assessed on a five-point scale: low, low-
medium, medium, medium-high and high. Likelihood information comes 
from review of the literature1,27,80 and expert elicitation3 (feint rings indicate 
systems not considered in expert elicitation3). Impacts are based on limited 
research66 and subjective judgment, and are relative to the one system 
(bold ring) with multiple impacts studies66–69. Impacts are considered on 
the full ‘ethical time horizon’ of 1,000 years (ref. 1; Box 1), assuming minimal 
discounting of impacts on future generations. (Note that most tipping point 
impacts would be high if placed on an absolute scale, compared with other 
climate eventualities.)
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from one point to the next, and this is measured by the (lag-1) 
autocorrelation function (ACF)8,10. Correlations over longer 
timescales also increase and this can be measured by de-trended 
!uctuation analysis (DFA)9, which picks up the same slowing 
down signal as ACF (and is also sensitive to data becoming non-
stationary and tending towards a random walk, for example, as a 
phase transition is approached). In the spectral (that is, frequency) 
domain, critical slowing down is expected to cause a shi" of 
power to lower frequencies7, meaning slower !uctuations of 
increased amplitude. Closely related phenomena are ‘small-signal 
ampli#cation’41 and ‘noise ampli#cation’42, in which small periodic 
perturbations or noise are ampli#ed at particular frequencies that 
depend on the type of bifurcation being approached. Ampli#cation 
occurs because of the decrease of damping and strengthening of 
positive feedback (or ‘gain’) in a system, just before bifurcation, 
which can lead to unlimited growth of !uctuations. 

Other early warning indicators of approaching bifurcation have 
been suggested. First, for a given perturbation, a system will move 
further in a shallower potential well (Fig.  2), causing increased 
variance in data as a bifurcation point is approached13,43–45. Second, 
a system approaching a bifurcation may undergo greater amplitude 
deviations in the direction of the state it is destined to shi" to, 
than in the opposite direction, with a trend that should show up 
as increasing skewness in its responses44–46. %e spatial equivalents 
of increasing correlation47, variance16,17 and skewness48 have also 
been proposed as early warning indicators of thresholds in systems 
where spatial information is available47–49. Finally, in systems with 
spatial patterning, for example, semi-arid vegetation, the nature of 
the pattern may change as a bifurcation is approached50. However, 
this can be an ambiguous indicator of change51, and it is unclear 
how to make it quantitative.

Potentially the most robust early warning indicator of 
approaching bifurcation will be some combination of di&erent 
statistical properties of the data13. %eory suggests that, for the 
simplest case at least, the ratio of variance to correlation time is 
a constant (determined by the noise amplitude) as a bifurcation 
point is approached13. Other studies have combined di&erent 
indicators in pursuit of a robust early warning signal48,52, but these 
combinations tend to be ad hoc and a  posteriori (that is, once 
one knows a tipping point has been passed). What is needed is a 
generic a priori early warning indicator. Hence the recent focus on 
critical slowing down. 

Noise-induced transitions. Purely noise-induced transitions 
between existing stable states (or modes) of a system (Fig. 1b), can 
also be described as tipping points13, although they don’t #t a de#ni-
tion1 of forced changes (Box 1). %e abrupt warming events during 
the last ice age, known as Dansgaard–Oeschger events, provide a 
likely real-world example13. In contrast to approaching bifurcations, 
noise-induced transitions are fundamentally unpredictable13,14 and 
should show none of the early warning signals noted above, because 
there is no systematic change in the shape of the underlying poten-
tial13. However, if the slowest decay rate in a system can be diagnosed, 
this still provides some indicator of the (in this case, unchanging) 
stability of the present state. When combined with a diagnosis of the 
noise amplitude (for example, using wavelet de-noising), this can 
give some indication of the vulnerability of a system state to noise-
induced transitions53. For systems experiencing a su'cient degree of 
noise — such that they are spending time in di&erent states — given 
a long enough time window of data, one can build up a picture of the 
number and stability (or otherwise) of the underlying states, based 
on the frequency distribution of the data54. Furthermore, if a long 
time window is moved through an even longer time series, changes 
in the number and stability of states over time can be detected55,56. 
In cases where the number of states is increasing, ‘!ickering’ may 
occur — representing sampling of a new state — before it becomes 

stable5,56,57. Corresponding changes in the frequency distribution 
of the data could be translated into an early warning signal of the 
emergence of a new state56. However, from society’s point of view, 
the individual noise-induced switches between states would remain 
a key concern, and the timing of these individual events (in models 
at least) remains unpredictable, so one has to resort to vulnerability 
indicators (such as, a ‘one-in-x-year’ event).

Other types of tipping point. Whether a tipping point exists 
should be considered in a time-dependent fashion1 (Box  1), and 
there are potentially several other types, including reversible1 and 
rate-dependent58,59 tipping points. Strongly nonlinear but reversible 
transitions are expected to resemble bifurcation-type behaviour1 so 
may carry similar early warnings, including slowing down. For rate-
dependent tipping, rate of forcing and magnitude of noise should 
indicate vulnerability.

Tests of early warning indicators
At present, the best prospects for early warning are for bifurcation-type 
tipping points, even though noise will usually cause a system to exit 

Far from bifurcation:

Approaching bifurcation:

At bifurcation point:

Small deviations

Larger deviations

Fast 
recovery

Slower
recovery

No recovery

Figure 2 | Heuristic basis for early warning of an approaching bifurcation 
point. The valleys or potential wells represent stable attractors and the 
ball represents the state of the system. Under gradual forcing, the right 
potential well becomes shallower and finally vanishes (bifurcation) causing 
the ball to role abruptly to the left. Picture the system being nudged around 
by a short-term stochastic process (noise). The radius of the potential 
well is directly related to the system’s response time to such small 
perturbations, which tends towards infinity as bifurcation is approached, 
that is, the system becomes more sluggish in response to perturbations 
(‘critical slowing down’). Larger fluctuations are also expected as 
bifurcation is approached. 
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its present state before a bifurcation is reached. Some of the proposed 
early warning indicators of bifurcation have been tested in climate 
models of varying complexity and in palaeoclimate data approaching 
abrupt transitions (Table 1, Figs 3 and 4). "e absolute values of the 
indicators considered (Figs 3 and 4) are a#ected by the frequency of 
sampling; hence it is just any upwards trend that provides an early 
warning signal. "e Kendall tau rank correlation coe$cient is used 
here (insets in Figs 3 and 4) to measure the strength of the tendency of 
an indicator to increase (positive values) or decrease (negative values) 
with time, against the null hypothesis of randomness for a sequence of 
measurements against time60 (value approximately zero).

Model tests. Climate model tests have shown that early warn-
ing methods based on detecting critical slowing down work in 
principle, in simple7,10, intermediate complexity8,9,12 (Fig. 3a) and 
fully three-dimensional (3D)11,12 (Fig. 3b) models. Rising variance 
also provides early warning in intermediate complexity models12 
approaching thresholds (Fig. 3a), but is less clear in a 3D model12 
(Fig. 3b). Existing model tests focus largely on the example of a 
slowly forced collapse of the Atlantic THC, in which freshwater 
input to the North Atlantic Ocean is steadily increased by chang-
ing a forcing parameter. Either imposed white noise (Fig. 3a) or 
internal short-term variability (Fig. 3b) are used to diagnose decay 
rates in the model systems. "e 3D model example (Fig.  3b) is 
most instructive for what may happen in real-world applications, 
as it couples dynamical components with very di#erent internal 
timescales; the atmosphere and ocean. "ere is large interannual 
variability in overturning strength in the model ocean (as there 

is in observational data61), which primarily re%ects coupling to 
the overlying atmosphere. If one inadvertently samples corre-
sponding rapid decay modes that are not pertinent to bifurcation 
detection (for example, by de-trending with a short &ltering band-
width before examining autocorrelation), these actually speed 
up in the example, leading to a ‘missed alarm’12 (Fig. 3b, middle 
panel inset). However, consistent with the short memory of the 
atmosphere, using either a longer &ltering bandwidth or aggre-
gating data to a longer (for example, decadal) timescale is su$-
cient to reveal underlying slowing down in ocean dynamics12. "is 
shows the importance of carefully selecting the parameters for 
statistical analysis.

Palaeorecord tests. Palaeoclimate data tests show mixed but 
encouraging results. Initial tests9 detected critical slowing down dur-
ing the ending of the last ice age in ice-core data from the Greenland 
Ice Sheet Project 2 (GISP2). Subsequent work10 showed increas-
ing autocorrelation in eight palaeoclimate time series’ approach-
ing transitions. However, there are no signs of slowing down or 
increased variability in North Greenland Ice Core Project (NGRIP) 
data approaching individual Dansgaard–Oeschger events during 
the last ice age13. "e glacial Greenland climate can be character-
ized54 by a stable, cold (stadial) climate state and a marginally stable, 
warm (interstadial) state, with the Dansgaard–Oeschger events rep-
resenting unpredictable noise-induced switches between them13,55. 
However, the cold state became progressively more stable, and the 
warm state less stable, as the ice age progressed, until sometime 
before ~25  kyr bp the warm state passed a bifurcation point and 

Table 1 | Early warning indicators of approaching bifurcation points and tests thereof.
Phenomenon Indicator System Data Source Signal  Reference(s)
Critical slowing down Increasing autocorrelation, AR(1) 

coefficient 
Climate 

Ecological

Models
Palaeorecord

Models

+
+
0
+

8, 10, 12, 53
10, 12, 53
12, 13
44

Increasing return time from 
perturbations

Ecological Models
Lab experiments

+
+

39, 40, 45, 51
6, 52

Increasing DFA exponent Climate Models
Palaeorecord

+
+
−

9, 11, 12
9, 12
12

Spectral reddening Climate
Ecological

Models
Model

+
0

7
79

Increasing spatial correlation Ecological Models
Lab experiments

+
+

47
52

Increased variability Increasing variance Climate Models

Palaeorecord

+
0
+

12
12
12

0 13
− 12

Ecological Models + 43–45, 79
Lab experiments + 52

Increasing spatial variance Ecological Model
Data
Lab experiments

+
+
+

48
49
52

Skewed responses Increasing skewness

Increasing spatial skewness

Climate
Ecological

Ecological

Palaeodata
Model
Lab experiments
Model

0
+
+
+

46
44–46
52
48

'+' means indicator increased as expected; '−' means indicator decreased, contrary to expectation; '0' means there was no significant change in the indicator.
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