Geophysical Fluid Dynamics Laboratory Review

June 30 - July 2, 2009

Seasonal-Decadal Predictability, Prediction and Ensemble Coupled Data Assimilation

Presented by

Tony Rosati

Key Questions

- What seasonal-decadal predictability exists in the climate system, and what are the mechanisms responsible for that predictability?
- To what degree is the identified predictability (and associated climatic impacts) dependent on model formulation?
- Are current and planned initialization and observing systems adequate to initialize models for decadal prediction?
- Is the identified decadal predictability of societal relevance?

Ensemble Coupled Data Assimilation (ECDA)is at the heart of prediction efforts

- Provides initial conditions for Seasonal-Decadal Prediction
- Provides validation for predictions and model development
- Ocean Analysis kept current and available on GFDL website
- Active participation in CLIVAR/GSOP intercomparisons

Pioneering development of coupled data assimilation system

Ensemble Coupled Data Assimilation estimates the *temporally-evolving probability distribution* of climate states under observational data constraint:

- Multi-variate analysis maintains physical balances between state variables such as T-S relationship primarily geostrophic balance
- Ensemble filter maintains the nonlinearity of climate evolution
- All coupled components adjusted by observed data through instantaneously-exchanged fluxes
- Optimal ensemble initialization of coupled model with minimum initialization shocks

OAR 2008 Outstanding Paper Award: S. Zhang, M. J. Harrison, A. Rosati, and A. Wittenberg

New coupled assimilation system dramatically improves ENSO prediction skill

ECDA research activities to improve initialization

- Multi-model ECDA to help mitigate bias
- Fully coupled model parameter estimation within ECDA
- ECDA in high resolution CGCM
- Assess additional predictability from full depth ARGO profilers

Decadal Potential Predictability with a focus on the Atlantic

- How well does the ECDA system constrain the AMOC?
- Given that the ocean observing system is non-stationary, what impact does that have on the AMOC predictability?
- What are the sources of AMOC predictability and how dependent are they to the various observing networks?

We use a "perfect model" framework to address these questions

Results: The ARGO network outperforms the XBT network in both assimilation and forecast skill in idealized experiments

GFDL Decadal Prediction Research in support of IPCC AR5

Key goal: assess whether climate projections for the next several decades can be enhanced when the models are initialized from observed state of the climate system.

- Use ECDA for initial conditions from "observed state"
 Produce ocean reanalysis 1970-2009
- Use "workhorse" CM2.1 model from IPCC AR4 [2009]
 Decadal hindcasts from 1980 onwards (10 member ensembles)
 Decadal predictions starting from 2001 onwards (10 member ensembles)
- Use experimental high resolution model (if scientifically warranted) [2010]
 Decadal predictions starting from 2001 onwards (10 member ensembles)
- Use CM3 model for IPCC AR5 [2010, tentative]
 Decadal predictions starting from 2001 onwards (10 member ensemble)

Summary

- Development of new advanced assimilation techniques using coupled climate models
- Apply these techniques to detecting climate change while providing estimates of their uncertainty
- Improve our understanding of predictability at decadal time scales
- Provide a foundation for the development of a NOAA capability for decadal predictions

Geophysical Fluid Dynamics Laboratory Review

June 30 - July 2, 2009

