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CHAPTER
ONE

Executive summary of MOM4pl

MOM4pl1 is a B-grid hydrostatic nonBoussinesq ocean model, with a Boussinesq option. This
chapter provides an itemized summary of various code features. More discussion is provided in
subsequent chapters. Note that items written in small capitals are new or substantially updated
relative to MOM4.0.

1.1 General features
e GENERALIZED DEPTH AND PRESSURE BASED LEVEL VERTICAL COORDINATES.

— Full support for the quasi-horizontal coordinates

s=12z
* zZz—T
s=z"=H
(H+n)
s=p

-k (325)

- Partial support for the terrain following coordinates

S C B
= H+n
sl _ PP

Pb — Pa

There is presently no support for terrain following coordinates using neutral physics,
KPP vertical mixing, nor for sophisticated horizontal pressure gradient algorithms.

e Generalized orthogonal horizontal coordinates, with the tripolar grid of Murray| (1996) sup-
ported in test cases. Other orthogonal grids have been successfully employed with MOM4.

13
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e Parallel programming: MOM4p1 follows the parallel programming approach of MOM4.0,

and is written with arrays ordered (i, j,k) for straightforward processor domain decom-
position. As with MOM4.0, MOM4p1 relies on the GFDL Flexible Modeling System (FMS)
(http://www.gfdl.noaa.gov/fms) infrastructure and superstructure code for computations
on multiple parallel machines, with the code having been successfully run on dozens of
computer platforms.

EXPLICIT FREE SURFACE AND EXPLICIT BOTTOM PRESSURE SOLVER: MOM4 employs a Split-
explicit time stepping scheme where fast two-dimensional dynamics is sub-cycled within
the slower three dimensional dynamics. The method follows ideas detailed in Chapter 12 of
Grifties| (2004), which are based on Killworth et al.| (1991) and Grifties et al.| (2001). Chapter
[7/in this document presents further details for MOM4p1.

Time stepping schemes: The time tendency for tracer and baroclinic velocity can be dis-
cretized two ways.

— The first approach uses the traditional leap-frog method for the dissipation-less portion
of the dynamics, along with a Robert-Asselin time filter (Haltiner and Williams), 1980).
This method is retained solely for legacy purposes. It is not reccomended for general
use.

— The preferred time steppng method discretizes the time tendency with a two-level for-
ward step, which eliminates the time splitting mode and so eliminates the need for a
Robert-Asselin time filter. Tracer and velocity are staggered in time, thus providing,
ideally, a second order time accurate method. For certain model configurations, this
scheme has been found to be twice as efficient as the leap-frog based scheme since one
can take twice the time step with the two-level approach (e.g., the global climate model
test case presented in Chapter[37). Furthermore, without the time filtering needed with
the leap-frog, the new scheme conserves total tracer to within numerical roundoff. This
scheme is discussed in |Griffies (2004), Gritfies et al| (2005), and in Chapter [/| of this
document.

EQUATION OF STATE: The equation of state in MOM4p1 follows the formulation of Jackett
et al. (2006), where the coefficients from McDougall et al.|(2003) are updated to new empirical
data.

UPDATED FREEZING TEMPERATURE FOR FRAZIL: Accurate methods for computing the freez-
ing temperature of seawater are provided by Jackett et al. (2006). These methods allow, in
particular, for the computation of the freezing point at arbitrary depth, which is important
for ice shelf modelling.

CONSERVATIVE TEMPERATURE: MOM4p1 time steps the conservative temperature described
by McDougall (2003) to provide a measure of heat in the ocean (see Section [3.3.2). This vari-
able is about 100 times more conservative than the traditional potential temperature variable.
An option exists to set either conservative temperature or potential temperature prognostic,
with the alternative temperature variable carried as a diagnostic tracer.
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e PRESSURE GRADIENT CALCULATION: The pressure gradient calculation has been updated in
MOM4p1 to allow for the use of generalized level coordinates. A description of the formu-
lation is given in Chapter [ None of the sophisticated methods described by Shchepetkin
and McWilliams| (2002) are implemented in MOM4p1, and so terrain following vertical co-
ordinates may suffer from unacceptably large pressure gradients errors in MOM4pl.

e Partial bottom steps: MOM4p1 employs the partial bottom step technology of |Pacanowski
and Gnanadesikan/ (1998) to facilitate the representation of bottom topography. This ap-
proach is implemented for all of the vertical coordinates.

e TRACER ADVECTION: MOM4p1 comes with the following array of tracer advection schemes.
Note that centred schemes are stable only for the leap-frog version of MOM4p1l. We thus
partition the advection schemes according to the corresponding time stepping schemes.

— Schemes available for either time stepping method

1. First order upwind

2. Quicker scheme is third order upwind biased and based on the Leonard (1979).
Holland et al.| (1998) and Pacanowski and Griffies| (1999) discuss implementations
in ocean climate models. This scheme does not have flux limiters, so it is not mono-
tonic.

3. Quicker-MOM3: The Quicker scheme in MOM4p1 differs slightly from that in
MOM3, and so the MOM3 algorithm has also been ported to MOM4p1.

4. Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert
(1994), with Super-B flux limiters.

5. Multi-dimensional third order upwind biased approach of[Hundsdorfer and Trompert
(1994), with flux limiters of Sweby| (1984).

6. The second moment scheme of Prather (1986) has been implemented in MOM4p1.
It is available without limiters, or with the limiters of Merryfield and Holloway
(2003).

7. The piece-wise parabolic method has been implemented in MOM4p1.

- Schemes available only for leap-frog time stepping

1. Second order centred differences

2. Fourth order centred differences: This scheme assumes the grid is uniformly spaced
(in metres), and so is less than fourth order accurate when the grid is stretched, in
either the horizontal or vertical.

3. Sixth order centred differences: This scheme assumes the grid is uniformly spaced
(in metres), and so is less than sixth order accurate when the grid is stretched, in
either the horizontal or vertical. This scheme is experimental, and so not supported
for general use.

e TRACER PACKAGES: MOM4p1 comes with an array of tracer packages of use for under-
standing water mass properties and for building more sophisticated tracer capabilities, such
as for ocean ecosystem models. These packages include the following.
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— Idealized passive tracer module with internally generated initial conditions. These trac-
ers are ideal for testing various advection schemes, for example, as well as to diagnose
pathways of transport.

— Anideal age tracer, with various options for specifying the initial and boundary condi-
tions.

— The OCMIP2 protocol tracers (CO,, CFC, biotic).
- iBGC: An intermediate complexity ocean biogeochemistry model.

— BLING: Another ocean biogeochemistry model. This model has been written in a
generic format to allow for its use with both MOM4p1 and GFDL’s isopycnal model
GOLD.

— TOPAZ: A comprehensive model of oceanic ecosystems and biogeochemical cycles is a
state of the art model that considers 22 tracers including three phytoplankton groups,
two forms of dissolved organic matter, heterotrophic biomass, and dissolved inorganic
species for C, N, P, Si, Fe, CaCO3 and O; cycling. The model includes such processes
as gas exchange, atmospheric deposition, scavenging, N, fixation and water column
and sediment denitrification, and runoff of C, N, Fe, O,, alkalinity and lithogenic ma-
terial. The phytoplankton functional groups undergo co-limitation by light, nitrogen,
phosphorus and iron with flexible physiology. Loss of phytoplankton is parameterized
through the size-based relationship of Dunne et al.| (2005). Particle export is described
through size and temperature based detritus formation and mineral protection dur-
ing sinking with a mechanistic, solubility-based representation alkalinity addition from
rivers, CaCOs3 sedimentation and sediment preservation and dissolution. This model
has been written in a generic format to allow for its use with both MOM4p1 and GFDL's
isopycnal model GOLD.

Penetration of shortwave radiation as discussed in Sweeney et al. (2005) using various at-
tenuation options.

Horizontal friction: MOM4p1 has a suite of horizontal friction schemes, such as Smagorin-
sky laplacian and biharmonic schemes described in |Griffies and Hallberg| (2000) and the
anisotropic laplacian scheme from Large et al.|(2001) and Smith and McWilliams| (2003).

Convection: There are various convective methods available for producing a gravitationally
stable column. The scheme used most frequently at GFDL for certain idealized studies is
that due to|Rahmstorf (1993).

NEUTRAL PHYSICS AND BOUNDARY REGIONS: There are new options available for treating
neutral physics within boundary regions, as motivated from ideas proposed by |Ferrari et al.
(2008). The MOM4p1 formulation is given in Chapter[16]

FOrRM DRAG: MOM4pl1 has various options associated with the parameterization of form
drag arising from unresolved mesoscale eddies, as proposed by Greatbatch and Lamb|(1990),
Aiki et al.| (2004), and [Ferreira and Marshall| (2006).

RESTRATIFICATION EFFECTS FROM SUBMESOSCALE EDDIES: There is a new option available
for parameterizing the restratification effects from submesoscale eddies, as proposed by|Fox-
Kemper et al|(2008b). The MOM4p1 formulation is given in Chapter
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e TIDAL MIXING PARAMETERIZATION: The Simmons et al.| (2004) parameterization has been
implemented as a means to parameterize the diapycnal mixing effects from breaking inter-
nal gravity waves, especially those waves influenced by rough bottom topography. Addi-
tionally, this scheme has been combined with that used by |Lee et al. (2006), who discuss
the importance of barotropic tidal energy on shelves for dissipating energy and producing
tracer mixing. Chapter [14) presents the MOM4p1 formulation.

e Other vertical mixing schemes: MOM4p1 comes with an array of vertical mixing schemes,
such as the following.

- Constant background diffusivity proposed by [Bryan and Lewis| (1979).
— The Pacanowski and Philander| (1981) Richardson number dependent scheme.
— The KPP scheme of Large et al.|(1994).

— GENERAL OCEAN TURBULENCE MODEL (GOTM): MOM4p1 has a wrapper enabling
a 3d general circulation simulation to employ the one-dimensional physics closures
available from (Umlauf et al., 2005).

e UPDATE OF OVERFLOW SCHEMES: MOM4p1 comes with various methods of use for param-
eterizing, or at least facilitating the representation of, dense water moving into the abyss.
These schemes are documented in Chapter

e REFINED OPEN BOUNDARY CONDITIONS MODULE: The open boundary conditions module
has been updated for MOM4p1 to facilitate its use for regional modelling as described by
Herzfeld et al|(2010). Chapter [12| presents some details. This scheme has been developed
for use only with depth based vertical coordinates, with z and z* the two coordinates that
have been tested. No development has been given to pressure based vertical coordinates.
Pressure based coordinates solve for the bottom pressure rather than the surface height.
Hence, there are algorithm development issues required to extend the present OBC code to
handle pressure based vertical coordinates.

e UPDATED SPURIOUS MIXING DIAGNOSTIC: (Griffies et al. (2000b) describe an empirical di-
agnostic method to diagnose the levels of mixing occurring in a model. This diagnostic
required some upgrades to allow for the use of thickness weighting for time stepping the
prognostic fields. This diagnostic is described in Chapter 23] Also, the method of Burchard
and Rennaul (2008) is available in MOM4p1 to diagnose the dissipation associated with nu-
merical advection. Details of the MOM4p1 implementation of this diagnostic are provided

in Chapter

e STERIC SEA LEVEL DIAGNOSTIC: We provide some added diagnostics for understanding
how sea level evolves. Preliminary formulation is given in Chapter

e REVISED TEST CASES: All of the test cases have been revised as well as the addition of some
new tests. Documentation of these tests is presented in Part[V]of this document.

e UPDATED FMS INFRASTRUCTURE AND PREPROCESSING TOOLS: As with all releases of mom4,
it comes with updated infrastructure, preprocessing code, coupling code, etc. supported by
an array of scientists and engineers at GFDL.
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1.2 Relating MOM4p1 to MOMA4.0

e Backward compatibility

There is no option that will provide bitwise agreement between MOM4p1 simulations and
MOM4.0 simualations. Providing this feature was deemed too onerous on the development

of MOM4p1, in which case many of the algorithms were rewritten, reorganized, and modi-
fied.

Nonetheless, some features have been preserved, with the aim to provide a reasonable path
towards backward checking. In particular, the mom4p0 neutral physics algorithm has been
retained, and indeed is recommended for production runs. Additionally, changes to KPP
mentioned below are provided in the MOM4p1 version of this module, with the MOM4.0
version ported to MOM4p1 for legacy purposes.

e Bug fixes

1. The shortwave penetration module in MOM4.0 failed to account for the undulating
surface height when computing the attenuation of shortwave entering the ocean. For
many cases this bug is of minor consequence. But when refining the vertical resolution,
the surface height undulations must be accounted for when attentuating shortwave.
Additionally, for general vertical coordinates, undulating depths are the norm, so the
shortwave algorithm needed to be updated.

2. The KPP vertical mixing scheme included many places where the vertical grid was as-
sumed to be rigid and one dimensional. As for the shortwave, this code was originally
developed for a rigid lid z-model. When generalizing to free surface, partial bottom
steps, and vertical coordinates, the vertical grid becomes a dynamic three dimensional
array, which required some modifications to the code.

e General cleanup and additions

1. Numerous additional diagnostic features;
2. Basic code clean up with bit more tidy code style in most places;

3. Thoroughly updated documentation of MOM4p1 as a complement to the MOM4 Tech-
nical Guide of |Griffies et al.| (2004).



CHAPTER
TWO

Synopsis of MOM4p1

The purpose of this document is to detail the formulation, methods, and selected SGS parameteri-
zations of MOM4p1. This document complements many of the discussions in the MOM3 Manual
of Pacanowski and Griffies| (1999), the MOM4 Technical Guide of |Griffies et al. (2004), and the
monograph by Gritfies (2004).

The equations and methods of MOM4p1 are based on the hydrostatic and nonBoussinesq
equations of the ocean along with a selection of subgrid scale (SGS) parameterizations. The model
is written with rudimentary general level coordinate capabilities employing a quasi-Eulerian algo-
rithm. Notably, this approach precludes it from running as a traditional isopycnal layered model,
which generally use quasi-Lagrangian algorithms. Nonetheless, the generalized level coordinate
features of MOM4p1 distinguish it most noticeably from MOM4.0. The purpose of this chapter is
to summarize the basic elements of MOM4p1. Features new relative to MOM4.0 are highlighted
in smallcaps.

2.1 Whatis MOM?

The Modular Ocean Model (MOM) is a numerical representation of the ocean’s hydrostatic prim-
itive equations. It is designed primarily as a tool for studying the ocean climate system. Ad-
ditionally, MOM has been used in regional and coastal applications, with many new features in
MOM4p1 aimed at supporting this work. The model is developed by researchers from around
the world, with the main algorithm development and software engineering provided by NOAA'’s
Geophysical Fluid Dynamics Laboratory (GFDL). The model is freely available via

http : //www.gfdl.noaa.gov/fms

MOM evolved from numerical ocean models developed in the 1960’s-1980’s by Kirk Bryan and
Mike Cox at GFDL. Most notably, the first internationally released and supported primitive equa-
tion ocean model was developed by Mike Cox (Cox|(1984)). It cannot be emphasized enough how
revolutionary it was in 1984 to freely release, support, and document code for use in numerical
ocean climate modeling. The Cox-code provided scientists worldwide with a powerful tool to in-
vestigate basic and applied questions about the ocean and its interactions with other components
of the climate system. Previously, rational investigations of such questions by most scientists were
limited to restrictive idealized models and analytical methods. Quite simply, the Cox-code started

19
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what has today become a right-of-passage for every high-end numerical model of dynamical earth
systems.

Upon the untimely passing of Mike Cox in 1990, Ron Pacanowski, Keith Dixon, and Tony
Rosati rewrote the Cox code with an eye on new ideas of modular programming using Fortran
77. The result was the first version of MOM (Pacanowski et al.| (1991)). Version 2 of MOM
(Pacanowski| (1995)) introduced the memory window idea, which was a generalization of the
vertical-longitudinal slab approach used in the Cox-code and MOM1. Both of these methods were
driven by the desires of modelers to run large experiments on machines with relatively small
memories. The memory window provided enhanced flexibility to incorporate higher order nu-
merics, whereas slabs used in the Cox-code and MOMT1 restricted the numerics to second order.
MOMBS3 (Pacanowski and Griffies (1999)) even more fully exploited the memory window with a
substantial number of physics and numerics options.

The Cox-code and each version of MOM came with a manual. Besides describing the elements
of the code, these manuals aimed to provide transparency to the rationale underlying the model’s
numerics. Without such, the model could in many ways present itself as a black box, thus greatly
hindering its utility to the scientific researcher. This philosophy of documentation saw its most
significant realization in the MOM3 Manual, which reaches to 680 pages. The present document
is written with this philosophy in mind, yet allows itself to rely somewhat on details provided in
the previous manuals as well as theoretical discussions given by Griffies| (2004).

The most recent version of MOM is version 4. The origins of MOM4 date back to a transition
from vector to parallel computers at GFDL, starting in 1999. Other models successfully made
the transition some years earlier (e.g., The Los Alamos Parallel Ocean Program (POP) and the
OCCAM model from Southampton, UK). New computer architectures generally allow far more
memory than previously available, thus removing many of the reasons for the slabs and memory
window approaches used in earlier versions of MOM. Hence, we concluded that the memory
window should be jettisoned in favor of a straightforward horizontal 2D domain decomposition.
Thus began the project to redesign MOM for use on parallel machines.

2.2 First release of MOMA4.0: October 2003

When physical scientists aim to rewrite code based on software engineering motivations, more
than software issues are addressed. During the writing of MOM4, numerous algorithmic issues
were also addressed, which added to the development time. Hence, the task of rewriting MOM3
into MOM4.0 took roughly four years to complete.

2.3 First release of MOM4p1: Early 2007

Griffies spent much of 2005 in Hobart, Australia as a NOAA representative at the CSIRO Marine
and Atmospheric Research Laboratory, as well as with researchers at the University of Tasmania.
This period saw focused work to upgrade MOM4 to include certain features of generalized level
coordinates. An outline of these, and other features, is given in the following sections.

By allowing for the use of a suite of vertical coordinates, MOM4p1 is algorithmically more
flexible than any previous version of MOM. This work, however, did not fundamentally alter the
overall computational structure relative to the last release of MOM4.0 (the MOM4p0d release in
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May 2005). In particular, MOM4p1 is closer in “look and feel” to MOM4p0d than MOM4p0a is
to MOM3.1. Given this similarity, it was decided to retain the MOM4 name for the MOM4p1
release, rather switch to MOMS. Many of the newer features in MOM4p1 should be considered
experimental, and worthy of use mainly for research purposes.

24 MOM4pl release December 2009

The MOM4p1 release of December 2009 represents a major upgrade to the code, especially those
areas related to the open boundary conditions (Chapter (12| and Herzfeld et al.| (2010)), various
physical parameterizations, diagnostics, and FMS infrastructure. This public release also provides
the community with a fest case consisting of the CM2.1 configuration used by GFDL for the IPCC
AR4 assessment, as documented by (Griffies et al.| (2005), Gnanadesikan et al.| (2006), Delworth et al.
(2006), |Wittenberg et al.[(2006), and [Stouffer et al.|(2006). Although CM2.1 for the AR4 assessement
actually used MOM4.0, the setup in the CM2.1-MOM4pl1 test case is backwards compatibile.

2.5 Fundamentals of MOM4p1

In this section, we outline fundamental features of MOM4p1; that is, features that are always
employed when using the code.

e GENERALIZED LEVEL COORDINATES: Various vertical coordinates have been implemented
in MOM4p1. We have focused attention on vertical coordinates based on functions of depth
or pressure, which means in particualar that MOM4p1 does not support thermodynamic or
isopycnal based vertical coordinates

The following list summarizes vertical coordinates presently implemented in MOM4p1. Ex-
tensions to other vertical coordinates are straightforward, given the framework available
for the coordinates already present. Full details of the vertical coordinates are provided in
Chapter [6]

- Geopotential coordinate as in MOM4.0, including the undulating free surface atz = n
and bottom partial cells approximating the bottom topography at z = —H

s = z. (2.1)

- Quasi-horizontal rescaled height coordinate of [Stacey et al. (1995) and |Adcroft and
Campin| (2004)

=H <H+n>'

IThe Hallberg Isopycnal Model (HIM) is available from GFDL for those wishing to use layered models. HIM
is a Fortran code that is fully supported by GFDL scientists and engineers. Information about HIM is available at
http://www.gfdl.noaa.gov/fms/.
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— Depth based terrain following “sigma” coordinate, popular for coastal applications

s =00
_z—7 (2.3)
- H+n'
— Pressure coordinate
s=p (2.4)

was shown by Huang et al. (2001), DeSzoeke and Samelson| (2002), Marshall et al.
(2004), and Losch et al. (2004) to be a useful way to transform Boussinesq z-coordinate
models into nonBoussinesq pressure coordinate models.

- Quasi-horizontal rescaled pressure coordinate

*

S=P
— FPa (25)
= b <p —F )
Pb Pa

where p, is the pressure applied at the ocean surface from the atmosphere and/or sea
ice, pp is the hydrostatic pressure at the ocean bottom, and p} is a time independent
reference bottom pressure.

— Pressure based terrain following coordinate

s =g

_<P_Pa> (2.6)
B Pb — Pa ‘

— All depth based vertical coordinates implement the volume conserving, Boussinesq,
ocean primitive equations.

Note the following points:

— All pressure based vertical coordinates implement the mass conserving, nonBoussi-
nesq, ocean primitive equations.

— There has little effort focused on reducing pressure gradient errors in the terrain follow-
ing coordinates (Section[4.2). Researchers intent on using terrain following coordinates
may find it necessary to implement one of the more sophisticated pressure gradient
algorithms available in the literature, such as that from Shchepetkin and McWilliams
(2002).

— Use of neutral physics parameterizations (Section and Chapter with terrain
following coordinates is not recommended with the present implementation. There
are formulation issues that have not been addressed, since the main focus of neutral
physics applications at GFDL centres on vertical coordinates that are quasi-horizontal.

— Most of the vertical coordinate dependent code is in the

mom4 /ocean_core/ocean_thickness



2.5. FUNDAMENTALS OF MOM4P1 23

module, where the thickness of a grid cell is updated according to the vertical coordi-
nate choice. The developer intent on introducing a new vertical coordinate may find it
suitable to emulate the steps taken in this module for other vertical coordinates. The
remainder of the model code is generally transparent to the specific choice of vertical co-
ordinate, and such has facilitated a straightforward upgrade of the code from MOM4.0
to MOM4pl.

e Generalized orthogonal horizontal coordinates: MOM4p1 is written using generalized hor-
izontal coordinates, with the coordinates assumed to be locally orthogonal. The formula-
tion in this document follows this approach as well. For global ocean climate modelling,
MOM4p1 comes with test cases (the OM3 test case in Chapter |37) using the tripolar grid of
Murray| (1996). Other orthogonal grids have been successfully employed with MOM4.0.

Code for reading in the grid and defining MOM4 specific grid factors is found in the module
mom4 /ocean_core/ocean grids.

MOM comes with preprocessing code suitable for generating grid specification files of var-
ious complexity, including the Murray| (1996) tripolar grid. Note that the horizontal grid in
MOM4 is static (time independent), whereas the vertical grid is generally time dependent.
Hence, there is utility in separating the horizontal from the vertical grids.

e Parallel programming: MOM4p1 follows the parallel programming approach of MOM4.0,
and is written with arrays ordered (i, j, k) for straightforward processor domain decompo-
sition.

e EXPLICIT FREE SURFACE AND EXPLICIT BOTTOM PRESSURE SOLVER: MOM4 employs a split-
explicit time stepping scheme where fast two-dimensional dynamics is sub-cycled within
the slower three dimensional dynamics. The method follows ideas detailed in Chapter 12 of
Grifties| (2004), which are based on Killworth et al.| (1991) and Grifties et al.| (2001). Chapter
[7| presents the details for MOM4p1, and the code is on the module

mom4 /ocean_core/ocean barotropic.

e Time stepping schemes: The time tendency for tracer and baroclinic velocity can be dis-
cretized two ways.

1. The first approach uses the traditional leap-frog method for the inviscid / dissipationless
portion of the dynamics, along with a Robert-Asselin time filter.

2. The preferred method discretizes the time tendency with a two-level forward step,
which eliminates the need to time filter. Tracer and velocity are staggered in time, thus
providing second order accuracy in time. For certain model configurations, this scheme
has been found to be twice as efficient as the leap-frog based scheme since one can take
twice the time step with the two-level approach. Furthermore, without the time filter-
ing needed with the leap-frog, the new scheme conserves total tracer to within numer-
ical roundoff. This scheme is discussed in |Griffies et al.[(2005) and |Griffies| (2004) (see
Chapter 12), as well as in Chapter|7|of this document.
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The code implementing these ideas in MOM4p1 can be found in

mom4 /ocean_core/ocean_velocity

mom4 /ocean_tracers/ocean_tracer

Time stepping the Coriolis force: As discussed in Chapter there are various methods
available for time stepping the Coriolis force on the B-grid used in MOM4. The most com-
monly used method for global climate simulations at GFDL is the semi-implicit approach in
which half the force is evaluated at the present time and half at the future time.

EQUATION OF STATE: As discussed in Chapter [J} the equation of state in MOM4p1 follows
the formulation of Jackett et al. (2006), where the coefficients from McDougall et al. (2003)
are updated to new empirical data. The code for computing density is found in the module

mom4 /ocean_core/ocean_density.

CONSERVATIVE TEMPERATURE: MOM4p1 time steps the conservative temperature described
by McDougall (2003) to provide a measure of heat in the ocean (see Section [3.3.2). This vari-
able is about 100 times more conservative than the traditional potential temperature variable.
An option exists to set either conservative temperature or potential temperature prognostic,
with the alternative temperature variable carried as a diagnostic tracer. This code for com-
puting conservative temperature is within the module

mom4 /ocean_tracers/ocean_tempsalt.

PRESSURE GRADIENT CALCULATION: The pressure gradient calculation has been updated
in MOM4p1 to allow for the use of generalized vertical coordinates. A description of the
formulation is given in Chapter[d} and the code is in the module

mom4 /ocean_core/ocean pressure.

Notably, none of the sophisticated methods described byShchepetkin and McWilliams|(2002)
are implemented in MOM4p1, and so terrain following vertical coordinates may suffer from
unacceptably large pressure gradients errors in MOM4p1l. Researchers are advised to per-
form careful tests prior to using these coordinates.

Partial bottom steps: MOM4p1 employs the partial bottom step technology of Pacanowski
and Gnanadesikan|(1998) to facilitate the representation of bottom topography, with the code
in the module

mom4 /ocean_core/ocean_topog.

2.6 Tracer features

Here, we outline some of the features available for tracers in MOM4pl.
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e TRACER ADVECTION: MOM4p1 comes with the following array of tracer advection schemes.
Note that centred schemes are stable only for the leap-frog version of MOM4p1l. We thus
partition the advection schemes according to the corresponding time stepping schemes. The
code for tracer advection schemes are in the module

mom4 /ocean_tracers/ocean_tracer_advect.

— Schemes available for either time stepping method

1.
2.

7.

First order upwind

Quicker scheme is third order upwind biased and based on the [Leonard| (1979).
Holland et al.| (1998) and Pacanowski and Griffies| (1999) discuss implementations
in ocean climate models. This scheme does not have flux limiters, so it is not mono-
tonic.

. Quicker-MOMS3: The Quicker scheme in MOM4p1 differs slightly from that in

MOMS3, and so the MOMS3 algorithm has also been ported to MOM4p1.

Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert
(1994), with Super-B flux limitersE] The scheme is available in MOM4p1 with either
time stepping scheme.

. Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert

(1994), with flux limiters of Sweby (1984)@ It is available in MOM4p1 with either
time stepping scheme.

. The second moment scheme of Prather (1986) has been implemented in MOM4p1.

It is available without limiters, or with the limiters of Merrytield and Holloway
(2003).
The piece-wise parabolic method has been implemented in MOM4pl1.

Both of the MIT-based schemes are non-dispersive, preserve shapes in three dimen-
sions, and preclude tracer concentrations from moving outside of their natural ranges
in the case of a purely advective process. They are modestly more expensive than the
Quicker scheme, and it do not significantly alter the simulation relative to Quicker in
those regions where the flow is well resolved. The Sweby limiter code was used for the
ocean climate model documented by |Gritfies et al.| (2005).

— Schemes available only for leap-frog time stepping

1. Second order centred differences

2. Fourth order centred differences: This scheme assumes the grid is uniformly spaced
(in metres), and so is less than fourth order accurate when the grid is stretched, in
either the horizontal or vertical.

3. Sixth order centred differences: This scheme assumes the grid is uniformly spaced
(in metres), and so is less than sixth order accurate when the grid is stretched, in

2This scheme was ported to MOM4 by Alistair Adcroft, based on his implementation in the MITgem. The online
documentation of the MITgem at http://mitgcm.org contains useful discussions and details about this advection

scheme.

3This scheme was ported to MOM4 by Alistair Adcroft, based on his implementation in the MITgem. The online
documentation of the MITgem at http://mitgem.org contains useful discussions and details about this advection

scheme.
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either the horizontal or vertical. This scheme is experimental, and so not supported
for general use.

e TRACER PACKAGES: MOM4pl comes with an array of tracer packages of use for under-
standing water mass properties and for building more sophisticated tracer capabilities, such
as for ocean ecosystem models. Modules for these tracers are in the directories

mom4 /ocean_tracers
mom4 /ocean bgc

ocean_shared/generic_tracers.
The tracer packages include the following.

— Idealized passive tracer module with internally generated initial conditions. These trac-
ers are ideal for testing various advection schemes, for example, as well as to diagnose
pathways of transport.

— Anideal age tracer, with various options for specifying the initial and boundary condi-
tions.

— The OCMIP2 protocol tracers (CO,, CFC, biotic).
- iBGC: A simple ocean biogeochemistry model.

— BLING: An intermediate complexity ocean biogeochemistry model. This model has
been written in a generic format to allow for its use with both MOM4p1 and GFDL’s
model code GOLD.

- TOPAZ: A comprehensive model of oceanic ecosystems and biogeochemical cycles is a
state of the art model that considers 22 tracers including three phytoplankton groups,
two forms of dissolved organic matter, heterotrophic biomass, and dissolved inorganic
species for C, N, P, Si, Fe, CaCO3 and O; cycling. The model includes such processes
as gas exchange, atmospheric deposition, scavenging, N, fixation and water column
and sediment denitrification, and runoff of C, N, Fe, O,, alkalinity and lithogenic ma-
terial. The phytoplankton functional groups undergo co-limitation by light, nitrogen,
phosphorus and iron with flexible physiology. Loss of phytoplankton is parameterized
through the size-based relationship of Dunne et al. (2005). Particle export is described
through size and temperature based detritus formation and mineral protection dur-
ing sinking with a mechanistic, solubility-based representation alkalinity addition from
rivers, CaCO3 sedimentation and sediment preservation and dissolution. This model
has been written in a generic format to allow for its use with both MOM4p1 and GFDL's
isopycnal model GOLD.

e UPDATED FREEZING TEMPERATURE FOR FRAZIL: Accurate methods for computing the freez-
ing temperature of seawater are provided by |Jackett et al. (2006). These methods allow, in
particular, for the computation of the freezing point at arbitrary depth, which is important
for ice shelf modelling. These methods have been incorporated into the frazil module

mom4 /ocean_tracers/ocean _frazil,

with heating due to frazil formation treated as a diagnostic tracer.



2.7. SUBGRID SCALE PARAMETERIZATIONS 27

e PENETRATION OF SHORTWAVE RADIATION: The following modules are available for com-
puting shortwave penetration into the ocean

mom4 /ocean_param/sources/ocean_shortwave
mom4 /ocean_param/sources/ocean_shortwave_csiro
mom4 /ocean param/sources/ocean shortwave gfdl

mom4 /ocean_param/sources/ocean_shortwave_jerlov

with the reader referred to each module for full documentation. In brief, these modules
provide the following options.

— ocean_shortwave: This module drives the other shortwave modules.

- ocean_shortwave_csiro: This module implements a simple exponential decay for the
penetrative shortwave radiation. This module was prepared at CSIRO Marine and At-
mospheric Research in Australia.

- ocean_shortwave_gfdl: This module implements the optical model of Morel and An-
toine| (1994)) as well as that of Manizza et al. (2005).

* Sweeney et al.|(2005) compile a seasonal climatology of chlorophyll based on mea-
surements from the NASA SeaWIFS satellite, and this climatology is available with
the distribution of MOM4. They used this data to develop two parameterizations
of visible light absorption based on the optical models of Morel and Antoine|(1994)
and Ohlmann| (2003). The two models yield quite similar results when used in
global ocean-only simulations, with very small differences in heat transport and
overturning.

* The Morel and Antoine| (1994) method for attenuating shortwave radiation was
employed in the CM2 coupled climate model, as discussed by Griffies et al. (2005).
In MOM4p1, we updated the implementation of this algorithm relative to MOM4.0
by including the time dependent nature of the vertical position of a grid cell. The
MOM4.0 implementation used the vertical position appropriate only for the case
of a static ocean free surface.

* In more recent model development, especially that associated with interactive bio-
geochemistry, GFDL modelers have employed the scheme from Manizza et al.
(2005) rather than Morel and Antoine| (1994).

— ocean_shortwave_jerlov: This module implements yet another exponential decay for-
mulation (actually, a double exponential) for the penetrative shortwave radiation.

2.7 Subgrid scale parameterizations

Here, we outline some features of the subgrid scale parameterizations available in MOM4p1.

e Horizontal friction: MOM4p1 has a suite of horizontal friction schemes, such as Smagorin-
sky laplacian and biharmonic schemes described in |Griffies and Hallberg| (2000) and the
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anisotropic laplacian scheme from Large et al|(2001) and Smith and McWilliams| (2003).
Code for these schemes is found in the modules

mom4 /ocean _param/mixing/ocean lapgen friction

mom4 /ocean _param/mixing/ocean bihgen friction.

Convection: There are various convective methods available for producing a gravitationally
stable column, with the code found in the module

mom4 /ocean_param/mixing/ocean_convect.

The scheme used most frequently at GFDL is that due to Rahmstorf| (1993).
NEUTRAL PHYSICS AND BOUNDARY REGIONS: There are new options available for treating
neutral physics within boundary regions, as motivated from ideas proposed by |[Ferrari et al.
(2008). A discussion of these ideas is given in Chapter 16| of this document, and the code is
available in the module

mom4 /ocean _param/mixing/ocean nphysicsB,
with the MOM4.0 methods remaining in

mom4 /ocean_param/mixing/ocean nphysicsA.
There are also some further methods implemented in

mom4 /ocean _param/mixing/ocean nphysicsC

based on the work of ?. Note that the nphysicsC module remains experimental, and so
should not be used for general applications.

RESTRATIFICATION EFFECTS FROM SUBMESOSCALE EDDIES: There is an option available for
parameterizing the restratification effects from submesoscale eddies, as proposed by [Fox-
Kemper et al|(2008b). The MOM4p1 formulation is given in Chapter (18, and the code is
available in the module

mom4 /ocean_param/mixing/ocean_submesoscale.

FORM DRAG: MOM4pl1 has various options associated with the parameterization of form
drag arising from unresolved mesoscale eddies, as proposed by Greatbatch and Lamb|(1990),
Aiki et al.|(2004), and [Ferreira and Marshall (2006). The code is available in the module

mom4 /ocean _param/mixing/ocean_form drag,

and documentation is given in Chapter The form drag parameterization schemes are
experimental and have not been thoroughly used at GFDL.
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e TIDAL MIXING PARAMETERIZATION: The tidal mixing parameterization of Simmons et al.
(2004) has been implemented as a means to parameterize the diapycnal mixing effects from
breaking internal gravity waves, especially those waves influenced by rough bottom topog-
raphy. Additionally, this scheme has been combined with that used by [Lee et al. (2006),
who discuss the importance of barotropic tidal energy on shelves for dissipating energy and
producing tracer mixing. Chapter 14 presents the model formulation, and

mom4 /ocean _param/mixing/ocean vert_tidal
contains the code.

e Other vertical mixing schemes: MOM4p1 comes with an array of vertical mixing schemes,
such as the following.

— Constant background diffusivity proposed by Bryan and Lewis| (1979)
mom4 /ocean _param/mixing/ocean vert mix

- Richardson number dependent scheme from Pacanowski and Philander|(1981)
mom4 /ocean _param/mixing/ocean vert _pp

— The KPP scheme from Large et al. (1994)

mom4 /ocean _param/mixing/ocean vert kpp

mom4 /ocean_param/mixing/ocean_vert_kpp_mom4p®

The module ocean_vert kpp maintains code provides some code updates relative to
MOMA4.0, such as to allow for the use of generalized vertical coordinates; features found
useful in fresh inland seas; and modifications introduced by Danabasoglu et al. (2006).
The module ocean_vert_kpp mom4p® maintains code compatibility with the implemen-
tation of MOM4.0 necessary to allow for backwards compatiblity with the CM2.1 cou-
pled model documented in Griffies et al. (2005).

— GENERAL OCEAN TURBULENCE MODEL (GOTM): Coastal simulations require a suite
of vertical mixing schemes beyond those available in most ocean climate models. GOTM
(Umlautf et al, 2005) is a public domain Fortran90 free software used by a number of
coastal ocean modellers

http : //www.gotm.net/

GOTM includes many sophisticated turbulence closure schemes, and is updated pe-
riodically. It thus provides users of MOM4pl access to most updated methods for
computing vertical diffusivities and vertical viscosities. GOTM has been coupled to
MOM4p1 by scientists at CSIRO in Australia in collaboration with German and GFDL
scientists.

The MOM4p1 wrapper for GOTM is

mom4 /ocean param/mixing/ocean vert_gotm
with the GOTM source code in the directory

mom4 /ocean_param/gotm.
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e UPDATE OF OVERFLOW SCHEMES: MOM4p1 comes with various methods of use for param-
eterizing, or at least facilitating the representation of, dense water moving into the abyss.
These schemes are documented in Chapter with the following modules implementing
these methods

mom4 /ocean_param/mixing/ocean sigma_transport
mom4 /ocean_param/mixing/ocean mixdownslope
mom4 /ocean _param/sources/ocean_overflow

mom4 /ocean_param/sources/ocean overexchange.

2.8 Miscellaneous features

Here, we outline some miscellaneous features of MOM4p1.

e REFINED OPEN BOUNDARY CONDITIONS MODULE: Much of the appeal of MOM4pl1 is re-
lated to its enhanced facilities for regional ocean modeling, with Herzfeld et al.| (2010) doc-
umenting certain of these features. Central to this utility is the enhanced open boundary
condition module

mom4 /ocean_core/ocean_obc

which is documented in Chapter as well as|Herzfeld et al.| (2010).

e UPDATED SPURIOUS MIXING DIAGNOSTIC: (Griffies et al. (2000b) describe an empirical di-
agnostic method to diagnose the levels of mixing occurring in a model. This diagnostic
required some upgrades to allow for the use of thickness weighting for time stepping the
prognostic fields (see Chapter 23} especially Section 23.3). This code is available in the mod-
ule

mom4 /ocean diag/ocean_tracer diag.

Also, the method of Burchard and Rennau| (2008) is available in MOM4p1 to diagnose the
dissipation associated with numerical advection. Details of the MOM4p1 implementation of
this diagnostic are provided in Chapter

e STERIC SEA LEVEL DIAGNOSTIC: We compute the steric sea level diagnostically for the case
when running a Boussinesq model. The formulation is given in Chapter 26|

e REVISED TEST CASES: All of the test cases have been revised as well as the addition of some
new tests. As in MOM4.0, the tests are not sanctioned for their physical realism. Instead,
they are provided for computations and numerical evaluation, and as starting points for
those wishing to design and implement their own research models.

e UPDATED FMS INFRASTRUCTURE AND PREPROCESSING TOOLS: As with all releases of MOM4,
it comes with updated infrastructure, preprocessing code, coupling code, etc. supported by
an array of scientists and engineers at GFDL.
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2.9 Short bibliography of MOM4 documents

The following is an incomplete list of documents that may prove useful for those wishing to learn
more about the MOM4 code, and some of its uses at GFDL.

e The MOMS3 Manual of Pacanowski and Griffies| (1999) continues to contain useful discus-
sions about issues that remain relevant for MOMA4.

e The MOM4 Technical Guide of |Griffies et al.|(2004) aims to document the MOM4.0 code and
its main features.

e The present document, |Griffies (2009), presents the fundamental formulation and model
algorithms of use for the generalized vertical coordinate code MOM4p1.

e The monograph by (Griffies (2004) presents a pedagogical treatment of many areas relevant
for ocean climate modellers.

e The paper by Gritfies et al.[(2005) provides a formulation of the ocean climate model used
in the GFDL CM2 climate model for the study of global climate variability and change. The
ocean code is based on MOM4.0.

e The paper by Gnanadesikan et al.|(2006) describes the ocean simulation characteristics from
the coupled climate model CM2.

e The paper by Delworth et al.| (2006) describes the coupled climate model CM2.

e The paper by|Wittenberg et al.| (2006) focuses on the tropical simulations in the CM2 coupled
climate model.

e The paper by Stouffer et al. (2006) presents some idealized climate change simulations with
the coupled climate model CM2.

e The paper by Herzfeld et al. (2010) documents the use of MOM4p1 for regional modeling.

2.10 The future of MOM

MOM has had a relatively long and successful history. The release of MOM4p1 represents a major
step at GFDL to move into the world of generalized level coordinate models, as well as regional
modeling. It is anticipated that MOM4p1 will be used at GFDL and abroad for many process,
coastal, regional, and global studies. It is, quite simply, the most versatile of the MOM codes
produced to date.

Nonetheless, there are many compelling reasons to move even further along the generalization
path, in particular to include isopycnal layered models in the same code base as the level verti-
cal coordinates enabled in MOM4p1. As discussed in (Griffies et al. (2000a), there remain many
systematic problems with each vertical coordinate class, and such warrants the development of a
single code base that can examine these issues in a controlled setting.

GFDL employs the developers of three of the world’s most successful ocean model codes: (1)
Alistair Adcroft, who developed the MITgcm, which has non-hydrostatic and hydrostatic options;
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(2) Bob Hallberg, who developed the Hallberg Isopycnal Model, which has been used for process
studies and global coupled modelling, and (3) Stephen Griffies, who has been working on MOM
development. A significant step forward in ocean model code will be found by merging various
features of the MITgecm, HIM, and MOM. Therefore, Adcroft, Griffies, and Hallberg have each
agreed to evolve their efforts towards the goal of producing a GFDL Unified Ocean Model. Public
release of this code will occur at an uncertain date, likely after 2012.



PART |
Formulation of the ocean equations

Descriptive methods provide a foundation for physical oceanography. Indeed, many observa-
tional oceanographers are masters at weaving a physical story of the ocean. Once a grounding in
observations and experimental science is established, it is the job of the theorist to rationalize the
phenomenology using fundamental principles of physics. For oceanography, these fundamentals
largely rest in the realm of classical physics. That is, for a fundamental understanding, it is neces-
sary to combine the descriptive, and more generally the experimental, approaches with theoretical
methods based on mathematical physics. Together, the descriptive/experimental and theoretical
methods render deep understanding of physical phenomena, and allow us to provide rational, al-
beit imperfect, predictions of unobserved phenomena, including the state of future ocean climate.

Many courses in physics introduce the student to mathematical tools required to garner a
quantative understanding of physical phenomena. Mathematical methods add to the clarity, con-
ciseness, and precision of our description of physical phenomena, and so enhance our ability to
unravel the essential physical processes involved with a phenomenon.

The purpose of this part of the document is to mathematically formulate the fundamental
equations providing the rational basis of the MOM4p1 ocean code. It is assumed in this section
that the reader has a basic understanding of calculus and fluid mechanics.
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CHAPTER
THREE

Fundamental equations

The purpose of this chapter is to formulate the kinematic and dynamic equations that form the
basis for MOM4pl. Much of this material is derived from lectures of Griffies (2005) at the 2004
GODAE School on Operational Oceanography. The proceedings of this school have been put
together by Chassignet and Verron! (2005), and this book contains many pedagogical reviews of
ocean modelling. Additional discussions can be found in Griffies and Adcroft (2008) and Grifties
(2004).

3.1 Fluid kinematics

The purpose of this section is to derive some of the basic equations of fluid kinematics applied
to the ocean. Kinematics is the study of the intrinsic properties of motion, without concern for
dynamical laws. As considered here, fluid kinematics is concerned with balances of mass for
infinitesimal fluid parcels or finite regions of the ocean. It is also concerned with the behaviour of
a fluid as it interacts with geometrical boundaries of the domain, such as the land-sea and air-sea
boundaries of an ocean basin.

3.1.1 Mass conserving fluid parcels

Consider an infinitesimal parcel of seawater contained in a Volumeﬂ
dV =dxdydz (3.1)

with a mass
dM = pdV. (3.2)

1A parcel of fluid is macroscopically small yet microscopically large. That is, from a macroscopic perspective, the
parcel’s thermodynamic properties may be assumed uniform, and the methods of continuum mechanics are applicable
to describing the mechanics of an infinite number of these parcels. However, from a microscopic perspective, these
fluid parcels contain many molecules, and so it is safe to ignore the details of molecular interactions. Regions of a fluid
with length scales on the order of 10~3cm satisfy these properties of a fluid parcel. See Section 2.2 of Griffies (2004) for
further discussion.
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In these equations, p is the in situ mass density of the parcel and x = (x,y,z) is the Cartesian
coordinate of the parcel with respect to an arbitrary origin. As the parcel moves through space-
time, we measure its velocity
_dx
Codt
by considering the time changes in its positionE]
The time derivative d/dt introduced in equation (3.3) measures time changes of a fluid prop-
erty as one follows the parcel. That is, we place ourselves in the parcel’s moving frame of ref-
erence. This time derivative is thus directly analogous to that employed in classical particle me-
chanics (Landau and Lifshitz, 1976; Marion and Thornton, [1988). Describing fluid motion from
the perspective of an observer moving with fluid parcels affords us with a Lagrangian description
of fluid mechanics. For many purposes, it is useful to take a complementary perspective in which
we measure fluid properties from a fixed space frame, and so allow fluid parcels to stream by the
observer. The fixed space frame affords one with an Eulerian description of fluid motion. To relate
the time tendencies of scalar properties measured in the moving and fixed frames, we perform a
coordinate transformation, the result of which is (see Section 2.3.3 of |Griffies (2004) for details)

(3.3)

\'%

% =d+v-V, (3.4)
where 3
o = 5 (3.5
measures time changes at a fixed space point. The transport term
v-V=u Vi+w® o, (3.6)

reveals the fundamentally nonlinear character of fluid dynamics. In this relation, V; is the hori-
zontal gradient operator taken on surfaces of constant generalized vertical coordinate s, and w®)
measures the transport of fluid crossing these surfaces. We provide further discussion of this
expression in Section [3.1.8, In general, the operator v - V is known as the advection operator in
geophysical fluids, whereas it is often termed convection in the classical fluids literatureﬁ

It is convenient, and conventional, to formulate the mechanics of fluid parcels that conserve
mass. Choosing to do so allows many notions from classical particle mechanics to transfer over
to continuum mechanics of fluids, especially when formulating the equations of motion from a
Lagrangian perspective. We thus focus on kinematics satisfied by mass conserving fluid parcels.
In this case, the mass of a parcel changes only if there are sources within the continuous fluid, so

that
d

— In(dM) = SM) (3.7)
dt

where SM) is the rate at which mass is added to the fluid, per unit mass. Mass sources are often
assumed to vanish in textbook formulations of fluid kinematics, but they can be nonzero in certain

cases for ocean modelling, so it is convenient to carry them around in our formulation.

2The three dimensional velocity vector is written v = (u, w) throughout these notes, with u = (1, v) the horizontal
components and w the vertical component.

3Convection in geophysical fluid dynamics generally refers to the rapid vertical motions that act to stabilize fluids
that are gravitationally unstable.
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Equation (3.7) expresses mass conservation for fluid parcels in a Lagrangian form. To derive
the Eulerian form of mass conservation, start by substituting the mass of a parcel given by equa-
tion (3.2)) into the mass conservation equation (3.7) to derive

d

—Inp=-V-v+SM), (3.8)
dt

That is, the density of a parcel increases when the velocity field converges onto the parcel. To

reach this result, we first note the expression

% In(dV) = V-v, (39)
which says that the infinitesimal volume of a fluid parcel increases in time if the velocity of the
parcel diverges from the location of the parcel. Imagine the parcel expanding in response to the
diverging velocity field.

Upon deriving the material evolution of density as given by equation (3.8), rearrangement
renders the Eulerian form of mass conservation

pi+ V- (pv)=pSM. (3.10)

A comma is used here as shorthand for the partial time derivative taken at a fixed point in space

_9p
Pt = TR

(3.11)
We use an analogous notation for other partial derivatives throughout these notes. Rewriting
mass conservation in terms of the density time tendency

pi=—V-(pv)+pSM, (3.12)

reveals that at each point in the fluid, the mass density increases if the linear momentum per
volume of the fluid parcel,
p=npv, (3.13)

converges to the point.

3.1.2 Volume conserving fluid parcels

Fluids that are comprised of parcels that conserve their mass, as considered in the previous dis-
cussion, satisfy non-Boussinesq kinematics. In ocean climate modelling, it has been traditional to
exploit the large degree to which the ocean fluid is incompressible, in which case the volume of
fluid parcels is taken as constant. These fluids are said to satisfy Boussinesq kinematics.

For the Boussinesq fluid, conservation of volume for a fluid parcel leads to

jt In(dv) =8V, (3.14)

where SV) is the volume source per unit volume present within the fluid. It is numerically the

same as the mass source S(M) defined in equation (3.7). This statetment of volume conservation
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is equivalent to the mass conservation statement (3.7) if we assume the mass of the parcel is given
by
dM = p,dV, (3.15)

where p, is a constant reference density.
Using equation (3.9) in the Lagrangian volume conservation statement (3.14) leads to the fol-
lowing constraint for the Boussinesq velocity field
vV.-v=38". (3.16)
Where the volume source vanishes, the three dimensional velocity field is non-divergent

V-v =0 for Boussinesq fluids with SV) = 0. (3.17)

3.1.3 Mass conservation for finite domains

Now consider a finite sized region of ocean extending from the free surface at z = n(x, y, t) to the
solid earth boundary at z = —H(x, y), and allow the fluid within this region to respect the mass
conserving kinematics of a non-Boussinesq fluid. The total mass of fluid inside the region is given

by

n
M= /dx dy /pdz. (3.18)
~H
Conservation of mass for this region implies that the time tendency
1
M, = / dxdyd; / dzp (3.19)
—H

changes due to imbalances in the flux of seawater passing across the domain boundaries, and from
sources within the regionﬁ For a region comprised of a vertical fluid column, the only means of
affecting the mass are through fluxes crossing the ocean free surface, convergence of mass brought
in by horizontal ocean currents through the vertical sides of the column, and sources within the
column. These considerations lead to the balance

n n
M,t:/dXdy quw+/dsz(M)—V-/deu : (3.20)
_H —H

The term gy pw dx dy represents the mass flux of water (mass per unit time) crossing the free
surface, where p,, is the in situ density of the water crossing the surfaceﬂ We provide a more
detailed accounting of this flux in Section Equating the time tendencies given by equations
and leads to a mass balance within each vertical column of fluid

n n
0¢ /dzp +V-Up:quw+/dsz(M), (3.21)
—H “H

“We assume no water enters the domain through the solid-earth boundaries.
SWater crossing the ocean surface is typically quite fresh, such as for precipitation or evaporation. However, rivers
and ice melt can generally contain a nonzero salinity.
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where

n
U? = / dzpu (3.22)
—-H
is a shorthand notation for the vertically integrated horizontal momentum per volume.
Setting density factors in the mass conservation equation to the constant reference den-
sity p, renders the volume conservation equation

n
i+ V-U=gqy+ / dzs") (3.23)
—H

appropriate for a Boussinesq fluid, where fluid parcels conserve volume rather than mass. In this
equation

n
U= / dzu (3.24)
“H

is the vertically integrated horizontal velocity. In the next section, we highlight an important
difference between mass and volume conserving fluids.

3.1.4 Evolution of ocean sea level

By introducing the vertically averaged density
ul
p=D" / dzp (3.25)
-H

to the mass conservation equation (3.21), we can derive the following prognostic equation for the
thickness

D=H+n (3.26)
of a fluid column
1 n
Dy= | =V U tqupnt / dzpS™ | D3, Inp. (3.27)
“H

This equation partitions the time evolution for the total thickness of a column of seawater into a set
of distinct, though not fully independent, physical processes. These processes are the following.

e Dynamical effects: The term —p~! V - U? increases the column thickness when ocean cur-
rents cause mass to converge onto the column. We term this a dynamical effect, as it is largely
a function of the changing ocean currents. Notably, however, if the currents have no con-
vergence, yet the density has a nontrivial gradient, this term remains nonzero as well. So
the appellation dynamical should be taken with this caveat. When considering a Boussinesq
fluid, the analog is the term —V - U (see the volume conservation equation (3.23))), which
vanishes only when the currents are divergence-free. Hence, the name dynamical is precise
for the Boussinesq fluid.
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e Mass exchange with other components of the climate system: The term p ! gw Pw alters the
column thickness when water is transported across the ocean surface via interactions with
other components of the climate system, such as rivers, precipitation, evaporation, ice melt,
etc. This effect has its analog in Boussinesq models, in which a nonzero g, alters the volume
of the fluid.

e Mass sources: The term p ! I pdzpS (M) increases the column thickness whenever there
are mass sources within the column, and similarly for the Boussinesq case with volume
sources.

e Steric effect: The term —D 9d; Inp adds a positive contribution to the column thickness when
the vertically averaged in situ density within a column decreases. Conversely, when the ver-
tically averaged density increases, the column thickness shrinks. We term this a steric effect,
as it arises only from changes in the ocean hydrography within a fluid column. Hydrogra-
phy changes are affected by movements of the ocean fluid (advection), small scale processes
such as mixing, or local sources. Notably, the steric term is absent in the Boussinesq fluid’s
prognostic equation for its surface height, as can be seen by its absence in the volume con-

servation equation (3.23).

Anthropogenic ocean warming causes the thickness of ocean columns to expand, thus raising
sea level. This effect is contained in the steric term. Changes in the mass transport into the ocean
due to glacial melt water are also important, and likely will increase in importance as more land
ice melts. Fluctuations in the mass convergence cause fluctuations in sea level, and such may be
systematic if the surface forcing, say from the atmospheric winds, has a trend.

In many modelling studies of sea level rise due to global warming, only the global averaged
sea level is considered, as this provides a single number for comparison between various model
projections of future climate change. It is also something that can be diagnosed in either the
Boussinesq or non-Boussinesq ocean models used in the climate projections. Reconsidering equa-
tion (3.27), the mass budget for the global ocean is given by

9 (PD) = (qw Pw), (3.28)
where we dropped the source term for simplicity, and
_ JdxdyF
(F) = Tdxdy (3.29)

is the global area average of a field. Without sources, the global seawater mass will change only
when there is mass entering the ocean via a nonzero gq,,. Performing the time derivative in equa-
tion (3.28) allows us to isolate the column thickness

<5 D,t> = _<D5,t> + <‘7w .Ow>- (3.30)
Focusing on the steric effect by setting g, = 0 leads to
(Dy) = —(Dpy). (331)

To garner an approximate sense for the effects from steric changes on the globally averaged col-
umn thickness, we approximate this equation with

(Dt) =~ —(Dod; Inp)
(D3,) 6:32)

Po

Q
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These expressions are accurate to within a few percent, and they are readily diagnosed in either a
non-Boussinesq or Boussinesq model.

3.1.5 Solid earth kinematic boundary condition

To continue with our presentation of fluid kinematics, we establish expressions for the transport
of fluid through a specified surface. The specification of such transport arises in many areas of
oceanography and ocean model design. We start with the simplest surface: the time independent
solid earth boundary. This surface is commonly assumed to be impenetrable to fluidE] The expres-
sion for fluid transport at the lower surface leads to the solid earth kinematic boundary condition.

As there is no fluid crossing the solid earth lower boundary, a no-normal flow condition is
imposed at the solid earth boundary at the depth

z=—H(x,v). (3.33)

To develop a mathematical expression for the boundary condition, we note that the outward unit
normal pointing from the ocean into the underlying rock is given byﬂ (see Figure

V(z+ H)

Nt T (3.34)

g =

Furthermore, we assume that the bottom topography can be represented as a continuous function

H(x, y) that does not possess “overturns.” That is, we do not consider caves or overhangs in the

bottom boundary where the topographic slope becomes infinite. Such would make it difficult to

consider the slope of the bottom in our formulations. This limitation is common for ocean modelsﬂ
A no-normal flow condition on fluid flow at the ocean bottom implies

v-ig=0 at z=—-H(x,y).v (3.35)
Expanding this constraint into its horizontal and vertical components yields
u-VH+w=20 at z=—H(x,y). (3.36)

Furthermore, introducing a material time derivative (3.4) allows us to write this boundary condi-
tion as
d(z+ H)
dt

Equation (3.37) expresses in a material or Lagrangian form the impenetrable nature of the solid
earth lower surface, whereas equation (3.36) expresses the same constraint in an Eulerian form.

=0 at z=—H(x,y). (3.37)

®This assumption may be broken in some cases. For example, when the lower boundary is a moving sedimentary
layer in a coastal estuary, or when there is seeping ground water. We do not consider such cases here.

"The three dimensional gradient operator V. = (9, ay,az) reduces to the two dimensional horizontal operator
V; = (9x, 9y, 0) when acting on functions that depend only on the horizontal directions. To reduce notation clutter, we
do not expose the z subscript in cases where it is clear that the horizontal gradient is all that is relevant.

8For hydrostatic models, the solution algorithms rely on the ability to integrate vertically from the ocean bottom to
the top, uninterrupted by rock in between. Non-hydrostatic models do not employ such algorithms, and so may in
principle allow for arbitrary bottom topography, including overhangs.



42 CHAPTER 3. FUNDAMENTAL EQUATIONS

Xy

Figure 3.1: Schematic of the ocean’s bottom surface with a smoothed undulating solid earth to-
pography at z = —H(x, y) and outward normal direction fij. Undulations of the solid earth can
reach from the ocean bottom at 5000m-6000m to the surface over the course of a few kilometers
(slopes on the order of 0.1 to 1.0). These ranges of topography variation are far greater than the
surface height (see Figure 3.2). It is important for simulations to employ numerics that facilitate
an accurate representation of the ocean bottom.

3.1.6 Generalized vertical coordinates

We now consider the form of the bottom kinematic boundary condition in generalized vertical
coordinates. Generalized vertical coordinates provide the ocean theorist and modeler with a pow-
erful set of tools to describe ocean flow, which in many situations is far more natural than the
more traditional geopotential coordinates (x, y, z) that we have been using thus far. Therefore, it
is important for the student to gain some exposure to the fundamentals of these coordinates, as
they are ubiquitous in ocean modelling today.

Chapter 6 of Griffies| (2004) develops a calculus for generalized vertical coordinates. Experi-
ence with these methods is useful to nurture an understanding for ocean modelling in generalized
vertical coordinates. Most notably, these coordinates, when used with the familiar horizontal co-
ordinates (x,y), form a non-orthogonal triad, and thus lead to some relationships that may be
unfamiliar. To proceed in this section, we present some salient results of the mathematics of gen-
eralized vertical coordinates, and reserve many of the derivations for Griffies| (2004).

When considering generalized vertical coordinates in oceanography, we always assume that
the surfaces cannot overturn on themselves. This constraint means that the Jacobian of transfor-
mation between the generalized vertical coordinate

s=s(x,y,zt) (3.38)
and the geopotential coordinate z, must be one signed. That is, the specific thickness
0z
g — Z,S (3.39)

is of the same sign throughout the ocean fluid. The name specific thickness arises from the property
that
dz =2z,ds (3.40)
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is an expression for the thickness of an infinitesimal layer of fluid bounded by two constant s
surfaces.

Deriving the bottom kinematic boundary condition in s-coordinates requires a relation be-
tween the vertical velocity component used in geopotential coordinates, w = dz/dt, and the
pseudo-velocity component ds/dt. For this purpose, we refer to some results from Section 6.5.5
of |Griffies| (2004). As in that discussion, we derive the isomorphic relations

z=(0t+u-Vs+5$09s)z (3.41)
§=(dt+u-V;+209;)s, (3.42)
where
. dz
z = TS (3.43)
. ds
§ = a (3.44)

are useful shorthands for the vertical velocity components, motivated from similar notation used
in classical particle mechanics. Note that the partial time derivative appearing in each of the
expressions is taken with the corresponding space variables held fixed. That is, J; in equation
(3.41) is taken with s held fixed, whereas d; in equation is taken with z held fixed.

Rearrangement of equations (3.41) and (3.42) leads to
z=1z5(d/dt =0t —u-V;)s. (3.45)

This expression is relevant when measurements are taken on surfaces of constant geopotential, or
depth. To reach this result, we made use of the triple product identities

Zp= —StZg (3.46)
Zy = —SxZgs (3.47)
Zy = —SyZgs. (3.48)

A derivation of these identities is given in Section 6.5.4 of Grifties| (2004). These relations should
be familiar to those having studied thermodynamics, where the analogous expressions are known
as the Maxwell relations (Callen, 1985).

We now apply relation to the ocean bottom, which is generally not a surface of constant
depth. It is thus necessary to transform the constant depth gradient V, to a horizontal gradient
taken along the bottom. To do so, proceed as in Section 6.5.3 of (Griffies| (2004) and consider the
time-independent coordinate transformation

(x%,v,z,t) = (x,y, —H(x,y),t). (3.49)

The horizontal gradient taken on constant depth surfaces, V., and the horizontal gradient along
the bottom, V3, are thus related by

Vz=V,—-(VH)o,. (3.50)
Using this result in equation (3.45) yields
s;(w+u-VH)=(d/dt—9d; —u-Vz)s at z=—H. (3.51)



44 CHAPTER 3. FUNDAMENTAL EQUATIONS

The left hand side vanishes due to the kinematic boundary condition (3.36)), which then leads to
ds/dt = (d;+u-Vz)s at s=s(x,y,z=—H(x,y),t). (3.52)
The value of the generalized coordinate at the ocean bottom can be written in the shorthand form
Sbot(x, y, ) =s(x,y,z = —H, 1) (3.53)

which leads to

d (S B Sbot)

T, =0 at s = Spot- (3.54)

This relation is analogous to equation (3.37) appropriate to z-coordinates. Indeed, it is actually
a basic statement of the impenetrable nature of the solid earth lower boundary, which is true
regardless the vertical coordinates.

The various mathematical steps that led to the very simple result could have been dis-
pensed with if we already understood some notions of generalized vertical coordinates. Nonethe-
less, the steps introduced some of the formalism required to work with generalized vertical co-
ordinates, and as such provide a useful testing ground for later manipulations where the answer
is less easy to anticipate. This strategy is highly recommended to the student working with new
formalisms. That is, first test your mathematical skills with problems where the answer is either
known, or can be readily judged correct with basic physical understanding. After garnering expe-
rience and confidence, one may then approach genuinely new problems using the methods.

3.1.7 Upper surface kinematic condition

To formulate budgets for mass, tracer, and momentum in the ocean, we consider the upper ocean
surface to be a time dependent permeable membrane through which precipitation, evaporation,
ice melt, and river runoﬁﬂ pass. The expression for fluid transport at the upper surface leads to
the upper ocean kinematic boundary condition.

To describe the kinematics of water transport into the ocean, it is useful to introduce an effec-
tive transport through a smoothed ocean surface, where smoothing is performed via an ensemble
average. We assume that this averaging leads to a surface absent overturns or breaking waves,
thus facilitating a mathematical description analogous to the ocean bottom just considered. The
vertical coordinate takes on the value

z=n(x,y,t) (3.55)

at this idealized ocean surface.

We furthermore assume that density of the water crossing the ocean surface py, is a function
of the temperature, salinity, and pressure. There are generally different water densities for precip-
itation, evaporation, runoff, and ice melt. Such level of detail is generally not considered, and we

River runoff generally enters the ocean at a nonzero depth rather than through the surface. Many global models,
however, have traditionally inserted river runoff to the top model cell. Such can become problematic numerically and
physically when the top grid cells are refined to levels common in coastal modelling. Hence, more applications are now
considering the input of runoff throughout a nonzero depth. Likewise, sea ice can melt at depth, thus necessitating a
mass transport to occur within the ocean between the liquid and solid water masses.
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make approximations below. For now, we note that the mass transport crossing the ocean surface
can be written

(MASS/TIME) THROUGH SURFACE =

o R R . (3.56)
—dAy fiy-(fp P pp + Ag E pg + Ar R pr + A1 I py).

In this expression, fip P pp is the mass per time per area of precipitation oriented in the direction
specified by fip, where pp is the mass density of the precipitation and P is the volume per time per
area of precipitation. Likewise, fig E pg is the evaporative mass flux, fig R pr is the river mass flux,
and fig I py is the ice melt mass flux. The unit normal

a - V(z—n)

"N G- 357

points from the ocean surface at z = 1 into the overlying atmosphere (see Figure [3.2). Finally, the
area element dA, measures an infinitesimal area element on the ocean surface z = 7, and it is
given by (see Section 20.13.2 of Gritfies| (2004))

dA, = |V(z —n)|dxdy. (3.58)

X,y

Figure 3.2: Schematic of the ocean’s upper surface with a smoothed undulating surface at z =
n(x, y,t), outward normal direction fi,;, and normal direction fi,, orienting the passage of water
across the surface. Undulations of the surface height are on the order of a few metres due to tidal
fluctuations in the open ocean, and order 10m-20m in certain embayments (e.g., Bay of Fundy
in Nova Scotia). When imposing the weight of sea ice onto the ocean surface, the surface height
can depress even further, on the order of 5m-10m, with larger values possible in some cases. It
is important for simulations to employ numerical schemes facilitating such wide surface height
undulations.

We now make a common assumption about the orientation of the water transported across the
surface. Namely, precipitation generally enters the ocean, so that we write

Ph,-fip~ —P (3.59)

since fi, - fip ~ —1. We make similar approximations for the other mass flux components, with
the conventions that P > 0 is the volume per time per area of precipitation entering the ocean,
E > 0 is the evaporation leaving the ocean, R > 0 is the river runoff entering the ocean, and I > 0
is the ice melt entering the ocean (signs are reversed on each of these fluxes for cases where water
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fluxes are in opposite directions). Additionally, for notational convenience, we assume the density
of the water transported across the surface is generically written p,,. Hence, the mass flux takes
the more compact form

(MASS/TIME) THROUGH SURFACE = (P — E+ R+ 1) py dA,,. (3.60)

We next exploit the assumption that the ocean surface has no overturns. In this case, we can
define
qgwdA = (P—-E+R+1)dA,, (3.61)

where
dA =dxdy (3.62)

is the horizontal projection of the surface area element dA,. The volume per time per horizontal
area of fluid crossing the ocean surface is therefore defined by

_ (P—E+R+1)dA,

qw
da (3.63)
_ (VOLUME/TIME) THROUGH FREE SURFACE

HORIZONTAL AREA UNDER FREE SURFACE

This is the surface water flux that appears in ocean model budgets for mass, tracer, and momen-
tum. The assumptions leading up to this simple expression can be readily dropped in cases where
more information is available (e.g., separate densities for the precipitation, evaporation, runoff, ice
melt). Indeed, in realistic climate models, these densities may be available. However, for purposes
of mathematical formulation, it is more convenient to employ the terse expression derived here.
Note that in Section [3.6.7) we derive an alternative expression for gy that connects it to the
dia-surface velocity component discussed in Section3.1.8}

To develop the surface kinematic boundary condition, return to the expression for mass
conservation, rewritten here for completeness

n

n n
0 /dzp + V- /dzpu :quw—l—/dsz(M). (3.64)
—H —H “H

Next, we perform the derivative operations on the integrals, keeping in mind Leibnitz’s Rule when
differentiating an integral. The first step of the derivation leads to

lp @+ u-V)nlag + [ VH ulen+ [ dzlos+ V- (pu)] =

—H (3.65)

n
Pw Gw + / dzpSM),
“H

The Eulerian mass conservation relation (3.10) and bottom kinematic boundary condition (3.36)
render the surface kinematic boundary condition

p(dr+u-V)n=pwgw+pw at z=rn. (3.66)
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This relation can also be written in the material form

dt

p <d<z_n)> — —pwgw at z=n. (3.67)

Contrary to the solid earth condition (3.37), where z 4+ H is materially constant, permeability of
the ocean surface leads to a nontrivial material evolution of z — n.

To derive the analogous s-coordinate boundary condition, we proceed as for the bottom in
Section[3.1.6] Here, the coordinate transformation is time dependent

(x,7,z,t) = (x,y,n(x,y,t),t). (3.68)
The horizontal gradient and time derivative operators are therefore related by

V:=V.+(Vn)o, (3.69)
8; = at + M.t E)Z. (370)

Hence, the relation (3.45) between vertical velocity components takes the following form at the
ocean surface
w=zs(d/dt—0d—u-Vz)s+(ds+u-V)n at z=n. (3.71)

Substitution of the z-coordinate kinematic boundary condition (3.66) leads to
pzs (d/dt —df—u-Vz) s = —pw gw at s = Siop (3.72)

where Stop = S (x,y,z = n,t) is the value of the generalized vertical coordinate at the ocean surface.
Reorganizing the result (3.72)) leads to the material time derivative form

d(s—s
PZs <(dttq))> = —Pwdw at s = Stop (373)

which is analogous to the z-coordinate result (3.67). Indeed, it can be derived trivially by noting
that dz/dt = z s ds/dt. Even so, just as for the bottom kinematic boundary condition considered
in Section it is useful to have gone through these manipulations to garner experience and
confidence with the formalism. Such confidence is of particular use in the next section focusing
on the dia-surface flux.

3.1.8 Dia-surface transport

A surface of constant generalized vertical coordinate, s, is of importance when establishing the
balances of mass, tracer, and momentum within a layer of fluid whose upper and lower bounds
are determined by surfaces of constant s. Fluid transport through this surface is said to constitute
the dia-surface transport. This transport plays a fundamental role in generalized vertical coordinate
modelling.

At an arbitrary point on a surface of constant generalized vertical coordinate (see Figure [3.3),
the flux of fluid in the direction normal to the surface is given by

SEAWATER FLUX IN DIRECTION fi = v - fj, (3.74)
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with
fi = Vs|Vs|! (3.75)

the surface unit normal direction. Introducing the material time derivative ds /dt =s;+v-Vs
leads to the equivalent expression

v-i = |Vs|7!(d/dt —d;)s. (3.76)

That is, the normal component to a fluid parcel’s velocity is proportional to the difference between
the material time derivative of the surface and its partial time derivative.

Since the surface is generally moving, the net flux of seawater penetrating the surface is ob-
tained by subtracting the velocity of the surface v("f) in the A direction from the velocity compo-
nent v - fi of the fluid parcels

FLUX OF SEAWATER THROUGH SURFACE = fi - (v — v(™0), (3.77)

The velocity v(™) is the velocity of a reference point fixed on the surface, and it is written

vired) — (ref) | p(ref) 5 (3.78)

Since the reference point remains on the same s = const surface, ds/dt = 0 for the reference point.
Consequently, we can write the vertical velocity component w(*f) as

w) = —z (9, +ul™).V,)s, (3.79)

where equation (3.45) was used with ds/dt = 0. This result then leads to
(3.80)

which says that the normal component of the surface’s velocity vanishes when the surface is static,
as may be expected. When interpreting the dia-surface velocity component below, we find it useful
to note that relation (3.80) leads to

(ref)

zs Vs - v =z, (3.81)

To reach this result, we used the identity s ; z s = —z;, with z; the time tendency for the depth of
a particular constant s surface.

Expression (3.80) then leads to the following expression for the net flux of seawater crossing
the surface

A (v—v) = |Vs| 71 (9, 4+v-V)s

3.82
= |Vs| tds/dt. (382

Hence, the material time derivative of the generalized surface vanishes if and only if no water
parcels cross it. This important result is used throughout ocean theory and modelling. It measures
the volume of seawater crossing a generalized surface, per time, per area. The area normalizing
the volume flux is that area d A4 of an infinitesimal patch on the surface of constant generalized
vertical coordinate with outward unit normal fi. This area can be written (see equation (6.58) of
Griffies| (2004))

dA(ﬁ) = ‘Z,S VS‘ dA, (383)
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Xy

s=constant

Figure 3.3: Surfaces of constant generalized vertical coordinate living interior to the ocean. An
upward normal direction fi is indicated on one of the surfaces. Also shown is the orientation of a
fluid parcel’s velocity v and the velocity v(**") of a reference point living on the surface.

where
dA =dxdy (3.84)

is the horizontal projection of the area element. Hence, the volume per time of fluid passing
through the generalized surface is

(VOLUME / TIME) THROUGH SURFACE = # - (v — v(*®) dA )

= |z,4| (ds/dt) dxdy, (385
and the magnitude of this flux is
i (v — v dA 4| = [w®)] dxdy. (3.86)
We introduced the expression
0 = 7, %I (3.87)

which measures the volume of fluid passing through the surface, per unit area dA = dx dy of the
horizontal projection of the surface, per unit time. That is,

n- (V — V(ref)) dA(ﬁ)

dA (3.88)
(VOLUME/TIME) OF FLUID THROUGH SURFACE

AREA OF HORIZONTAL PROJECTION OF SURFACE'

)

The quantity w(®) is called the dia-surface velocity component. It is directly analogous to the fresh
water flux g, defined in equation (3.61), which measures the volume of freshwater crossing the
ocean surface, per unit time per horizontal area. To gain some experience with the dia-surface
velocity component, it is useful to write it in the equivalent forms

w®) =z, ds/dt
— (v — y(red)
=zsVs-(v—v') (3.89)
=(2—Vsz)-v—2z;
=w—(dt+u-Vs)z
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where the penultimate step used the identity (3.81), and where

SZVSZ

3.90
= —2z5V,s ( )

is the slope of the s surface as projected onto the horizontal directions. For example, if the slope
vanishes, then the dia-surface velocity component measures the flux of fluid moving vertically
relative to the motion of the generalized surface. When the surface is static and flat, then the
dia-surface velocity component is simply the vertical velocity component w = dz/d¢t.

The expression for w(®) brings the material time derivative into the following equiv-
alent forms

d 0 0
dt:(at>z+u'vz+w<32> G20
0 ds /0
0 J
S . (s) { 2
(at)s~|—u Vs+w (82)’ (3.93)
where
0s = 250z, (3.94)

relates the vertical coordinate partial derivatives. The form given by equation motivates
some to refer to w'®) as a vertical velocity component that measures the rate at which fluid parcels
penetrate the surface of constant generalized coordinate (see Appendix A to McDougall (1995)).
One should be mindful, however, to distinguish w®) from the generally different vertical velocity
component w = dz/dt, which measures the water flux crossing constant geopotential surfaces.
We close with a few points of clarification for the case where no fluid parcels cross the gener-
alized surface. Such occurs, in particular, in the case of adiabatic flows with s = p an isopycnal
coordinate. In this case, the material time derivative only has a horizontal two-dimensional
advective component u - V. This result should not be interpreted to mean that the velocity of a
fluid parcel is strictly horizontal. Indeed, it generally is not, as the form (3.91) should make clear.
Rather, it means that the transport of fluid properties occurs along surfaces of constant s, and such
transport is measured by the convergence of horizontal advective fluxes as measured along sur-
faces of constant s. We revisit this point in Section when discussing tracer transport (see in

particular Figure3.5).

3.2 Mass conservation and the tracer equation

We revisit here the mathematical description of a mass conserving fluid parcel for the purpose of
introducing the evolution equation for trace material within a parcel.
3.2.1 Eulerian form of mass conservation

Seawater consists of many material constituents, such as freshwater, salts and biogeochemical
components, with the possibility also for chemical reactions to take place. For brevity, we ignore
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chemical reactions, though note that the following discussion can be generalized to such cases
(see, for example, Section II-2 in DeGroot and Mazur, [1984).
The mass density of each constituent within a parcel of seawater is given by

mass of component n

Pn (3.95)

volume of seawater parcel’

with the total density in a parcel given by the sum over all N constituents

N
mass of component n
=1 e paee)

~ \ volume of seawater parcel
n=1 P (3.96)

N
= Z Pn-
n=1

Observe that the mass of a seawater parcel is the sum of individual constituent masses (numerator
in equation (3.96)), whereas the volume of the parcel is a complicated function of the temperature,
pressure, and material constituents.

For an arbitrary finite region within the fluid, conservation of mass for each constituent takes

the form
3 ( / pndV> — / on v - dA, (3.97)

dA = adA (3.98)

is the area element on the region boundary, with fi the outward normal, and v, is the velocity of
constituent n. Equation says that the mass of each constituent within a region is affected by
the flow of that constituent through the region boundaries.

Now apply the mass budget to a static volume, in which case we can bring the time
derivative inside the integral, and use Gauss’ Theorem on the boundary integral to render

[V @iput V- (puva)) = 0. (3.99)

Since the volume is arbitrary, this relation leads to the local expression of mass balance for each
constituent

where

OtPn = —V - (P Vn). (3.100)
Summing over all constituents then leads to the familiar Eulerian expression of mass conservation
orp=—-V-(pv), (3.101)
where
N
v=p"Y pyv, (3.102)
n=1

is the velocity for the center of mass of the parcel.
The density of seawater is often well approximated by

P =~ Psalt + Pfresh, (3103)

where pg,)¢ is the mass of ocean “salt” per mass of seawater, and pgeqp is the mass of fresh water
per mass of seawater. Other material constituents occur in such small concentrations that their
contributions to the seawater density are generally ignored for purposes of ocean modeling.
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3.2.2 Mass conservation for parcels

The material time derivative

d
G=dtvY, (3.104)

measures time changes of a fluid property for an observer moving with the center of mass velocity
v. Mass conservation (3.101) in the moving, or Lagrangian, frame then takes the form

4 _ _,v.y, (3.105)

indicating that the density of a fluid parcel increases in regions where currents converge, and
density decreases where currents diverge.

3.2.3 Mass conservation for constituents: the tracer equation

Introducing the material time derivative to the constituent mass balances (3.100) leads to the ma-
terial budget

d
dp: = —0uV V=V [py (Vg — V)] (3.106)

Now define the relative mass flux
Ju = pn (Vi — V) (3.107)

to render an expression for the material evolution of the density for each constituent

dpn
dt

YV -v—V ], (3.108)

The flux J, is nonzero for those motions where the constituent n moves relative to the parcel’s
center of mass. This motion can be caused by many effects, with molecular diffusion the canonical
example, in which case we parameterize J, as a downgradient diffusive flux@] Notably, the total
mass flux vanishes

N
J=Y J.=0, (3.109)
n=1

which follows since we choose to measure the parcel motion with respect to its center of mass.
Hence, there is no subgrid scale flux for the full density p; i.e., the mass conservation equation
(3.101) is exact, even in the presence of subgrid scale processes.

As a final step in our development of mass conservation, introduce the concentration of a
material constituent, defined by

mass of component n
mass of seawater parcel (3.110)
Pn

=

Cn:

10For an ocean model, whose grid spacing is far greater than that appropriate for molecular diffusion, the relative
motion of a constituent is also affected by far larger subgrid scale processes, such as unresolved eddy advective and
diffusive transport.
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Substituting this tracer concentration into the constituent density equation (3.108) leads to the ma-
terial form of the tracer equation

an
dt

Pt = -V T, (3.111)

with the Eulerian form given by

9:(pCo) = =V - (0¥ Cu +Tn).| (3.112)

3.3 Thermodynamical tracers

Heating and cooling of the ocean, as well as mass exchange, predominantly occur near the ocean
surface. In contrast, transport in the interior is nearly adiabatic and isohaline (and so nearly isen-
tropic). Hence, the surface ocean experiences irreversible processes that set characteristics of the
water masses moving quasi-isentropically within the ocean interior. Useful labels for these water
masses maintain their values when moving within the largely ideal ocean interior. Salinity is a
good tracer for such purposes since it is altered predominantly by mixing between waters of vary-
ing concentrations. This constitutes a basic property of material tracers considered in Section
We discuss here desirable properties of a thermodynamic tracer that tags the heat within a water
parcel and evolves analogously to material tracers. Much of this material follows from Chapter 5
of |Griffies| (2004).

3.3.1 Potential temperature

Vertical adiabatic and isohaline motion in the ocean changes a fluid parcel’s hydrostatic pressure,
which thus causes its in situ temperature to change in proportion to the adiabatic lapse rate as
given by

dT = TI'dp. (3.113)

Consequently, in situ temperature is not a useful thermodynamic variable to label water parcels of
common origin. Instead, it is more useful to remove the adiabatic pressure effects.

Removing adiabatic pressure effects from in situ temperature leads to the concept of potential
temperature. Potential temperature is the in situ temperature that a water parcel of fixed com-
position would have if it were isentropically transported from its in situ pressure to a reference
pressure p,, with the reference pressure typically taken at the ocean surface. Mathematically, the
potential temperature 0 is the reference temperature obtained via integration of dT = TI'dp for an
isentropic in situ temperature change with respect to pressure (e.g., Apel, 1987):

p
T=0(s,T,pr) + / (s, 0,p)dy, (3.114)
pr

with I the lapse rate defined in terms of pressure changes. By definition, the in situ temperature
T equals the potential temperature 6 at the reference pressure p = p,. Elsewhere, they differ by
an amount determined by the adiabatic lapse rate. Beneath the diabatic surface mixed layer, a
vertical profile of potential temperature is far more constant than in situ temperature.
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As shown in Section 5.6.1 of |Griffies (2004), the potential temperature of a parcel is constant
when the parcel’s specific entropy ¢ and material composition are constant. Mathematically, this
result follows by noting that when entropy changes at a fixed pressure and composition, p = p;
so that temperature equals potential temperature. Equation (5.41) of Griffies| (2004) then leads to

d¢=C,dIn®, (3.115)
implying d¢ = 0 if and only if d6 = 0.

3.3.2 Potential enthalpy

Potential temperature has proven useful for many oceanographic purposes. However, we have
yet to ask whether it is a convenient variable to mark the heat content in a parcel of seawater. Tra-
ditionally;, it is the potential temperature multiplied by the heat capacity that is used for this pur-
pose. Bacon and Fofonoff| (1996) provide a review with suggestions for this approach. In contrast,
McDougall (2003) argues that potential temperature multiplied by heat capacity is less precise, by
some two orders of magnitude, than an alternative thermodynamic tracer called potential enthalpy.

To understand this issue from a mathematical perspective, consider the evolution equation for

potential temperature
de

Py = =V - Jo+ Lo, (3.116)
where Jp is a flux due to molecular diffusion, and Ly is a source. That potential temperature
evolves in this manner is ensured by its being a scalar field. Consider the mixing of two seawater
parcels at the same pressure where the parcels have different potential temperature and salinity.
In the absence of the source term, the equilibrated state consists of a single parcel with mass equal
to the sum of the two separate masses, and potential temperature and salinity determined by their
respective mass weighted means. Does this actually happen in the real ocean? That is, can source
terms be ignored? Fofonoff (1962) and McDougall| (2003) note that it is indeed the case for salinity
(and any other material tracer due to conservation of matter), yet it is not the case for potential
temperature. Instead, potential temperature contains source terms that alter the mass weighted
average equilibrated state. In contrast, potential enthalpy (discussed below) maintains the desired
conservative behavior when mixing at constant reference pressure, and nearly maintains this be-
havior if mixing parcels at a different pressure. Hence, ocean models which set the source term to
zero upon mixing potential temperature are in error. McDougall| (2003) quantifies this error.

Potential enthalpy is defined analogously to potential temperature. What motivates the use
of potential enthalpy is the observation that the fundamental relation between thermodynamic
state variables takes a nearly conservative form when written in terms of potential enthalpy. To
see this point, consider the evolution of internal energy (see equation (5.94) in Grifties| 2004), and
introduce the enthalpy per mass (specific enthalpy)

H=T+p/p (3.117)
leads to A d
at _ vy, ar
Pap = V-] + ar + pe. (3.118)

Dropping the frictional dissipation term arising from molecular friction leads to the approximate

statement
an_ap ~ —V -
0 ; ; V ]q. (3.119)
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To proceed, the fundamental thermodynamic relation (see equation (5.31) |Griffies, 2004, in)
becomes
dH =Td(+p 'dp+pdC (3.120)

in terms of enthalpy. Thus, enthalpy can be written as a function of entropy, salt concentration,
and pressure,

H="H(,C,p). (3.121)
Transport of a seawater parcel without changing heat, salt, or momentum occurs without change
in entropy, thus rendering
<8H> =p L (3.122)
I /e

Keeping salinity and entropy fixed (or equivalently fixed salinity and potential temperature) leads
to

p
H(0,s,p) = H°(O,s, pr) —|—/ o 1(8,s,p")dp’ (3.123)
p7

with H°(0, s, pr) defining the potential enthalpy of a parcel with potential temperature 6 and salin-
ity s. Taking the time derivative and using the approximate relation (3.119) yields

pT
dH’ ~ -1 /dpil(gl S, P/)
T —p 'V Jq+/ dp —a (3.124)
p
McDougall (2003) shows that for the ocean, the integral
7(1 /dp_l(glsl p,) _ 7 d / ap_l @ + ap_l %
P dt =) P90 @ T es ar
: P (3.125)

p?
_@ =1 _% -1
_dt/dpp“ dt/dppﬁ
p p

has magnitude on the order of the ocean’s tiny levels of dissipation arising from molecular vis-
cosity. These expressions introduced the thermal expansion coefficient « = —dIn p/d6 and saline
contraction coefficient 3 = dInp/ds. The time derivatives of potential temperature and salinity
can be removed from the pressure integrals, since they are each independent of pressure. Given
the smallness of |, pp " dp’ dp~!/dt, one can write the approximate potential enthalpy equation

dH°
T
Hence, potential enthalpy is a state function that approximately specifies the heat in a parcel of
seawater, and it evolves analogously to a material tracer such as salinity. See McDougall (2003) for
a proof that ° more accurately sets the heat for a parcel of seawater than does C, 6. Given that it
does, McDougall suggests that conservative temperature
HO(6,s, pr)

0= o (3.127)

~ V-], (3.126)
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with p, = 0 is more appropriate than potential temperature as a thermodynamic tracer for use in
an ocean model, and generally for measuring heat in the ocean. In this equation

H(6 = 25°C,s = 35psu, p, = 0)
25°C (3.128)
= 3989.245] kg ! °K !

g =

is a heat capacity chosen to minimize the difference between C}, 6 and potential enthalpy H°(6, s, p;)

when averaged over the sea surface In the remainder of these notes, we maintain the notation
0, recognizing the fact that ® may instead be used. All formulas for density and thermodynamic
fluxes can be generalized, as shown by McDougall| (2003). From a fundamental perspective, [Mc-
Dougall| (2003) provides a compelling case for the use of conservative temperature. Nonetheless,
it remains a research topic to determine the significance to simulated ocean circulation of errors
made in numerical models using potential temperature rather than conservative temperature.

3.4 Material time changes over finite regions

In the following sections, we focus on the mass, tracer, and momentum budgets formulated over
a finite domain. The domain, or control volume, of interest is that of an ocean model grid cell.
The budget for a grid cell is distinct from budgets for infinitesimal mass conserving Lagrangian
fluid parcels moving with the fluid. Mass conserving fluid parcels form the fundamental system
for which the budgets of mass, tracer, momentum, and energy are generally formulated from first
principles (see, for example, chapters 3-5 in Gritfies| |2004). Grid cell budgets are then derived
from the fundamental parcel budgets.

The grid cells of concern for MOM4p1 have vertical sides fixed in space-time, but with the
top and bottom generally moving. In particular, the top and bottom either represent the ocean
top, ocean bottom, or a surface of constant generalized vertical coordinate. We furthermore as-
sume that at no place in the fluid do the top or bottom surfaces of the grid cell become vertical.
This assumption allows for a one-to-one relation to exist between geopotential depth z and the
generalized vertical coordinate s introduced in Section (i.e., the relation is invertible).

To establish the grid cell budget, we integrate the budget for mass conserving fluid parcels
over the volume of the cell. This section is focused on the mathematics required for integrating
the density weighted material time derivative acting on an arbitrary field

dy

Py = (W) + V- (pv). (3.129)

We start with the partial time derivative on the right hand side, and introduce Cartesian coordi-

! The value quoted by McDougall|(2003) is C% = 3989.24495292815 kg ™' °K 1.
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nates (x, y, z) for the purpose of performing the grid cell integral

fffdv p1) t_fffdxdydz PY),:
— f f dxdy / dz (p )+ (3.130)

ffdxdy ! (pY)20rz2 + (pP)10s 21 + 0 (/dz pY )]

The second equality follows by noting that the horizontal extent of a grid cell remains static, thus
allowing for the horizontal integral to be brought outside of the time derivative. In contrast, the
vertical extent has a time dependence, which necessitates the use of Leibniz’s Rule. We now use
equation (3.46)

Zp= —StZg (3.131)

which relates time tendencies of the depth of a generalized surface to time tendencies of the sur-
face itself. Equation (3.80) is next used to write

= R (3.132)

=z,|Vs|a- v,
in which we introduced the reference velocity v(™f) for a point sitting on the generalized surface.
Finally, recall equation (3.83)), which relates the area element on the surface to the horizontal pro-
jection dA = dx dy of the surface

dAm) = |zs Vs|dA. (3.133)

Introducing this area then renders

zpdA = - vIDdA 4. (3.134)

This equation relates the time tendency of the depth of the generalized surface to the normal
component of the velocity at a point on the surface. The two are related through the ratio of the
area elements. This result is now used for the top and bottom boundary terms in relation (3.130),

yielding
fffdv(plp)'t =% (fffpd‘w) —ffdf“(ﬁ) v (py). (3.135)

Hence, the domain integrated Eulerian time tendency of the density weighted field equals the time
tendency of the density weighted field integrated over the domain, minus an integral over the
domain boundary associated with transport of material across that domain, with proper account
taken for time dependence of the domain boundary.

The next step needed for volume integrating the density weighted material time derivative in
equation (3.129) involves the divergence of the density weighted field

fffdvv (pvy) = ffdA a-v(pi), (3.136)
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which follows from Gauss” Law. Combining this result with equation (3.135)) leads to the relation

fffpdvilltp =% <fffpde> +ffdA<ﬁ)ﬁ'(V—~V(ref))(ptl))- (3.137)

Hence, the mass weighted grid cell integral of the material time derivative of a field is given by
the time derivative of the mass weighted field integrated over the domain, plus a boundary term
that accounts for the transport across the domain boundaries, with allowance made for moving
domain boundaries. The manipulations leading to this result focused on an interior grid cell. The
result, however, holds in general for a cell that abuts either the ocean surface or ocean bottom.
For the ocean bottom, the boundary term vanishes since the bottom has a zero reference velocity,
and there is no normal flow of fluid across the bottom. For the ocean surface, we employ rela-
tion that defines the dia-surface transport of mass across the ocean surface in a manner
analogous to the dia-surface transport across an interior surface.

3.5 Basics of the finite volume method

The finite volume method for formulating the discrete equations of an ocean model has been
incorporated to the ocean modelling literature only since the late 1990’s. The work of Adcrott et al.
(1997) is a canonical example of how this method can be used to garner a better representation
of the solid earth boundary. In this section, we briefly outline the basis for this method. The
interested reader may wish to look at chapter 6 of the book by Hirsch! (1988), or the chapter by
Machenhauer et al.| (2009) for a more thorough introduction, or one of the growing number of
monographs devoted exclusively to the method.

The general equations of fluid mechanics can be represented as conservation equations for
scalar quantities (e.g., seawater mass and tracer mass) and vector quantities (e.g., linear momen-
tum). As just detailed in Section the conservation law for a scalar ¥ over an arbitrary fluid
region can be put in the form

o ([[[war) = [[anwnes [ sav .

The volume integral is taken over an arbitrary fluid region, and the area integral is taken over the
bounding surface to that volume, with outward normal fi. The flux F penetrates the surface and
acts to alter the scalar, whereas internal sources S contribute to changes in the scalar throughout
the interior of the domain. The budget for the vector linear momentum can be written in this form,
with the addition of body forces that act similar to the source term written here (see Section [3.8).
Fundamental to the finite volume method is that the fluxes contribute only at the boundary to the
domain, and not within the interior as well. Hence, the domain can be subdivided into arbitrary
shapes, with budgets over the subdivisions summing to recover the global budget.
A discrete finite volume analog to equation (3.138), for a region labeled with the integer ], takes
the form
o (Vi¥y)=— Y (Ann-F)+ V)8 (3.139)

sides
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Quantities with the integer | subscript refer to the discrete analogs to the continuum fields and the
geometric factors in equation (3.138). In particular, we define the discrete finite volume quantities

= f f f av (3.140)

= fﬁfdsz (3.141)
_Jlfdvs (3.142)

= [rav

Again, it is due to the conservation form of the fundamental fluid dynamic equation that
allows for a straightforward finite volume interpretation of the discrete equations. Notably, once
formulated as such, the problem shifts from fundamentals to details, with details differing on
how one represents the subgrid scale behaviour of the continuum fields. This shift leads to the
multitude of discretization methods available for such processes as transport, time stepping, etc.
In the following, we endeavour to write the fluid equations of the ocean in the conservation form
(8.138). Doing so then renders a finite volume framework for the resulting discrete or semi-discrete
equations.

When working with nonBoussinesq budgets, the finite volume interpretation applies directly
to the tracer mass per volume, p C, rather than to the tracer concentration C. The same applies
to the linear momentum per volume, pv, rather than to the velocity v. That is, the finite volume
model carries the discrete fields p;, (0 C); and (pv);, defined as

fg ddvvp (3.143)
oy T »
(ov) = [ dvev, (3.145)

PYI= T av

As we will see in the discussions in Sections[3.6|and 3.8 we actually work with a slightly modified
finite volume suite of variables, whereby the finite volume interpretation applies to the seawater
mass per horizontal area, the tracer mass per horizontal area and linear momentum per horizontal
area

B ff dA [dzp
(dzp); = ff 1A (3.146)
dA [dzpC
(dzpC) = foAZP (3.147)
(dzpv); = M, (3.148)

[[daA

where dz is the thickness of a grid cell, and dA = dxdy is the horizontal projection of its area.
The inclusion of thickness facilitates the treatment of grid cells whose thickness is a function of
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time, such as in MOM4p1. Note that to reduce notational clutter, we employ the same symbol for
the continuum field as for the discrete, so we drop the | subscript in the following.

3.6 Mass and tracer budgets over finite regions

The purpose of this section is to extend the kinematics discussed in the previous sections to the
case of mass and tracer budgets for finite domains within the ocean fluid. In the formulation of
ocean models, these domains are thought of as discrete model grid cells.

3.6.1 General formulation

As described in Section the tracer concentration C represents a mass of tracer per mass of
seawater for material tracers such as salt or biogeochemical tracers. Mathematically, this definition
means that for each fluid parcel,

mass of tracer

~ mass of seawater
pedv (3.149)

- pdV’

where pc is the mass density of tracer within the fluid parcel. In addition to material tracers, we
are concerned with a thermodynamical tracer that measures the heat within a fluid parcel. In this
case, C is typically taken to be the potential temperature. However, the work of McDougall| (2003)
prompts us to consider a modified temperature known as conservative temperature, which more
accurately measures the heat within a fluid parcel and is transported, to within a very good ap-
proximation, in a manner directly analogous to material tracers. We discussed these temperature
variables in Section 3.3l

Given these considerations, the total tracer mass within a finite region of seawater is given by

the integral.
tracer mass in a region = f f f pcdV

- [[[ coav.

Correspondingly, the evolution of tracer mass within a Lagrangian parcel of mass conserving fluid
is given by (see Section 5.1 of (Gritfies| 2004)

(3.150)

pd—c =V J+pSO, (3.151)

dt
where S(©) is a tracer source in the region, with units of tracer concentration per time. The tracer
flux J arises from subgrid scale transport of tracer in the absence of mass transport. Such transport
in MOM4p1 consists of diffusion and/or unresolved advection. As discussed in Section[3.2.3} this
flux is computed with respect to the center of mass of a fluid parcel. It therefore vanishes when
the tracer concentration is uniform, in which case the tracer budget reduces to the mass budget

(B.7).
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We now develop a regional budget for tracer mass over a grid cell. For this purpose, apply the
general result (3.137) relating the material time derivative to a regional budget, to render

o (fffcmv) :fffS(C)pdV—ffdA(ﬁ)ﬁ-[(V—Vref)pC+]]. (3.152)

Again, the left hand side of this equation is the time tendency for tracer mass within the finite
sized grid cell region. When the tracer concentration is uniform, the SGS flux vanishes, in which
case the tracer budget (3.152) reduces to the finite domain mass budget

o (fffpdV) :fff$<M>pdV—ffdA(ﬁ)ﬁ-[(v—vfef)p]. (3.153)

In addition to the tracer flux J, it is convenient to define the tracer concentration flux F via
J=pF, (3.154)

where the dimensions of F are velocity x tracer concentration.

In a manner analogous to our definition of a dia-surface velocity component in Section [3.1.8}
it is useful to introduce the dia-surface SGS flux component. For this purpose, consider the tracer
mass per time crossing a surface of constant generalized vertical coordinate, where this transport
arises from SGS processes. Manipulations similar to those used to derive the dia-surface velocity
component lead to

(SGS tracer mass through surface) /(time) = dA( ) fi - J
=2z,Vs-Jdxdy (3.155)
=(2—S)-Jdxdy,

where S is the slope vector for the generalized surface defined in equation (3.90). We are therefore
led to introduce the dia-surface SGS tracer flux

dA(ﬁ)ﬁ-]
dA

=2z3Vs-]

=(2-95)],

](S) =
(3.156)

where dA = dx dy is the horizontal cross-sectional area. In words, | (%) is the tracer mass per time
per horizontal area penetrating surfaces of constant generalized vertical coordinate via processes
that are unresolved by the dia-surface velocity component w'®).

3.6.2 Budget for an interior grid cell

Consider the budget for a region bounded away from the ocean surface and bottom, such as that
shown in Figure We have in mind here a grid cell within a discrete numerical model. There
are two assumptions that define a grid cell for our purposes.

e The sides of the cell are vertical, so they are parallel to Z and aligned with the horizontal
coordinate directions (%, §). Their horizontal positions are fixed in time.
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S$=8¢-1

Grid cell k X,y

Figure 3.4: Schematic of an ocean grid cell labeled by the vertical integer k. Its sides are vertical
and oriented according to X and y, and its horizontal position is fixed in time. The top and bottom
surfaces are determined by constant generalized vertical coordinates s;_; and s, respectively.
Furthermore, the top and bottom are assumed to always have an outward normal with a nonzero
component in the vertical direction z. That is, the top and bottom are never vertical. We take the
convention that the discrete vertical label k increases as moving downward in the column, and
grid cell k is bounded at its upper face by s = s;_; and lower face by s = s;.

e The top and bottom of the cell are defined by surfaces of constant generalized vertical co-
ordinate s = s(x, y,z,t). The generalized surfaces do not overturn, which means that s , is
single signed throughout the ocean.

These assumptions lead to the following results for the sides of the grid cell

TRACER MASS ENTERING CELL WEST FACE = ff dydz (upC+ pF¥) (3.157)
X=X1

TRACER MASS LEAVING CELL EAST FACE = — ff dydz (upC+pF) (3.158)
X=Xp

where x1 < x < x, defines the domain boundaries for the east-west coordinatest] Similar results
hold for the tracer mass crossing the cell in the north-south directions. At the top and bottom of
the grid cell

TRACER MASS ENTERING CELL BOTTOM FACE = ff dxdy p (w® C + F®)) (3.159)
=

S=

12We use generalized horizontal coordinates, such as those discussed in |Griffies| (2004). Hence, the directions east,
west, north, and south may not correspond to the usual geographic directions. Nonetheless, this terminology is useful
for establishing the budgets, whose validity is general.
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TRACER MASS LEAVING CELL TOP FACE = — ff dxdy p (w® C+ F®). (3.160)

5=5k—1

To reach this result, we used a result from Section to write the volume flux passing through
the top face of the grid cell

dA - (v — v = 0l dxdy, (3.161)

with w(®) = zds/dt the dia-surface velocity component. A similar relation holds for the bottom
face of the cell. The form of the SGS flux passing across the top and bottom is correspondingly
given by

dAg f-J =] dxdy, (3.162)

which follows from the general expression for the dia-surface tracer flux.

In a model using the generalized coordinate s for the vertical, it is sometimes convenient to do
the vertical integrals over s instead of z. For this purpose, recall that with z ; single signed, the
vertical thickness of a grid cell is given by equation (3.40), repeated here for completeness

dz =z,ds. (3.163)

Bringing these results together, and taking the limit as the volume of the cell in (x, y, s) space goes
to zero (i.e., dxdy ds — 0) leads to

01(zspC) =z pS(C) —Vs-[zsp(uC+F)|—0sp (w(s) C+ F(S))] (3.164)

Notably, the horizontal gradient operator V; is computed on surfaces of constant s, and so it is
distinct generally from the horizontal gradient V, taken on surfaces of constant z.

As indicated at the end of Section we prefer to work with thickness weighted quantities,
given the general time dependence of a model grid cell in MOM4p1. Hence, as an alternative to
taking the limit as dxdyds — 0, consider instead the limit as the time independent horizontal
area dxdy goes to zero, thus maintaining the time dependent thickness dz = zds inside the
derivative operators. In this case, the thickness weighted tracer mass budget takes the form

94(dzpC) =dzpS©) — V- [dzp(uC+F)] — [p(w® C+ FNsms, | + [ (@' C+ FO) oy, . (3.165)

Similarly, the thickness weighted mass budget is

di(dzp) = dzpS™ _ v, . (dzpu) — (p w(s))s:sk,l + (pw(s))szsk. (3.166)

For clarity, we note that the horizontal divergence operator acting on the mass transport takes the
form

1 0 1 9
Vs-(dzpu):d—ya(dydzpu)jLa@(dxdzpv). (3.167)

The mass source S™M) has units of inverse time that, for self-consistency, must be related to the
tracer source via

SM = s©(c =1). (3.168)

Additionally, the SGS tracer flux vanishes with a uniform tracer

F(C=1)=0. (3.169)
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Note that by setting the tracer concentration in equation to a uniform constant, SGS transort
fluxes vanish, thus revealing the mass conservation budget. This procedure for deriving the mass
budget from the tracer budget follows trivially from the definition of the tracer concentration
given by equation (3.149). It represents a compatibility condition between the discrete budgets, and
this condition is critical to maintain within a numerical model in order to respect tracer and mass
conservation in the simulation. We have more to say about the compatibility condition in Section
3.6.8

One reason that the thickness weighted budget given by equation is more convenient
than equation is that equation expresses the budget in terms of the grid cell thick-
ness dz, rather than the specific thickness zs. Nonetheless, this point is largely one of style and
convenience, as there is no fundamental reason to prefer one form over the other for purposes of
developing the discrete equations of an ocean model.

3.6.3 Fresh water budget

Seawater is comprised of freshwater with a relatively fixed ratio of various salts. It is common to
consider the budget for the concentration of these salts, which is described by the tracer equation
(.165). As a complement, it may be of interest to formulate a budget for freshwater. In this case,
we consider the mass of fresh water within a fluid parcel

mass of fresh water = mass of seawater — mass of salt
=pdV (1-5) (3.170)
=pdV W,

where S is the salinity (mass of salt per mass of seawater), and
W=1-S (3.171)

is the mass of fresh water per mass of seawater. Results from the tracer budget considered in
Section allow us to derive the following budget for fresh water within an interior ocean
model grid cell

9 (dzpW) =dzp(SM -8 — vV, . [dzp(uW —F)]

3.172
- [p (w(s) W — F(S))]S:Skq + [:0 (w(s) W — F(S))]S:Sk' ( )

In these relations, the SGS tracer flux components F and F () are those for salt, and S(5) is the salt
source. Equation (3.172) is very similar to the tracer equation (3.165), with modified source term
and negative signs on the SGS flux components.

3.6.4 The ideal age tracer

Thiele and Sarmiento (1990) and England|(1995) consider an ideal age tracer for Boussinesq fluids.
We consider the generalization here to nonBoussinesq fluids, in which

dA

pa?+VJ:p$m, (3.173)
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where the age tracer A has dimensions of time and it is initialized globally to zero. It is character-

ized by the dimensionless clock source & (4) which takes the values
(A) _ 0 ifz= n
S { 1ifz <, (3.174)

In a finite difference model, the boundary condition at z = 7 is applied at the top grid cell k =
1. In MOM4pl, various age tracers can be defined that differ by the region that their boundary
condition is set to zero. Given these prescriptions, A measures the age, in units of time, that a
water parcel has spent away from the region where it was set to zero. Therefore, visual maps of A
are useful to deduce such physically interesting properties as ventilation times.

From equation (3.165), the budget for tracer mass per area in a grid cell is given by

d(dzpA) =dzpSW — V- [dzp(uA +F)]
~[p (@9 A+ F®))ses, + [p () A+ FO)] oy,

In practice, the clock source is added to the age tracer at the very end of the time step, so that it is
implemented as an adjustment process. In this way, we remove the ambiguity regarding the time
step to evaluate the p dz factor that multiplies the age source.

(3.175)

3.6.5 Budgets without dia-surface fluxes

To garner some experience with tracer budgets, it is useful to consider the special case of zero dia-
surface transport, either via advection or SGS fluxes, and zero tracer/mass sources. In this case,
the thickness weighted mass and tracer mass budgets take the simplified form

di(dzp) =—V;-(dzpu) (3.176)
di(dzpC) =—V,-[dzp(uC+F)]. (3.177)

The first equation says that the time tendency of the thickness weighted density (mass per area) at
a point between two surfaces of constant generalized vertical coordinate is given by the horizontal
convergence of mass per area onto that point. The transport is quasi-two-dimensional in the sense
that it is only a two-dimensional convergence that determines the evolution. The tracer equation
has an analogous interpretation. We illustrate this situation in Figure As emphasized in our
discussion of the material time derivative (3.93), this simplification of the transport equation does
not mean that fluid parcels are strictly horizontal. Indeed, such is distinctly not the case when the
surfaces are moving.

A further simplification of the mass and tracer mass budgets ensues when considering adia-
batic and Boussinesq flow in isopycnal coordinates. We consider p now to represent the constant
potential density of the finitely thick fluid layer. In this case, the mass and tracer budgets reduce
to

di(dz) =—V, - (dzu) (3.178)

0;(dzC) =—V,-[dz(uC+F)]. (3.179)

Equation (3.178) provides a relation for the thickness of the density layers, and equation (3.179) is
the analogous relation for the tracer within the layer. These expressions are commonly used in the

construction of adiabatic isopycnal models, which are often used in the study of geophysical fluid
mechanics of the ocean.
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Figure 3.5: Schematic of the horizontal convergence of mass between two surfaces of constant
generalized vertical coordinates. As indicated by equation (3.176), when there is zero dia-surface
transport, it is just the horizontal convergence that determines the time evolution of mass between
the layers. Evolution of thickness weighted tracer concentration in between the layers is likewise
evolved just by the horizontal convergence of the thickness weighted advective and diffusive
tracer fluxes (equation (3.177)). In this way, the transport is quasi-two-dimensional when the dia-
surface transports vanish. A common example of this special system is an adiabatic ocean where
the generalized surfaces are defined by isopycnals.

3.6.6 Cells adjacent to the ocean bottom

z

Grid cell k=kbot

z=-H

Figure 3.6: Schematic of an ocean grid cell next to the ocean bottom labeled by k = kp. Its top
face is a surface of constant generalized vertical coordinate s = sypo—1, and the bottom face is
determined by the ocean bottom topography at z = —H where syt (%, y,t) = s(x,y,z = —H, t).

For a grid cell adjacent to the ocean bottom (Figure 3.6), we assume that just the bottom face
of this cell abuts the solid earth boundary. The outward normal fiy to the bottom is given by
equation (3.34), and the area element along the bottom is

dAy = |V(z+ H)|dxdy. (3.180)

Hence, the transport across the solid earth boundary is

—ffdAHﬁH-(vpC—H):ffdxdy(VH+i)-(vpC+J). (3.181)

We assume that there is zero advective mass flux across the bottom, in which case the advective
flux drops out since v - (VH + 2) = 0 (equation (3.36)). However, the possibility of a nonzero
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geothermal tracer transport warrants a nonzero SGS tracer flux at the bottom, in which case the
bottom tracer flux is written

Qlpwy = (VH+12) 7. (3.182)
The corresponding thickness weighted budget is given by
3 (dzpC) = dzpS© —V, . [dzp(uC+F)] - [p (w®) C+z4Vs- F)} + lefgt), (3.183)
5=Skbot—1

and the corresponding mass budget is

3 (dzp) =dzpS™M —V, - (dzpu) — (pw)s—gy,, , + ng))t), (3.184)
where QEII;/([) )t) allows for the possibility of mass entering through geothermal boundary sources.

For brevity, we drop this term in the following, since it generally is ignored for ocean climate
modeling.

3.6.7 Cells adjacent to the ocean surface

/Szaop\/ =

Grid cell k=1
X,y

z=-H

S=%=1

Figure 3.7: Schematic of an ocean grid cell next to the ocean surface labeled by k = 1. Its top face
is at z = 1, and the bottom is a surface of constant generalized vertical coordinate s = s;_;.

For a grid cell adjacent to the ocean surface (Figure[3.7), we assume that just the upper face of
this cell abuts the boundary between the ocean and the atmosphere or sea ice. The ocean surface
is a time dependent boundary with z = n(x, y,t). The outward normal fi,, is given by equation
(3.57), and its area element d A, is given by equation (3.58).

As the surface can move, we must measure the advective transport with respect to the moving
surface. Just as in the dia-surface transport discussed in Section we consider the velocity of

a reference point on the surface
v = w4 g, (3.185)

Since z = 1) represents the vertical position of the reference point, the vertical component of the
velocity for this point is given by

we = (3 +u™ - V)7 (3.186)
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which then leads to
vV (z— 1) = 1. (3.187)

Hence, the advective transport leaving the ocean surface is

ffdA(ﬁ)ﬁ-( v pC = ffdxdy ni+w—u-Vn)pC
z=1]
ffdxdypwqw

where the surface kinematic boundary condition (3.66) was used. The negative sign on the right
hand side arises from our convention that g, > 0 represents an input of water to the ocean do-
main. We can summarize this result with the local relation

(3.188)

dAg A - (v — veef
pwqwz—p ()dé ) at z=rn, (3.189)

where again dA = dx dy is the horizontal area element. This relation exposes the connection be-
tween the water flux g, at the ocean surface, and the more general dia-surface velocity component
defined by equation (3.88). In summary, the tracer flux leaving the ocean free surface is given by

ffdA(ﬁ)ﬁ-[(v—vref)pC+]] :ffdxdy(—pwqwC+V(z—n)-]). (3.190)

z=n zZ=n

In equation (3.190), we formally require the tracer concentration precisely at the ocean surface
z = 1. However, as mentioned at the start of Section it is actually a fiction that the ocean
surface is a smooth mathematical function. Furthermore, seawater properties precisely at the
ocean surface, known generally as skin properties, are generally not what an ocean model carries
as its prognostic variable in its top grid cell. Instead, the model carries a bulk property averaged
over roughly the upper few tens of centimeters.

To proceed in formulating the boundary condition for an ocean climate model, we consider
there to be a boundary layer model that provides us with the total tracer flux passing through the
ocean surface. Developing such a model is a nontrivial problem in air-sea and ice-sea interaction
theory and phenomenology. For present purposes, we do not focus on these details, and instead
just introduce this flux in the form

Q) = —py gu Cw + Qi (3.191)

where C,, is the tracer concentration within the incoming water g,,. The first term on the right
hand side represents the advective transport of tracer through the surface with the fresh water (i.e.,

ice melt, rivers, precipitation, evaporation). The term Qggrb) arises from parameterized turbulence
and/or radiative fluxes, such as sensible, latent, shortwave, and longwave heating appropriate for
the temperature equation. A positive value for Q 51gnals tracer leaving the ocean through its
surface. In the special case of zero fresh water ﬂux then

VE-m-J=Quup if qw=0. (3.192)
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In general, it is not possible to make this identification. Instead, we must settle for the general
expression

ffdA(ﬁ) A-[(v—ve)pC+]] = ffdxdy(—pw gw Cw + Qgtcu)rb)). (3.193)
z=1

zZ=n

The above results lead to the thickness weighted tracer budget for the ocean surface grid cell

9 (dzpC) =dzpS© —V,-[dzp(uC+F)]
S url (3-194)
+ {p (w()C—i—z,s Vs-F)} + (ow Gw CW—QEtC)b)),

5=5k=1

and the corresponding mass budget

9t (dzp) =dzpS™M — V- (dzpu) + (pw)s—s,_, + Pw Gw- (3.195)

3.6.8 Compatability between vertically integrated mass and tracer budgets

In Section[3.6.2] we considered issues of compatibility between the tracer and mass budgets within
a grid cell. Such compatibility follows trivially from the definition of tracer concentration given in
Section We briefly revisit compatibility here, by focusing on the vertically integrated tracer
and mass budgets.

Combining the surface tracer budget (3.195), the bottom budget (3.183), and interior budget
(3.165), renders the vertically integrated tracer budget

o (ch) =Y dzpS© —v;,. (Zdzp(uC+F)>
k k k

(turb) (bott)
+ (.Ow qw Cw — Q(C) + Q(c) ) .

(3.196)

As expected, the only contributions from vertical fluxes come from the top and bottom boundaries.
Furthermore, by setting the tracer concentration to a uniform constant, in which case the SGS
turbulent terms vanish, the tracer budget reduces to the vertically integrated mass budget

0 (Z de> =Y dzpS™M —V, U + py qu, (3.197)
k k

where
U? = Z dzpu (3.198)
k

is the discrete form of the vertically integrated horizontal momentum per volume defined by
equation (3.22). As for the individual grid cells, this vertically integrated compatiblity between
tracer and mass budgets must be carefully maintained by the space and time discretizations used
in an ocean model. Otherwise, conservation properties of the model will be compromised (Grifties
et al.,[2001).
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3.7 Forces from pressure

Pressure is a contact force per area that acts in a compressive manner on the boundary of a finite
fluid domain (e.g., see Figure [3.8). Mathematically, we have

Fpress = — f f dA B p, (3.199)

where p is the pressure (with units of a force per area) acting on the boundary of the domain
with outward normal fi and area element dA ). The minus sign accounts for the compressive
behaviour of pressure. The accumulation of contact pressure forces acting over the bounding area
of the domain leads to a net pressure force acting on the domain.

Through use of the Green-Gauss theorem of vector calculus, we can equivalently consider
pressure to exert a body force per area at each point within the domain, so that

Fpress = — f f f dv v p, (3.200)

where dV is the volume element. That is, the volume integral of the pressure gradient body force
over the domain yields the net pressure force.

In the continuum, the two formulations and yield identical pressure forces. Like-
wise, in a finite volume discretization, the two forms are identical (e.g., Section 6.2.2 of Hirsch,
1988). But with finite differences, as used in earlier versions of MOM for pressure forces, the two
forms can lead to different numerical methods. In the remainder of this section, we further explore
the computation of pressure forces according to the two different formulations. Further details of
discrete expressions are presented in Chapter[d]

3.71 The accumulation of contact pressure forces

Pressure acts as a contact or interfacial stress on the sides of a finite region of fluid. In particular,
the total pressure force acting on the grid cell in Figure3.]is given by summing the pressure forces
acting on the six cell faces

1:"pressure - Fx=x1 + Fx:xz + Fy=y1 + Fy:y2 + Fs=sl + Fs=sz~ (3~201)

The pressure acting on faces with a zonal normal can be written

21
Fry, = & / dy / dzp (3.202)
22 x=x1
21
Fry, = % / dy / dzp (3.203)
22

X=X
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Figure 3.8: Schematic of a grid cell bounded at its top and bottom in general by sloped surfaces and
vertical side walls. The top and bottom surfaces can represent linear piecewise approximations
to surfaces of constant generalized vertical coordinates, with s = s; at the top surface and s =
sy at the bottom surface. They could also represent the ocean surface (for the top face) or the
ocean bottom (for the bottom face). The arrows represent the pressure contact forces that act
in a compressive manner along the boundaries of the grid cell and in a direction normal to the
boundaries. These forces arise from contact between the shown fluid volume and adjacent regions.
Due to Newton’s Third Law, the pressure acting on an arbitrary fluid parcel A due to contact with
a parcel B is equal and opposite to the pressure acting on parcel B due to contact with parcel A. If
coded according to finite volume budgets, as in Lin/ (1997) or Adcroft et al|(2008), this law extends
to the pressure forces acting between grid cells in an ocean model.

where the vertical integral extends from the bottom face at z, = z(x, y,s = s,,t) to the top face at
z1 = z(x,y,s = s1,t). Likewise, the meridional pressure forces are

21
Fyoy =9 ( [dx [z p) (3.204)
22

y=hn

21
Fy—y, = —¥ /dx /dzp . (3.205)
= y=y2

On the top face, the pressure force is given by
(3.206)

Note the contribution from the generally non-horizontal top face as represented by the two di-
mensional vector
Vsz =S8, (3.207)

which is the slope of the surface of constant generalized vertical coordinate relative to the hori-
zontal plane. The pressure force on the bottom face has a similar appearance

Fo_,, = (/dy/dxp(—vszu)) . (3.208)

—>2
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If the top and bottom faces are horizontal, as for z-models, the pressure force acting at s = s; and
s = s acts solely in the vertical direction. More generally, the pressure force per area on the top
and bottom faces is oriented according to the slope of the faces and so has a nontrivial projection

into all three directions.
3 p(x,s1)

A

p(x1,s) p(x2,s)

C
p(x,52)

Figure 3.9: The sides of the grid cell, with the slopes top and bottom surfaces more enhanced here
than in Figure The corners are denoted A, B, C, and D, and oriented in a counterclockwise
manner. This is the orientation appropriate for performing a contour integral in order to compute
the pressure force acting on the area.

To garner a sense for how pressure acts on the face of a grid cell, consider the case where the
top surface of a grid cell rises to the east as shown in Figure[3.9} In this case, the pressure force per
area in the x — z plane takes the form

PRESSURE FORCE PER AREA ON TOP FACE = —p [2 — (dz/dx); X]. (3.209)

Since (dz/0x)s > 0 for this example, the pressure force per area has a positive component in the %
direction, as indicated by the arrow normal to the top surface in Figure

When the top surface represents the surface of the ocean at z = 1, the pressure p is the applied
pressure p, arising from any media above the ocean, such as the atmosphere and sea ice. In this
case,

PRESSURE FORCE PER AREA ON OCEAN SURFACE = —p, V (z — 1)

3.210
= pa(2— V), (3210

where V11 is the slope of the ocean surface. Likewise, if the bottom of the grid cell is bounded by
the solid earth boundary,

PRESSURE FORCE PER AREA ON OCEAN BOTTOM = P}, V (z + H)

3.211
= Pb (2+VH), ( )

where VH is the bottom slope.
A sum of the pressure forces acting on the six faces of the grid cell determines the acceleration
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due to pressure acting on a grid cell. Organizing the forces into the three directions leads to

Foressure = ( / dy / dz p) — ( / dy 7dz p) (3.212)

X=X

+ (/ dy /dxz,x P) - (/ dy 7dxz,x p) (3.213)

S5=Sp

Flressure = (/ dx /dz p) — (/ dx 7dz p) (3.214)

Y=y

+ (/ dx /d]/Z,y P) - (/ dx 7dyz,y P) (3.215)

S=Sp

pressure = (ffdx dy p)s . (ffdx dy p> . (3.216)

Making the hydrostatic approximation, whereby the vertical momentum equation maintains the
inviscid hydrostatic balance, allows us to note that the difference in pressure between the top and
bottom surfaces of the region is determined by the weight of fluid between the surfaces,

ffdxdyp—ffdxdyp:g/pdV. (3.217)

S§=8p 5=81

It is notable that this expression relates the difference in contact forces acting on the domain
boundaries to the integral of a body force (the gravitational force) acting throughout the domain
interior.

We now work on reformulating the horizontal pressure forces into a manner amenable to finite
volume discretization. Referring to Figure we can write the horizontal forces in a manner than
builds in the orientation of pressure via a counterclockwise contour integral

—— ( [ay /dzp) - ( /dyjdxz,xp)
[Jor o) ~{forfocer)
oie] (gl
[for] o)

e f e

ABCD

S=8p

_ (/dyZdzp)

5=851



74 CHAPTER 3. FUNDAMENTAL EQUATIONS

In the penultimate step, we set z , dx = dz, which is an relation valid along the particular contour
ABCD. That is, in all the integrals, the differential increment dz is taken along the contour sur-
rounding the cell. The counter-clockwise orientation of the integral follows from the compressive
nature of pressure. Since the contour of integration is closed, we have the identity

Fgressure :_/dy f de
ABCD

:/dy j{ zdp.

ABCD

(3.219)

The contour integral form of the pressure force is key to providing a finite volume discretization
that is consistent with Newton’s Third Law (Lin| [1997; |Adcroft et al. [2008). What is needed next
is an assumption about the subgrid profiles for pressure and geopotential ® = gz in order to
evaluate the contour integral.

3.7.2 Pressure gradient body force in hydrostatic fluids

In the early finite difference formulations of the pressure force, modelers discretized the gradient
of pressure and performed certain grid averages so that the gradient occurs at the appropriate grid
point. Guidance to the discretization details was provided by concerns of energetic consistency
(Chapter , whereby work done by pressure in the discrete algorithm is balanced by buoyancy
work (Bryan, [1969). This general philosophy still guides the formulation of the pressure force in
MOM4pl.

As with the contact forces formulation, in a hydrostatic fluid we are only concerned with hor-
izontal pressure gradients, since the vertical momentum equation is reduced to the inviscid hy-
drostatic balance. Hence, we are concerned with the horizontal acceleration arising from pressure
differences in a hydrostatic and non-Boussinesq fluid, and this acceleration can be writte

P_l Vzp = P_l (Vs —Vsz az) p
=p 'Vsip+gVsz (3.220)
:pilvsp'kvsq)/

where the hydrostatic relation p, = —p g was used to reach the second equality, and
O=gz (3.221)

is the geopotential. To reach this result, we used the expression

VZ — VS - VS Zaz, (3.222)

which relates the lateral gradient operator acting on constant depth surfaces, V, to the lateral
operator acting on surfaces of constant generalized vertical coordinate, V.

Depending on the choice for the vertical coordiante s, discretizations of the pressure gradient
body force can result in both terms in equation being large and of opposite sign in many

13For a Boussinesq fluid, equation (3.220) is modified by a factor of p/p,.
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regions. This issue is especially pernicious for terrain following coordinates in regions of non-
trivial topographic slope (e.g., (Griffies et al.,|2000a). Hence, this calculation exposes the discrete
pressure gradient force to nontrivial numerical truncation errors which can lead to spurious nu-
merical pressure gradients and thus to incorrect simulated currents. Significant effort has gone
into reducing such pressure gradient errors, especially in terrain following models where undula-
tions of the coordinate surfaces can be large with realistic topography (e.g., see Figure [6.3). Some
of these issues are summarized in Section 2 of |(Griffies et al.| (2000a).

The pressure gradient force acting at a point represents the infinitesimal limit of a body force.
We see this fact by multiplying the pressure gradient acceleration by the mass of a fluid parcel,
which leads to the pressure force acting at a point in the continuum

PRESSURE GRADIENT FORCE = —(pdV) p~ ! V,p
— AV V.p (3.223)

Hence, the pressure force acting on a finite region is given by the integral over the extent of the
region

PRESSURE GRADIENT FORCE OVER REGION = — ﬂf(p dv) p! V.p

—[[[ avvr

As stated earlier, a finite volume discretization of this force will take the same form as the
finite volume discretization of the pressure contact force discussed in Section as it should
due to the Green-Gauss Theorem invoked to go from equation (3.199) to (3.200). However, these
formulations generally do not provide for a clear energetic interpretation as promoted by the finite
difference formulation of Bryan| (1969).

(3.224)

3.8 Linear momentum budget

The purpose of this section is to formulate the budget for linear momentum over a finite region
of the ocean, with specific application to ocean model grid cells. The material here requires many
of the same elements as in Section but with added richness arising from the vector nature
of momentum, and the additional considerations of forces from pressure, friction, gravity, and
planetary rotation. Note that we initially formulate the equations using the pressure contact force,
as this provides a general formulation. Afterwards, we specialize to hydrostatic fluids, and thus
write the pressure force as a gradient (Section , as commonly done in primitive equation
ocean models
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3.8.1 General formulation

The budget of linear momentum for a finite region of fluid is given by the following relation based
on Newton’s second and third laws

([ avee) =[] avsvr= [f amincviox oz
—|—ffdA(ﬁ)(ﬁ-T—ﬁp)—ffdep[gi—I—(f—F/\/l)i/\v]. .

The left hand side is the time tendency of the region’s linear momentum. The first term on the right
hand side, S(), is a momentum source, with units momentum per volume per time. This term
is nonzero if, for example, the addition of mass to the ocean via a source occurs with a nonzero
momentum. Often, it is assumed that mass is added with zero velocity, and so does not appear
as a momentum source. The second term is the advective transport of linear momentum across
the boundary of the region, with recognition that the region’s boundaries are generally moving
with velocity v'*f. The third term is the integral of the contact stresses due to friction and pressure.
These stresses act on the boundary of the fluid domain. We already discussed the forces from
pressure in Section [3.7] The stress tensor 7 is a symmetric second order tensor that parameterizes
subgrid scale transport of momentum. The final term on the right hand side is the volume integral
of body forces due to gravity and the Coriolis forceE] In addition, there is a body force arising
from the nonzero curvature of the spherical space. This curvature leads to the advection metric
frequency (see equation (4.49) of Gritfies| (2004))

M =v0dsIndy —udyIndx. (3.226)

In spherical coordinates where
dx = (r cos¢) dA (3.227)
dy =rde¢, (3.228)

with 7 the distance from the earth’s center, A the longitude, and ¢ the latitude, the advective metric
frequency takes the form
M = (u/r) tan ¢. (3.229)

The advection metric frequency arises since linear momentum is not conserved on the sphereE]
Hence, the linear momentum budget picks up this extra term that is a function of the chosen lateral
coordinates.

3.8.2 An interior grid cell

At the west side of a grid cell, A = —X whereas i = X on the east side. Hence, the advective
transport of linear momentum entering through the west side of the grid cell and that which is

14The wedge symbol A represents a vector cross product, also commonly written as x. The wedge is typically used
in the physics literature, and is preferred here to avoid confusion with the horizontal coordinate x.

15Linear momentum is not conserved for ideal flow on a sphere. Instead, angular momentum is conserved for ideal
fluid flow on the sphere in the absence of horizontal boundaries (see Section 4.11.2 of |Griffies| (2004)).
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leaving through the east side are given by

TRANSPORT ENTERING FROM WEST = f f dydszsu(pv) (3.230)
X=X1
TRANSPORT LEAVING THROUGH EAST = — ff dydszsu(pv). (3.231)
X=X

Similar results hold for momentum crossing the cell boundaries in the north and south directions.
Momentum crossing the top and bottom surfaces of an interior cell is given by

TRANSPORT ENTERING FROM THE BOTTOM = ff dxdy w® (pv) (3.232)

S=Sp

TRANSPORT LEAVING FROM THE TOP = — ff dxdy w® (pv). (3.233)
oz

=s1

Forces due to the contact stresses at the west and east sides are given by

CONTACT FORCE ON WEST SIDE = — ff dydszs(Xx-T—%Xp) (3.234)
X=

X1
CONTACT FORCE ON EAST SIDE = ff dydszs(X-T—%Xp) (3.235)
o

=X

with similar results at the north and south sides. At the top of the cell, dA)f = Vsdxdy
whereas dA ) i = —Vsdx dy at the bottom. Hence,

CONTACT FORCE ON CELL TOP = ff dxdy zs(Vs-t—pVs) (3.236)

5=S5k-1

CONTACT FORCE ON CELL BOTTOM = — ff dydszs (Vs -t —pVs). (3.237)
=S

5=5k

Bringing these results together, and taking limit as the time independent horizontal area dxdy —
0, leads to the thickness weighted budget for the momentum per horizontal area of an interior
grid cell

3t (dzpv) =dz8™) — V- [dzu (pv)] + (0 pv)s—s, — (0 pv)s—g, .
£, dz (%7 —%p)] + 9y [dz (77— §p)
+(zs (Vs T —pVs)|s=s,, — [25 (Vs T —pVs)ls=s,
—pdz[gz+ (f+ M)z Av].

(3.238)

Note that both the time and horizontal partial derivatives are for positions fixed on a constant
generalized vertical coordinate surface. Also, the pressure force as written here is a shorthand for
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the more complete contour integral formulation provided in Section 3.7) (e.g., equation (3.219)).
Additionally, we have yet to take the hydrostatic approximation, so these equations are written
for the three components of the velocity.

The first term on the right hand side of the thickness weighted momentum budget is the
momentum source, and the second is the convergence of advective momentum fluxes occurring
within the layer. We discussed the analogous flux convergence for the tracer and mass budgets in
Section The third and fourth terms arise from the transport of momentum across the upper
and lower constant s interfaces. The fifth and sixth terms arise from the horizontal convergence of
pressure and viscous stresses. The seventh and eigth terms arise from the frictional and pressure
stresses acting on the constant generalized surfaces. These forces provide an interfacial stress be-
tween layers of constant s. Note that even in the absence of frictional stresses, interfacial stresses
from pressure acting on the generally curved s surface can transmit momentum between verti-
cally stacked layers. The final term arises from the gravitational force, the Coriolis force, and the
advective frequency.

3.8.3 Cell adjacent to the ocean bottom

As for the tracer and mass budgets, we assume zero mass flux through the ocean bottom at z =
—H(x,y). However, there is generally a nonzero stress at the bottom due to both the pressure
between the fluid and the bottom, and unresolved features in the flow which can correlate or anti-
correlate with bottom topographic features (Holloway| (1999)). The area integral of the stresses
lead to a force on the fluid at the bottom

Foottom = — dxdy[V(z+H) -t —pV(z+ H)|. (3.239)
4

Details of the stress term requires fine scale information that is generally unavailable. For present
purposes we assume that some boundary layer model provides information that is schematically
written

™ =V(z+H) 1 (3.240)

where 7% is a vector bottom stress. Taking the limit as the horizontal area vanishes leads to

the thickness weighted budget for momentum per horizontal area of a grid cell next to the ocean
bottom

3 (dzpv) =dzS8™ — V- [dzu (pv)] — (0 pVv)s—s,., |,
+0y [dz (X T —Xp)]+ 9y [dz(§-T—Fp)]
+ (25 (Vs T = pVs)|smsy s (3.241)
— 7'+ p, V(z + H)
—pdz[gz+ (f+ M)z A v].

3.8.4 Cell adjacent to the ocean surface

There is a nonzero mass and momentum flux through the upper ocean surface at z = n(x, y, t), and
contact stresses are applied from resolved and unresolved processes involving interactions with
the atmosphere and sea ice. Following the discussion of the tracer budget at the ocean surface in
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Section leads to the expression for the transport of momentum into the ocean due to mass
transport at the surface

= ffdA(ﬁ) Aa-[(v—v©)pv= ffdxdypw Jw V. (3.242)

zZ=n

The force arising from the contact stresses at the surface is written

Feontact = fdedy[v(Z_T]) 'T—PV(Z—T])]. (3.243)

z=mn

Bringing these results together leads to the force acting at the ocean surface

Fsurfacezffdxdy[w.z—n)-r—pV<z—n>+pwqu1. (3.244)

z=n

Details of the various terms in this force are generally unknown. Therefore, just as for the tracer
at z = n in Section we assume that a boundary layer model provides information about the
total force, and that this force is written

Fuusiace = f f dxdy [T°F — pa V(2 — 1) + Pu e Vo, (3.245)
z=n

where vy, is the velocity of the fresh water. This velocity is typically taken to be equal to the
velocity of the ocean currents in the top cells of the ocean model, but such is not necessarily the
case when considering the different velocities of, say, river water and precipitation. The stress
T'°P is that arising from the wind, as well as interactions between the ocean and sea ice. Letting
the horizontal area vanish leads to the thickness weighted budget for a grid cell next to the ocean
surface

9t (dzpv) =dzS8W — V- [dzu (pv)] + (0 pv)ss,_,
+0x[dz (X-T—%Xp)|+dy[dz(§y - T—Yp)]
—[z2s(Vs-T—pVs)|s=g_, (3.246)
+ [T — pa V (z— 1) + Pw Gw Vw]
—pdz[gz+ (f+ M)z A V]

3.8.5 Horizontal momentum equations for hydrostatic fluids

We now assume the fluid to maintain a hydrostatic balance, which is the case for primitive equa-
tion ocean general circulation models. In this case, we exploit the pressure gradient body force as
discussed in Section[3.7.2] Specializing the momentum budgets from Sections[3.8.2}[3.8.3} and[3.8.4]
to use the hydrostatic pressure gradient force (again, interpreted according to the finite volume
form given in Section leads to the horizontal linear momentum budget for interior, bottom,
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and surface grid cells

[0+ (f+ M)2A] (pdzu) = dzS™ — V, - [dzu (pu)]
—dz(Vsp+pV; D)

+ 0y (dzX-T) 40, (dzy - T) (3.247)

[w(s)pu—z Vs Tls—s ,

+ [ pu — 25 Vs - T]s—,.

[0+ (f+ M)2A] (pdzu) =dzS™ -V, - [dzu (pu)]
—dz(Vsp+st )

+0x (dzX-T) + 9y (dzy - T) (3.248)

[w(s)pu—z Vs - Tls=syuy

_ Tbottom

[0+ (f+ M)2A] (pdzu) = dzS™ — V, - [dzu (pu)]
—dz(Vsp+pVs;0)
+ 0y (dzX-T) 40, (dzy - T) (3.249)
+ [TV 4 gy uy]
+[w® pu—z4 Vs - T]es,.

3.9 The Boussinesq budgets

We consider various depth-based vertical coordinates in Section These coordinates are used
to discretize the Boussinesq model equations where the volume of a parcel is conserved rather
than the mass. A detailed discussion of the interpretation of the Boussinesq equations in terms of
density weighted fields is given by McDougall et al.|(2002) and |Griffies| (2004). For now, we gloss
over those details by quoting the Boussinesq equations for volume, tracer, and momentum as aris-
ing from setting all density factors to the constant p,, except when multiplied by the gravitational
acceleration in the hydrostatic balance (i.e., for calculation of pressure and geopotential, the full
density is used). The density p, is a representative density of the ocean fluid. In MOM4 we set

po = 1035kg/m?, (3.250)

although this value can be changed via altering a parameter statement and thus recompiling the
code). For much of the ocean, the in situ density deviates less than 3% from 1035 kg m > (see page
47 of |Gill| (1982)).

The replacement of density in the mass, tracer, and linear momentum budgets over a grid cell
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in the ocean interior leads to the following budgets for the hydrostatic model

31(dzC) = dz8© — Vv, - [dz (uC +F)]
— (w® Cc+ F(S))s:sk,l
+ (@ C+ FO),
[0+ (f+M)2A] (podzu) = dzS™ — V, - [dzu (p,u)]
—dz(V sp—i—st )
+ 0y (dz%-T) + 9y (dzy - T)

— [ pyu—z5Vs- )=,

[w Pou — 25 Vs Tls—s,.

di(dz) = dzS™) — V- (dzu) — (w®)s—s, | + ()=,

81

(3.251)

The first equation reduces to a volume budget rather than a mass budget found for the non-
Boussinesq system. In this equation, S(V) is a volume source with units of inverse time. Likewise,
S is a velocity source (with units of acceleration). The Boussinesq equations for a grid cell

adjacent to the ocean bottom are given by

9;(dzC) = dz8© — V, - [dz (uC+F)]
— (w®) C 4 F©))
+QEIS()>t)
[0+ (f+ M)2A] (ppdzu) = dzS™ — V- [dzu (p,u)]
—dz(Vsp+pVs D)
+ 0y (dzX-T)+ 9y, (dzy - T)
— [w"® pou—2z4Vs- ]

_ Tbottom

S5=Skbot—1

S$=Skbot—1

di(dz) = dzSsW) — Vs (dzu) — (w(S))stkboffl

and the equations for a cell next to the ocean surface are

9: (dzC) =dzS8© —V, - [dz (uC +F)]
+ (@ C+F9)y,
+ (o s Coe = Q™)

0r + (f+ M)2A] (podzu) = dzS™ — V- [dzu (p, u)]

—dz(Vsp+pVs;0)
+0y(dzx-T)+ 9, (dzy - T)
+ [T+ 0 g uy]
+ [w"® pyu—2z,Vs- T]sms, -

0t (dz) = dz SV v, (dzu) + (w(s))s:sk:l + 0o Gw

(3.252)

(3.253)
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CHAPTER
FOUR

The hydrostatic pressure force

The purpose of this chapter is to detail issues related to computing the pressure force in hydrostatic
ocean models. Care is taken to split the pressure force into its slow and fast components, thus
facilitating a split of the momentum equation for use in an explicit time stepping scheme for the
momentum equation.

In Section we encountered two formulations of the pressure force. The first computes the
pressure gradient body force (Section [3.7.2), and considers the pressure force to be acting at a
point. This interpretation follows from a finite difference interpretation of the velocity equation,
following the energetic approach of Bryan! (1969) and all versions of MOM. The second formula-
tion applies a finite volume interpretation advocated in Chapter 3} with particular attention given
to the contour integral form of pressure as derived in Section The finite volume approach
does not lend itself to straightforward energetic conversion arguments (Chapter [I0). It is for this
reason that we maintain the finite difference approach of Bryan| (1969) in MOM4p1.

4.1 Hydrostatic pressure forces at a point
A hydrostatic fluid maintains the balance

pz=—pPg- 4.1)

This balance means that the pressure at a point in a hydrostatic fluid is determined by the weight
of fluid above this point. This relation is maintained quite well in the ocean on spatial scales larger
than roughly 1km. Precisely, when the squared ratio of the vertical to horizontal scales of motion
is small, then the hydrostatic approximation is well maintained. In this case, the vertical momen-
tum budget reduces to the hydrostatic balance, in which case vertical acceleration and friction
are neglected. If we are interested in explicitly representing such motions as Kelvin-Helmholtz
billows and flow within a convective chimney, vertical accelerations are nontrivial and so the non-
hydrostatic momentum budget must be used.

The hydrostatic balance greatly affects the algorithms used to numerically solve the equations
of motion. Marshall et al. (1997) highlight these points in the context of developing an algorithm
suited for both hydrostatic and non-hydrostatic simulations. However, so far no long-term global
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climate simulations have been run at resolutions sufficiently refined to require the non-hydrostatic
equations. Additionally, many regional and coastal models, even some with grid resolutions finer
than 1km, still maintain the hydrostatic approximation, and thus they must parameterize the un-
represented non-hydrostatic motions.
As discussed in Section [3.7.2} at a point in the continuum, the horizontal acceleration arising
from pressure differences in a hydrostatic and non-Boussinesq fluid can be writterﬂ
P_l VzP = p_l (vs -V Zaz) p
= p ' Vip+gVsz (4.2)
=p ' (Vsp+pV, @)

where the hydrostatic relation p , = —p g was used to reach the second equality, and
O =gz (4.3)

is the geopotential. The general expression for the horizontal pressure gradient to evaluate in an
ocean model is thus given by

For cases where the density is constant on s surfaces, we can combine the two terms on the right
hand side into the gradient of a scalar, thus rendering a horizontal pressure gradient force with
a zero curl. This special case holds for geopotential and pressure coordinates and isopycnal co-
ordinates in the special case of an idealized linear equation of state. However, it does not hold
in the more general case, in which the difficulty of numerically computing the acceleration from
pressure arises when there are contributions from both terms. Generally, both terms can be large
and of opposite sign in many regions. In this case, the simulation is exposed to nontrivial nu-
merical truncation errors that can, for example, lead to spurious pressure gradients that spin up
an unforced fluid with initially flat isopycnals. However, in certain cases one term dominates, in
which case an accurate pressure gradient is simpler to compute numerically.

Significant effort has gone into reducing such pressure gradient errors, especially in terrain fol-
lowing models where undulations of the coordinate surfaces can be large with realistic bottom
topography (e.g., see Figure[6.3). Some of these issues are summarized in Section 2 of Griffies et al.
(2000a). Perhaps the most promising approach is that proposed by Shchepetkin and McWilliams
(2002). It is notable that difficulties with pressure gradient errors have largely been responsible for
the near absence of sigma models being used for long term global ocean climate simulationsE]

4.2 Pressure gradient body force

As stated above, the presence of both terms on the right hand side of equation complicates
the numerical implementation of the horizontal pressure gradient force. The problem is that nu-
merical errors in one term are often not compensated by the other term, and such can lead to
spurious flows. For the quasi-horizontal depth based and pressure based coordinates supported
by MOM4pl (ie.,s = z,5s = z*,5s = p, or s = p*; see Chapter @, these errors are quite small.

To obtain this result for a Boussinesq fluid, multiply both sides of equation by p/po-
2The work of Diansky et al.| (2002) is the only case known by the author of a global sigma model used for climate
purposes.
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The reason is that these choices ensure that one of the two terms appearing in equation is
significantly smaller than the other. Nonetheless, it is useful to provide a formulation that even
further reduces the potential for errors for both the quasi-horizontal coordinates, as well as the
terrain following coordinates o(*) and o) (Chapter EI)

In addition to reducing errors associated with a numerical computation of the pressure gra-
dient, we aim to split the pressure gradient into two terms associated with the slowly evolving
internal modes and the faster barotropic mode. Details of this split are a function of the verti-
cal coordinate. This split in the pressure gradient then facilitates our treatment of the vertically
integrated momentum equations, as discussed in Section[7.7}

In the following, we are motivated by the formulation of the pressure gradient commonly
applied to z-models. |Adcroft and Campin|(2004) extended this treatment to the z* vertical coordi-
nate. We take it one more step in order to handle all vertical coordinates supported by MOM4p1.
Hallberg|(1997) goes further by treating the pressure gradient in isopycnal layered models using a
realistic equation of state, and |/Adcroft et al.|(2008) present a more accurate approach for generlized
vertical coordinate models.

4.2.1 Depth based vertical coordinates

As mentioned on page 47 of Gill (1982), in situ density in the bulk of the ocean deviates less than

3% from the constant density
po = 1035kg/m>. (4.5)

The hydrostatic pressure associated with this constant density has no horizontal gradients, and so
it does not contribute to horizontal pressure gradient forces. For increased accuracy computing
the horizontal pressure gradient, it is useful to remove this term from the calculation of hydrostatic
pressure. For this purpose, we write the hydrostatic balance as

Pz=—8pP
(4.6)
=—g(po+0),
which has an associated split in the hydrostatic pressure field
p=Patpo(z) +p'(xy21). (47)
We can solve for the pressures by assuming
po(z=m)=0 (4.8)
pl(z=mn)=0, (4.9)
which leads to
Po =80z 1) (4.10)
=—poP+gpom,
n
r=g / o' dz, (4.11)
4

and thus

pP=Patgpon—po®+p. (4.12)
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Splitting off the free surface height is advantageous as it allows for a split of the pressure gra-
dient into its fast two dimensional barotropic contributions and slow three dimensional baroclinic
contributions. This split in pressure gradient facilitates the development of a split-explicit time
stepping method for the momentum equations considered in Section Details of the split in
pressure are dependent on the vertical coordinate choice. We now discuss the three depth based
vertical coordinates used in MOM4p1.

4.2.1.1 Geopotential vertical coordinates

We first consider the horizontal pressure gradient realized with geopotential vertical coordinates.
We are here motivated by the desire to split the dynamics into fast and slow portions, as approxi-
mated by depth integrating the momentum equation (Section[7.7).

The anomalous pressure p’ maintains a dependence on surface height through the upper limit
on the vertical integral in equation (4.1T). When working with geopotential vertical coordinates,
it is very convenient to isolate this dependence by exploiting a very accurate approximation de-
scribed below. This split then allows us to exclusively place the surface height dependent pressure
gradient into the vertically integrated momentum equation. The slow component to the pressure
gradient then has no dependence on the surface height; it is instead just a function of the anoma-
lous density. The slow pressure gradient component thus vanishes when the density is horizon-
tally unstratified; i.e., when there is no baroclinicity.

To facilitate the split described above, we proceed in the following manner

n
p’=g/ p'dz
z
0 n
:g/ p’dz+g/ p' dz
z 0
0 / /
%g/ pdz+grlpsurf
z

./ /
=Pcdlinic + Psurt-

The approximation made in the third step remains good where density is well mixed between
z = 0 and z = 1, and this is generally the case for large scale modelling. Here, density in the
surface region of the ocean is assumed to take on the value

(4.13)

Psurf = Po + P;urf/ (4.14)

which is a function of horizontal position and time. The anomalous pressure p’ has therefore been
separated into two pressures, where the anomalous surface pressure

p;urf = p;urfgn (415)

is a function of the surface height and surface density, and the pressure

0
Painic = 8 /Z o dz (4.16)

is the anomalous hydrostatic baroclinic pressure within the region from a depth z < 0 to z = 0.
Again, the baroclinic pressure is independent of the surface height, and so its horizontal gradients
are only a function of density.
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This split of pressure thus renders the horizontal pressure gradient (equation (4.4))

(V: p)approx =Vsp+pVs
=Vs(patgpon—po@+p)+pVs @
~ V (Pa+8Po M+ Piurs) + Vs Pltinic + (P — po) Vs @ (4.17)
=V (Pa + & Psurt 1) + Vs Pliinic +0' Vs @.

fast slow

In a geopotential vertical coordinate model, interior grid cells are discretized at levels of constant
geopotential. Hence, the gradient V; reduces to the constant geopotential gradient V. In this
case the horizontal gradient of the geopotential vanishes, V, ® = 0. At the bottom, however,
MOM4p1 employs bottom partial step topography (Pacanowski and Gnanadesikan, 1998). The
bottom cells are thus not discretized along a constant geopotential. Hence, just at the bottom,
there is a nontrivial gradient of the geopotential @ (see Figure [6.1). In general, note how the
geopotential is multiplied by the anomalous density p’ = p — p,, thus minimizing the impact of
this term.

4.2.1.2 z* and o(® vertical coordinate

The new issue that arises when moving away from geopotential coordinates is that the geopoten-
tial ® = gz has a nonzero along coordinate gradient in the interior, whereas with geopotential
coordinates it remains nonzero only along the partial bottom stepped topography. The presence
of @ gradients in the interior is fundamental.

Following the discussion in Section we are led to the following expressions for the hor-
izontal pressure gradient. The exact expression relevant for the z* and o(*) coordinates is given

by

(Vzp)exact = Vs p + pVs @
=Vs(patpo+p)+pVs@
=Vs(pa—po®@+gpon+p)+pVs® (4.18)
=V (patgpen)+Vsp +0 Vs @.

fast slow

Note that we have assumed that the geopotential falls inside the slow portion of the pressure gradi-
ent. This assumption is made even though the depth of a grid point is a function of the undulating
surface height. The validity of this assumption can be assessed by the integrity and stability of the
simulation.

To facilitate a unified treatment in subsequent manipulations, we define

Psurf = Psurf&1 S =12 (4 19)
Pourt =pogn s=z",00 '

and .
/ _ / —
po=g)pdz s=z (4.20)

/

p =g [Modz s=z"00).
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In both the exact and aproximated pressure gradient expressions, the geopotential gradient
Vs @ in the ocean interior is weighted by the small density deviation p’ = p — p,. For quasi-
horizontal depth-based vertical coordinates supported in MOM4p1 (Section , the horizontal
gradient of the geopotential is small, and the p’ weighting further reduces its contribution. For
terrain following coordinates, the horizontal gradient term is not small, and the p’ weighting is
essential to reduce its magnitude.

4.2.2 A test case for zero cross-coordinate flow

In the development of generalized vertical coordinates, a useful test case was suggested by Alistair
Adcroft. We focus here on the special case of s = z*. In this test, initialize the density field as a
function only of the vertical coordinate z*. The domain is flat bottomed and doubly periodic
in the horizontal, thus precluding pressure gradients due to side boundaries or topography. In
a state of rest, there is no horizontal pressure gradients, and so no motion. As a body force is
applied to the barotropic equations, such as through an ideal tidal forcing, there will now be a
nontrivial surface height field n as well as a nontrivial barotropic velocity. Both pieces of the slow
contribution to the horizontal pressure gradient develop a nontrivial vertical structure, and
this will initiate baroclinic structure and thus a nonzero cross coordinate vertical velocity w®).
This cross coordinate velocity will be much smaller in the s = z* case than with s = z, given than
z* follows the motion of the free surface.

In order to further test the integrity of the z* implementation, we wish to truncate the pressure
calculation in this test so that there will be no slow pressure gradients developed when the tidal
forcing is applied, and hence there will be no cross coordinate motion. For this purpose, truncate
the slow piece of the horizontal pressure gradient as

VS p/ + p, VS ¢ — VS p{runcate' (421)

In this truncation, we drop the geopotential term p’ V; @, as this term will produce nontrivial
horizontal gradients as the surface height undulates. We also introduce a truncated perturbation
pressure determined by

n
P’=g/ p'dz
s(n)
:g/ p zsds
s(z)
0
=g (1+n/H) [ p'dz

zZ

0
- p;runcate + (8 U/H) /* .0/ dz*.

(4.22)

To reach the penultimate step, we used z; = (1 + n/H) for s = z*. The coordinate increments
used to define the pressure field pj.ncate are static in a model discretizing the vertical according
tos = z*. Hence, Vs Plruncate = 0 if the density is a function only of z*. So when the model’s
slow pressure field is comprised of just piuncate, the ideal tidal test in the torus should maintain
zero cross coordinate flow, w* = 0, even as the surface height fluctuates. Testing to see that this
property is maintained is a useful means for evaluating the integrity of the algorithm.
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4.2.3 Pressure based vertical coordinates

A complementary discussion to the above is now given for pressure based vertical coordinates.
Since for pressure based vertical coordinates we solve for the bottom pressure, it is useful to for-
mulate the geopotential in terms of the bottom pressure rather than the atmospheric pressure. For
this purpose, consider the following identities

CD+gH:g/dz
H

p
=8 / zpdp
Pb
p
e —/ ‘0_1 dp
Pb
P (4.23)
= —/(931+P_1 —p, ) dp
Pp
p
= (po—p)/00+ 0, " /(p’/p) dp
Pp
zZ
= (po—p)/po — (8/00) / o dz.
“H
We are thus led to
Po® = po— P+ po (Pp + @), (4.24)
where
z
po @' = —g / p'dz. (4.25)
“H

is an anomalous geopotential similar to the anomalous hydrostatic pressure introduced in Section

and
Oy, =—gH (4.26)

is the geopotential at the ocean bottom. The horizontal pressure force is therefore written

Vsp+pVs® =Vsp+(p/00) V(po+ 0o Pb) — (0/00) Vs p+p Vs @
= (p/Po) V (po + po Dp) +p Vs ®" — (p'/po) Vs p. (4.27)

fast slow

Note that the three-dimensional pressure term (p’/p,) Vs p is weighted by the generallly very
small density deviation p’ = p — p,. For the non-terrain following quasi-horizontal pressure-based
vertical coordinates supported in MOM4p1 (Section [6.2), the horizontal gradient of the pressure
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is small, and the weighting by (p’/p,) further reduces its contribution. Also note that the fast
contribution is here weighted by the density, and so this term may appear to require further split-
ting into p = p, + p’ before identifying the fast two dimensional contribution. However, as the
nonBoussinesq formulation here considers momentum per area, the baroclinic velocity includes
density weighting (see equation (8.1)). This is how we are to split the horizontal momentum equa-
tions into fast two dimensional motions and slow three dimensional motions for purposes of time
stepping. We consider these issues further in Sections|/.7|and

During the testing of this formulation for the pressure gradient, we found it useful to write the
anomalous geopotential in the following form

—(po/g) @ / p' dz

(4.28)
B n
Po—Pa _p, (H+n) —/ p'dz
4
V4
Po=Pa™ V. p, (H+n)
8
To reach this result, we used the hydrostatic balance for the full ocean column,
Pa
/ o dz = —po (H+1) (4.29)
as well as the definition (.11)) of the anomalous hydrostatic pressure
n
p=g¢ / o' dz (4.30)
z

used in Section for the depth based vertical coordinates. These results then lead to the identiy

Po+ Po (O, + @) = p' + pa+po g 1. (4.31)

4.3 Pressure gradient body force in B-grid MOM4p1

We now detail how the pressure gradient body force is represented in the B-grid generalized level
coordinate version of MOM4pl. As the pressure force acts to accelerate a fluid parcel, our aim
is to determine the pressure force acting at the velocity cell point. Much in the derivation of
the pressure force depends on assumptions regarding where pressure is computed in the discrete
model. For the B-grid version of MOM4p1, hydrostatic pressure is coincident with the tracer fields
as shown in Figure which illustrates a typical case where a grid cell is bounded by vertical
sidewalls with generally nonhorizontal tops and bottoms.
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As mentioned in Section we prefer to discretize the pressure gradient body force as it
facilitates the splitting of the pressure force into fast and slow components. The result here is
a derivation of the |Pacanowski and Gnanadesikan, (1998) discrete pressure gradient body force
as originally implemented for the treatment of partial step bottom topography. Their discussion
is relevant here, since the pressure gradient force in the presence of partial step bottoms must
account for the pressure between cells that live at different depths. This is also the essential issue
for the treatment of pressure with the generalized level coordinates of MOM4pl1.
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Figure 4.1: The left panel shows a set of grid cells in the x-z plane for a generalized level coordi-
nate version of MOM4pl. The center point represents a tracer point. As active tracers determine
density, and as density determines hydrostatic pressure, the hydrostatic pressure is coincident
with tracer. For the x-y plane shown in the right panel, the velocity and tracer are offset, with the
velocity at the northeast corner of the tracer cell according to the B-grid arrangement. The velocity
cell, shown surrounding the velocity point, has a thickness set according to the minimum of the
surrounding four tracer cell thicknesses. Hence, a velocity point and tracer point with the same
discrete vertical index k generally live at different depths.

4.3.1 Depth based vertical coordinates
The aim here is to discretize the pressure gradient body force written in the forms (4.18) and (4.17)

Vsp+pVs® =V (pa+ psurt) + Vs p' +0' Vs @, (4.32)

where pg; and p’ are defined according to equations and (4.20), respectively. Our focus here
is the slowly evolving three dimensional terms V; p’ + p' Vs @. The first term is straightforward
to discretize according to the assumptions regarding the placement of pressure given in Figure[4.1]
In the right panel of this figure, we see that pressure is available at the corners of the velocity cell.
Hence, to approximate pressure at the west and east faces of the cell, one can average the pressure
found at the corners. A grid weighted average may be appropriate, but the simplest method is an
unweighted average in which

V. p' ~ X FDX_NT(FAY(p')) + § FDY_ET(FAX(p')) (4.33)




92 CHAPTER 4. THE HYDROSTATIC PRESSURE FORCE

The averaging operators are defined according to

24" = (aj11 + a;
7=t ) (4.34)
= FAX(a)

and

ZETJ'y = (ﬂ]‘+1 —|—El]')
(4.35)
= FAY (a)
with the second expression in each equation exposing the notation used in the ocean model code.
Additionally, finite difference operators have been introduced

FDX_NT(a) = %
Lo (4.36)

FDY _ET(a) = %
)

These operators are used for fields that live at the north face and east face, respectively, of a tracer
cell.

The geopotential contribution in is computed using the geopotential values at the tracer
points, and so its gradient is located at the tracer cell faces. To have the density multiplier at the
same point requires that it be averaged prior to multiplying. Finally, an orthogonal spatial average
is required to place the product onto the velocity point. The result is given by

p' Vs ® ~ % |FAY[5;® FAX(0)] /dxui,j] +9 [FAX[(S]-CD FAY (0)] /dyu; ;|- (4.37)

4.3.2 Pressure based vertical coordinates
The aim is to discretize the pressure gradient body force written in the form
Vsp+pVs @ = (p/po) V (pp+po @p) +p Vs @ —(p'/po) Vs p (4.38)

and to do so in a manner analogous to the Boussinesq case. In particular, we consider here the
slow three dimensional contribution p Vs @' — (p'/p,) Vs p and write for the pressure term

o' Vsp =~ % |FAY[6;p FAX(p’)]/dxui,j} +y [FAX[(Sjp FAY (p')]/dyu;;|, (4.39)

which is analogous to the discrete p’ V @ contribution in equation (4.37). The geopotential term
is discretized as

pV,®' ~ %p FDX_NT (FAY(®')) + § p FDY_ET (FAX(®")), (4.40)

which is analogous to the discrete version of V; p’ in equation (4.33). Note that the density p in
equation (4.40) is centered on the velocity cell.
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Parameterizations with generalized level coordinates

The parameterization of subgrid scale (SGS) processes is of fundamental importance to ocean
models. Details of how these processes are parameterized depend on the choice of vertical coor-
dinates. The purpose of this chapter is to describe how various SGS parameterizations are formu-
lated with generalized level coordinates of MOM4pl. As we will see, by diagnosing the vertical
grid cell thicknesses according to the methods described in Section parameterizations imple-
mented in the geopotential MOM4.0 code remain algorithmically unaltered when converting to
the generalized level coordinate MOM4p1.

5.1 Friction

The convergence of frictional stress leads to a friction force acting on fluid parcels. The purpose
of this section is to detail the form of friction appearing in the generalized level coordinates of
MOM4p1. For this purpose, we follow much of the discussion in Chapter 17 of Griffies| (2004). In
particular, Section 17.3.4 leads us to take the physical components to the frictional stress tensor in
the form
T ™ pKku,
T = ™ -1 pkv, |, (5.1)
PKU, PKD; 0

where k is a non-negative viscosity with units m?s~!. Taking 73 = 0 is consistent with use of
the hydrostatic approximation, which reduces the vertical momentum equation to the inviscid
hydrostatic balance. We comment in Section on the form of the two-dimensional transverse
elements 7** and Y.

5.1.1 Vertical friction

As the gravitational force is so critical to stratified fluids close to a hydrostatic balance, it is typical
in ocean modelling to single out the vertical direction. In particular, closures for the unresolved
vertical exchange of momentum are usually taken to be proportional to the vertical derivative, or
shear, of the horizontal velocity field. This argument leads to the form of the stress tensor given
by equation (5.I). For a generalized level coordinate model, the vertical shear elements take the
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form
PKU; = PKS,Ug. (5.2)

In MOM4p1, the left hand side of this expression is numerically evaluated for purposes of comput-
ing the vertical shear. That is, vertical derivatives are computed for arbitrary vertical coordinates
just as in geopotential coordinates. This result follows by diagnosing the vertical grid cell thick-
nesses using the methods described in Section where we make use of the relation between

vertical coordinates
dz =z,ds. (5.3)

Now return to the thickness weighted momentum budget for a grid cell discussed in Section
The above considerations lead us to write the frictional stress acting on a generalized surface
as

zsVs-T =
(5.4)

The second step used the small angle approximation to drop the extra slope term. Alternatively,
we can interpret the dia-surface frictional stress z ; Vs - T as parameterized by pku .. Either way,
the result (5.4) is the form that vertical frictional stress is implemented in MOM4p1.

5.1.2 A comment on nonlinear vertical friction

As noted above, we choose in MOM4p1 to implement vertical friction, and vertical tracer diffusion
(Section[5.2.T)) just as in a geopotential coordinate model. This method is facilitated by diagnosing
the vertical thickness of a grid cell according to equation (see Section[7.3), prior to computing
vertical derivatives.

We now mention an alternative method, not implemented in MOM4p1, since this method is of-
ten seen in the literature. The alternative is to compute the vertical shear according to the right
hand side of equation (5.2). The density weighted inverse specific thickness p/z s adds a nonlin-
ear term to the vertical friction, and this complicates the numerical treatment (Hallberg, 2000). It
is reasonable to approximate this factor by a constant for the dimensionful quasi-horizontal co-
ordinates considered in Sections [6.1| and For the Boussinesq case with depth-based vertical
coordinates, this approximation results in

PK/Zs = po K, (5.5)

where z s ~ 1 follows from the results for all but the sigma coordinate in Table The vertical
friction therefore becomes

(p K u,z),z ~ PoS,z (K S,z u,s),s

(5.6)
N o (Kug) s.
Likewise, dimensionful pressure-based coordinates used for non-Boussinesq fluids have
PK/Zs =~ —g P2k, (5.7)

ITerrain following sigma coordinates, which are dimensionless, are notable exceptions to this result.
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as follows for all but the sigma coordinate in Table The vertical friction therefore becomes

(pKu,z),z ~ o (g PO)Z (Ku,s),s~ (5.8)

The above approximations are well motivated physically since the value of the vertical viscos-
ity is not known to better than 10%, and the above approximations are well within this range for
vertical coordinates whose iso-surfaces are quasi-horizontal. Similar arguments were presented
by [Losch et al.| (2004). Additionally, the approximations are very conveinent numerically since
they allow us to continue implementing vertical physical processes in a linear manner as tradition-
ally handled in z-models. Such facilitates straightforward time implicit methods to stably handle
large vertical viscosities. Without these approximations, or without use of the geopotential-based
approach described above in Section vertical physical processes are nonlinear. Arbitrarily
stable numerical methods for such processes require an iterative scheme such as that discussed by
Hallberg| (2000) employed in isopycnal models.

5.1.3 Lateral friction

There is no fundamental theory to prescribe the form of lateral friction at the resolutions available
for large scale ocean modelling. Indeed, many argue that the form commonly used in models is
wrong (Holloway, (1992). We take the perspective that lateral friction in ocean models provides a
numerical closure. This perspective motivates us to prescribe friction in a manner that maintains
basic symmetry properties of the physical system, and which is convenient to implement.

The deformation rates are a basic element of the lateral frictional stress. Using generalized
orthogonal horizontal coordinates and z for the vertical, the deformation rates given in Section
17.7.1 of |Griffies (2004) take the form

er = (dy) (u/dy) x — (dx) (v/dx) 4 (5.9)
es = (dx) (u/dx),y + (dy) (v/dy) « (5.10)

where dx and dy are the infinitesimal horizontal grid increments. Consistent with lateral friction
being considered a numerical closure, we place no fundamental importance on the horizontal
derivatives being taken on constant z surfaces. Hence, we propose to use the same mathematical
form for the deformation rates regardless the vertical coordinate. That is, for the generalized level
coordinate MOM4p1, the deformation rates are computed according to the lateral strains within
surfaces of constant vertical coordinate.

As shown in the Appendix to|Griffies and Hallberg|(2000), and further detailed in Section 17.10
of Gritfies|(2004), the divergence of the thickness weighted lateral stress within a layer, V - 7, leads
to the thickness weighted forces per volume acting in the generalized horizontal directions

dzpF* = (dy) 2 [(dy)* dz 7] x + (dx) > [(dx)*dz ],

dzp P = (d) 2 [(d)dz ], + (dy) [(dy)* da v o

We extend the forms for the stress tensor given in Chapter 17 of Griffies| (2004) by assuming that
all horizontal derivatives appearing in the stress tensor are taken along surfaces of constant gen-
eralized level coordinate. Notably, the forms all have an overall density factor, such as the general
form given by equation (17.119) in Griffies| (2004)

(Tm - >: ((Aq+DAR@ (Aes+DAR?) >,

™ (Aes+DARY%) (—Aer+DARY) 6-12)
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with R a rotation matrix

() \ —cos20 —sin20 ®-13)
A > 0 is a non-negative viscosity weighting the isotropic stress tensor, and D > 0 is a non-
negative viscosity weighting the aniostropic stress tensor. For the Boussinesq fluid, the density
factor in the stress tensor is set to the constant p,. Furthermore, recall that the specific thickness
z s is a depth independent function when using the vertical coordinates discussed in Section
For the non-Boussinesq cases which use pressure-based vertical coordinates, the density weighted
specific thickness p z ; is a depth independent function, which then simplifies the density weighted
thickness of a grid cell pdz = pz s ds. These results are familiar from the analogous simplifications
arising for other terms in the scalar and momentum budgets discussed in Chapter

R _ ( sin20  —cos20 >

5.1.4 Bottom stress

We exposed the form of bottom stress in Section and it generally leads to a bottom force
given by

Foottom = — ff dxdyV(z+H) -t
z=—H

— ff dx dy Tbottom‘

z=—H

(5.14)

A common method to parameterize this force is to consider unresolved small scale processes to
give rise to a dissipative drag written in the form

Fpotiom = — f f dxdy[pCp up(uf +uzy)"?], (5.15)
z=—H

where it is only the horizontal bottom force that appears in hydrostatic models. In this equation,
Cp is a dimensionless drag coefficient with common values taken as

Cp ~ 1073. (5.16)

Because the precise value of Cp is not well known, the product p Cp is approximated in MOM4p1
as
pCD ~ Po Cp. (5.17)

The velocity uyige represents a residual horizontal velocity that is not resolved in models running
without tidal forcing. Hence, even with the bottom flow weak, the residual velocity keeps the
drag nontrivial. A common value for the residual velocity is

[Ugge] = 0.05ms™ L. (5.18)

The velocity uy, is formally the velocity within the bottom boundary layer, but it is commonly
taken in models as the velocity at the grid cell adjacent to the bottom. Note that our assumed form
of the unresolved bottom stresses take the form of a bottom drag. See |Holloway| (1999) for more
general forms where the unresolved bottom stresses may act to accelerate the resolved flow field.
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5.1.5 Summary of the linear momentum budget

The horizontal linear momentum budgets for interior, bottom, and surface grid cells are given by

equations (3.238), (3.241), and (3.246)). We rewrite them here for future reference, incorporating the
more detailed form for friction appropriate for hydrostatic models

[0+ (f+ M)2A] (dzpu) = pdzS™ — V, - [dzu (pu)]
( (S)P pVs®)+dzp (5.19)
—[p(@¥u—ruz)ls=

+[p (w(s) U —KUz) fs=s

[0+ (f+ M)2A](dzpu) = pdzS™ — V, - [dzu (pu)]
—dz(Vsp+pVs®)+dzpF

- [,O (w(s) u-— Ku,Z) ]stkbor—l
o Tbottom

(5.20)

[0+ (f+ M)2A] (dzpu) = pdzS™ — V, - [dzu (pu)]
—dz(Vsp+pVs®)+dzpF
+ [tVind 4 o gw uy ]
+[p (w(s) uU—KUz) |s=s_,-

(5.21)

As discussed in Section we prefer to work with the pressure gradient body force acting
within the grid cell of a primitive equation ocean model, rather than the accumulation of contact
pressures acting at the faces. This formulation in terms of body forces is convenient in a hydro-
static fluid as it facilitates a numerical treatment of pressure in the discrete ocean climate model

(Section[4.3).

5.2 Diffusion and skew diffusion

Some of the results for friction are also applicable for diffusion. However, neutral diffusion and
skew diffusion require some added considerations.

5.2.1 Vertical diffusion

Dianeutral tracer transport is often parameterized with a diffusive closure, and these closures
require the dianeutral derivative of tracer. For most parameterizations, dianeutral derivatives are
computed with a vertical derivative (see Section 7.4 of Gritfies| (2004)), and these derivatives are
computed in MOM4p1 just as done for the velocity shears for vertical friction described in Section
Hence, vertical diffusion of tracer concentration is implemented by a direct computation of
the finite differenced vertical derivative

(P K C,Z),Z R~ 6, (,OK C,z) (5.22)

where C is the tracer concentration and « is the vertical diffusivity.
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5.2.2 Horizontal diffusion

Horizontal diffusion is used infrequently in the interior regions of the ocean in climate simulations
with MOM4, since neutral physics is preferred for physical reasons. However, near the surface
boundary, arguments presented in Section[16.2] motivate orienting lateral diffusive processes along
surfaces of constant generalized level coordinate when in the surface turbulent boundary, and
along topography following coordinates for the bottom turbulent boundary layer. Hence, it is
useful to consider the form that horizontal diffusion takes in generalized level coordinates.

When computing the horizontal fluxes as downgradient along surfaces of constant vertical
coordinate s, we consider

pF= pAV,C, (5.23)

with A a horizontal diffusivity. The thickness weighted horizontal diffusion operator is therefore
given by
RN — V. (dzpF). (5.24)

5.2.3 Neutral physics

As for horizontal and vertical diffusion, we compute the tracer flux from neutral physics as pF,
where F is the tracer concentration flux formulated as in a Boussinesq model, and p is the in situ
density for a non-Boussinesq model and p, for a Boussinesq model. This approach requires a bit
of justification for the neutral skewsion from |Gent and McWilliams| (1990), and we provide such
in this section. The bottomline is there are no nontrivial issues involved with implementing this
scheme in a non-Boussinesq model. The only issue arising with generalized level coordinates thus
relates to the computation of neutral direction slopes.

Neutral diffusion fluxes are oriented relative to neutral directions. Hence, the slope of the
neutral direction relative to the surface of constant vertical coordinate is required to construct the
neutral diffusion flux.

The scheme of Gent and McWilliams| (1990) requires the slope of the neutral direction relative
to the geopotential surface, since this slope provides a measure of the available potential energy.
For simplicity, we use the same slope for both neutral diffusion and skew diffusion in MOM4p1.
Doing so facilitates a straightforward extension of the neutral physics technology employed in the
z-model MOM4.0 to the generalized coordinates supported for MOM4p1. It however produces
a modified Gent and McWilliams| (1990) scheme in which skew diffusion relaxes neutral direc-
tions toward surfaces of constant vertical coordinate rather than constant geopontential surfaces.
For surfaces of constant vertical coordinate that are quasi-horizontal, the modified skew diffu-
sion scheme should act in a manner quite similar to that in a z-model. However, for the terrain
following coordinates o) and o(?), novel issues arise which have have not been considered in the
MOM4p1 formulation of Gent and McWilliams (1990) skewsion. Hence, the use of neutral physics
parameterizations with terrain following vertical coordinates is not recommended in MOM4p1.

5.2.3.1 The velocity field from Gent and McWilliams| (1990)

As formulated by Gent et al. (1995), the parameterization of |(Gent and McWilliams| (1990) is typi-
cally considered from the perspective of a Boussinesq ocean model. For the purposes of advective
transport of tracer, we add a non-divergent velocity v¥ = V A ¥ to the non-divergent resolved



5.2. DIFFUSION AND SKEW DIFFUSION 99

scale velocity v. The parameterized vector streamfunction is given by
¥Y=—-«kSAz (5.25)

where S is the neutral slope and k > 0 is a kinematic diffusivity. In this way, volume conservation
remains unchanged, thus removing the need to modify the model’s kinematic relations used to
diagnose the vertical velocity component w.

The above results can be seen from a finite volume perspective by considering the volume
conservation equation for an interior model grid cell (Section 3.9), in which

31(dz) = dzS8WY) — V, - (dzu) — (0®)sms, | + (05—, (5.26)

where S(V) is a volume source, and w'®) is the dia-surface velocity component. Use of the Gent
et al.|(1995) advective velocity
u* = —9d;(«kS) (5.27)

leads to the finite volume result
Zk—1
/ dzu* = —(kS)k_1 + (kS)i, (5.28)
Zk

which renders

Zk—1
-V - /dzu* —wi_ i +wi =Vs-(kS)_1 — Vs (kS —wi_, +w;
( ) k—1 k (K S)k—1 (k S)k k-1 k (5.29)

Zk

= 0.

Hence, there is no modification of the volume in a grid cell from the |Gent et al.| (1995) velocity
field.

We now extend the formulation to a non-Boussinesq fluid, in which case the mass conservation
takes the form (see equation (3.166) in Section 3.6.2)

dt(dzp) =dz pSM _ vy, . (dzpu) — (p w(s))S:SH + (pw(s))szsk, (5.30)
with SM) a mass source. Define a density weighted horizontal advection velocity according to
pu’ = —0.(pk8), (5.31)

in which case the vector streamfunction from the Boussinesq case is extended to the non-Boussinesq
merely by introducing a density weighting

pW¥ =—pkS A 2. (5.32)

This result then leads to

Zk—1
—Vs - (/ pdz u*) — (Pw" )s=s,_, + (PW" )s=5, =

Ve (pkS)e1 = V- (pKS)k — (W )smsy , + (0" )oms,
= O,

(5.33)
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which means there is no modification to the mass of a grid cell through the introduction of the
non-Boussinesq Gent et al. (1995) parameterization.

Note that in the continuum, the above finite volume results mean that the non-Boussinesq
Gent et al.[(1995) velocity satisfies

Vs (pzsu®)+0s (pzsw*) =0, (5.34)
where s is the vertical coordinate. For the geopotential case with s = z, we have
V.- (pu*)+9;(pw*) =0, (5.35)
which reduces to the familiar non-divergence condition
V., -u"+0,w" =0 (5.36)

in the Boussinesq case.

5.2.3.2 Neutral slopes

A key to the implementation of neutral physics is the slope of a neutral direction relative to either
the geopotential or a surface of constant generalized level coordinate. Implicit in the following is
the assumption that the neutral slope is finite relative to each surface.

The neutral slope relative to the geopotential is

S(P/Z) = VPZ (537)
=—Zp vzp

with p the locally referenced potential density. The (p/z) subscript notation highlights that the
neutral slope is computed relative to a geopotential. The relation between this slope and the
others can be seen by noting that in generalized vertical coordinates, the horizontal gradient V, is
computed using the transformation (6.33) in Griffies (2004) so that

S(p/2) = =2 (Vs = S(5/2)02) p

(5.38)
= S(p/s) T S(s/2)-

This equation identifies the slope of the vertical coordinate surface relative to the geopotential

S = Vgz
e = (5.39)
- _Z,S VZ S
and the slope of the neutral direction relative to the vertical coordinate surface
S(e/s) = Vos
=—z,Vsp (5.40)
= —Zs5, Vsp.

In words, equation (5.38) says that the slope of the neutral direction relative to the geopotential
equals to the slope of the neutral direction relative to the vertical coordinate surface plus the slope
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of the vertical coordinate surface relative to the geopotential. In isopycnal models, the slope S, /)
is very small for much of the ocean. Except for the sigma coordinates, each of the depth-based
and pressure-based vertical coordinates discussed in Sections andhave S(s/2) typically less
than 10~ and S(p/s) less than 10~2. For sigma coordinates, both S(p/s) and S/ can be nontrivial
in much of the model domain affected by topography.

Figure illustrates the relation (5.38) between slopes. This figure shows a particular zonal-
vertical slice, with slope given by the tangent of the indicated angle. That is, the x-component of
the slope vectors are given by

S(s/2) = AN &(s/z)
S(p/z) =tana,/,) (5.41)
S(p/s) = tAN&(p/s).

In this example, S(;/,) < 0 whereas S(,/,) > 0. Note that the angle between the generalized sur-
face and the isopycnal surface, S(,/,), is larger in absolute value for this example than S, .. This
case may be applicable to certain regions of o-models, whereas for isopycnal models S, ;) will
generally be smaller than S(,/,). The generally nontrivial angle S, ;) found in sigma models is
yet another reason we do not recommend the use of neutral physics as implemented in MOM4p1
along with terrain following vertical coordinates. Significant work is required to ensure a proper
treatment of neutral physics with terrain following coordinates, and we are not prepared to sup-
port such in MOM4.

p-surface

a(pk)
> a(plz)
z-surface

a(s/z)

s-surface

Figure 5.1: Relationship between the slopes of surfaces of constant depth, constant generalized
vertical coordinate s, and potential density p. Shown here is a case where the slope is projected
onto a single horizontal direction, so that the slope is given by the tangent of the indicated angle.
This figure is taken from Figure 6.5 of Grifties| (2004).
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5.2.3.3 Fluxes for neutral diffusion

The relative slope between the neutral direction and vertical coordinate is required to compute the
neutral diffusion flux. We assume here that this slope is small, thus allowing us to approximate
the full diffusion tensor of Redi (1982) with the small slope approximated tensor of Gent and
McWilliams| (1990). To lend mathematical support for these comments, we start with the neutral
diffusion flux as written for the small slope approximation in z-models. As discussed in Section
14.1.4 of Griffies (2004), this flux has horizontal and vertical components given by

F = —A;V,C (5.42)
F& = —A;S(,/2) - VoC. (5.43)

Converting this flux to a form appropriate for general vertical coordinates requires a transforma-
tion of the gradient operator

Vp =V,+ S(p/z) az
=Vs+ [S(p/z) — S(s/z)] 0 (5.44)
=V, + S(p/s) 0.

The third equality used the slope relation (5.38).
As seen in Section the thickness weighted tracer budget contains a contribution from the
convergence of a SGS flux in the form

R= -V, (dzpF)—[pzsVs -Fls— , +[pzs Vs Fls_,. (5.45)
We are therefore led to consider the dia-surface flux component
F®) =2, Vs-F
= (2—S(z)) F
= —A1(S(p/z) = S(s/2)) - Vo C (5.46)
= ~A1S(p5) " Vo C
= S(p/5) - F.

This flux component, as well as the horizontal flux component, take forms isomorphic to those
for the specific case of s = z given by equations and (5.43). This isomorphism follows from
the need to only have information about the relative slope between the generalized surfaces of
constant s and the neutral directions.

5.2.3.4 Fluxes for skew diffusion
An arbitrary tracer has a/Gent and McWilliams| (1990) skew flux in the form

F = Agm (S(p2) Cz — 252y - V=C), (5.47)

where Agn, is a non-negative skew diffusivity. The horizontal component of this flux is converted
to general coordinates via

h
FW = Agm (S(ps) + S(s/2)) Coz (5.48)
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Consistent with this same approximation, we are led to the dia-surface component of the skew
flux
Zs Vs-F = (2 — S(s/z)) -F
= —Agm (S(p/2) " V= +8(p/2) " S(s/2) 92) C
= —Agm S(pz) " (Vs = S(5/2) 02) € = Agm 8(p/z) " S5/2) 9 C (549)
= ~AgmS(pz) Vs €
~ _Agm S(p/s) . VS C.

These approximations are reasonable where S, /.| is much smaller than [S,,.)| if S(, /) is non-
trivial. When the neutral slope S, /) vanishes, as for regions of zero baroclinicity, this approxi-
mation may not be valid when s # z. However, in regions of vanishing baroclinicity, we expect
the error to be of minimal consequence to the simulation since either the z or s based skew fluxes
are close to zero. In general, approximating the slope as proposed here leads the modified Gent
and McWilliams (1990) scheme to dissipate neutral slopes as they deviate from surfaces of con-
stant generalized vertical coordinate. So long as these surfaces are quasi-horizontal, the modified
scheme should perform in a physically relevant manner.

5.2.3.5 Summary of the neutral fluxes

The horizontal and dia-surface components to the small angle neutral diffusion flux take the form

F") = —A; (Vs +S(,/0:)C
Fls) — S (p/s) .F)
where the slope is given by
S(p/s) - vps (551)
=—z,Vsp.
The horizontal and dia-surface skew flux components are approximated by
F" &~ Agm S(,/s) C
g (P/ ) iz (552)
F® & —Agm S(pss) - Vs C.

Each of these neutral fluxes are isomorphic to the fluxes used in the z-model MOM4.0. This iso-
morphism enables us to transfer the neutral physics technology from MOM4.0 directly to MOM4p1.
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CHAPTER
SIX

Depth and pressure based vertical coordinates

The purpose of this chapter is to document issues related to the choice of vertical coordinates.
In MOM4p1, only depth-based and pressure-based coordinates are supported. Isopycnal coordi-
nates are not supported. Furthermore, terrain following sigma coordinates are coded in MOM4p1.
However, more work is required to reduce pressure gradient errors (Section and consistently
employ neutral physics (Section and Chapter [16). Much in this chapter is derived from lec-
tures of |Griffies| (2005)) at the 2004 GODAE School.

6.1 Depth based vertical coordinates

We use depth based vertical coordinates in this section to discretize the Boussinesq equations
Depth based coordinates are also known as volume based coordinates, since for a Boussinesq model
that uses depth as the vertical coordinate, the volume of interior grid cells is constant in the ab-
sence of sources. Correspondingly, depth based coordinates are naturally suited for Boussinesq
fluids.

6.1.1 Depth coordinate

With a free surface, the vertical domain over which the z-coordinate
s=2z (6.1)
ranges is given by the time dependent interval
—H<z<n. (6.2)
Consequently, the sum of the vertical grid cell increments equals to the total depth of the column

Y dz=H+n. (6.3)
k

IGreatbatch and McDougall| (2003) discuss an algorithm for non-Boussinesq dynamics in a z-model. Their methods
are implemented in mom4p0a and mom4p0b of |Griffies et al|(2004). This approach may be of special use for non-
Boussinesq non-hydrostatic z-models. However, when focusing on hydrostatic models as we do here, pressure based
vertical coordinates discussed in Section [6.2]are more convenient to realize non-Boussinesq dynamics.

105
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The trivial form of the specific thickness z ; = 1 greatly simplifies the Boussinesq budgets.

The depth coordinate is very useful for many purposes in global climate modelling, and mod-
els based on depth are the most popular ocean climate models. Their advantages include the
following.

e Simple numerical methods have been successfully used in this framework.

e For a Boussinesq fluid, the horizontal pressure gradient can be easily represented in an ac-
curate manner.

e The equation of state for ocean water can be accurately represented in a straightforward
manner (e.g., Jackett et al. (20006)).

e The upper ocean mixed layer is well parameterized using a z-coordinate.
Unfortunately, these models have some well known disadvantages, which include the following.

e Representation of tracer transport within the quasi-adiabatic interior is cumbersome, with
problems becoming more egregious as mesoscale eddies are admitted (Griffies et al.| (2000b)).

e Representation and parameterization of bottom boundary layer processes and flow are un-

natural.
Grid cells have static vertical increments ds = dz when s = z, except for the top where
d; (dz) = n;. The time dependent vertical range of the coordinate slightly complicates a nu-

merical treatment of the surface cell in z-models (see |Griffies et al.| (2001) for details of one such
treatment).

Placing all changes in ocean thickness in the top gric cell exposes the free surface geopotential
coordinate models to two pesky problems. First, when adding fresh water to the ocean, such as
for with simulations of land ice melting, the top cell thickens, which means the representation
of vertical processes is coarsened. Conversely, the surface cell can be lost (i.e., can become dry)
if the free surface depresses below the depth of the top grid cell’s bottom face. This is a very
inconvenient feature that limits the use of z-coordinates"| In particular, the following studies may
require very refined vertical resolution and/or large undulations of the surface height, and so
would not be accessible with a conventional free surface z-model.

e Process studies of surface mixing and biological cycling may warrant very refined upper
ocean grid cell thickness, some as refined as 1m.

e Realistic tidal fluctuations in some parts of the World Ocean can reach 10m-20m.

e Coastal models tend to require refined vertical resolution to represent shallow coastal pro-
cesses along the continental shelves and near-shore.

e When coupled to a sea ice model, the weight of the ice will depress the ocean free surface.

2Linearized free surfaces, in which the budgets for tracer and momentum are formulated assuming a constant top
cell thickness, avoid problems with vanishing top cells. However, such models do not conserve total tracer or volume,
and so are of limited use for long term climate studies (see|Gritfies et al.[(2001) and |Campin et al.|(2004) for discussion).
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6.1.2 An example of depth coordinates

In some of the following discussion, we illustrate aspects of vertical coordinates by diagnosing
the values for the coordinates from a realistic z-model run with partial step thicknesses. Partial
steps have arbitrary thickness set to accurately represent the bottom topography. The partial step
technology was introduced by [Adcroft et al| (1997) in the C-grid MITgem, and further discussed
by Pacanowski and Gnanadesikan| (1998) for the B-grid Modular Ocean Model (MOM). Figure
compares the representation of topography in a z-model using partial steps as realized in the
MOM code of Griffies et al| (2004). Many z-models have incorporated the partial step technology
as it provides an important facility to accurately represent flow and waves near topography.

Because of partial steps, the level next to the ocean bottom has grid cell centers that are gen-
erally at different depths. Hence, the bottom cell in a partial step z-model computes its pressure
gradient with two terms: one due to gradients across cells with the same grid cell index k, and
another due to slopes in the bottom topography. Details of the pressure gradient calculation are
provided in Chapter[d All other cells, including the surface, have grid cell centers that are at fixed
depths. Figure[6.2)illustrates the lines of constant partial step depth for this model.

Full step topography
\ \

00
00
00
00
00

200°W 100°W 0
Longitude

Partial step topography
0 | | | |
00

00

00
00
00

200°W 100°W 0
Longitude

Figure 6.1: Comparison of the partial step versus full step representation of topography as realized
in the z-model discussed by [Griffies et al|(2005). This vertical section is taken along the equator.
The model horizontal grid has one degree latitudinal resolution. The main differences are in the
deep ocean in regions where the topographic slope is gradual. Steep sloped regions, and those in
the upper ocean with refined vertical resolution, show less distinctions.
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/depth surfaces

500 500

Latitude

Figure 6.2: This figure contours the depth of grid cell centers used in a modern geopotential
ocean model. Deviations from the horizontal occur next to the bottom due to use of a partial
bottom step representation of topography, as illustrated in Figure In this case, the bottom
cell has an arbitrary thickness according to the methods of [Adcroft et al. (1997) and [Pacanowskil
land Gnanadesikan| (1998). This technology is common in modern geopotential ocean models, as
it provides a more faithful and robust representation of the ocean bottom. Shown here is a north-
south section along 150°W.

6.1.3 Depth deviation coordinate

The depth deviation coordinate
s=z—1 (6.4)

removes the restriction on upper ocean grid cell resolution present with s = z. That is, s =
0 is the time independent coordinate value of the ocean surface, no matter how much the free
surface depresses or grows. Hence, no surface cells vanish so long as n > —H. If n < —H, the
bottom topography is exposed, in which case the model’s land-sea boundaries are altered. Such
necessitates a model that can allow for wetting and drying of grid cells. Alternatively, it requires a
model where ocean is extended globally, with infinitesimally thin ocean layers present over land.
We do not have such features in MOM4p1.

The depth deviation coordinate ranges between —(H + 1) < s < 0. The only time dependent
interface in s-space is at the bottom of the column. Consequently, by solving the problem at the
ocean surface, the deviation coordinate introduces a problem to the ocean bottom where bottom
cells can now vanish. To see this problem, discretize the deviation coordinate s according to time
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independent values s. For example, the s; values can be set as the depths of cells in a model with
s = z. When 1) evolves, depth z and s = z — 1 become different, and so the depth of a grid cell
must be diagnosed based on the time independent value of s; and the time dependent surface
height

Zx = Sk + 1. (6.5)

If the time dependent depth of the upper interface of a bottom grid cell is diagnosed to be deeper
than the actual bottom depth z = —H, then we know that the bottom grid cell has vanished and
so there are problems. To maintain nonvanishing cells requires a limit on how negative 1 can
become. For example, if the upper interface of a bottom cell is —5000m and the bottom interface
(at the ocean bottom) is H = 5005m, then the bottom cell is lost if 1 < —5m. This restriction is of
some consequence when aiming to use partial bottom steps (see Figure along with tides and
sea ice. In practice, if one is interested in allowing thick sea ice and nontrivial tidal fluctuations,
then it will be necessary to keep the bottom partial steps thicker than roughly 10m-20m. This is
arguably a less onerous constraint on the model’s vertical grid spacing than the complementary
problem at the ocean surface encountered with the traditional z-coordinate s = z.

In summary, grid cells have static grid increments ds = dz for all cells except the bottom.
At the bottom, J¢ (dz) = 9 (ds) = n;. Hence, the thickness of the bottom cell grows when the
surface height grows, and it thins when the surface height becomes negative. The bottom cell can
be lost if 1 becomes too negative. The sum of the vertical increments yields the total depth of
the column Y, ds = (H + 7). Because the surface height fluctuations are so much smaller than
changes in bottom topography, the depth deviation coordinate appears nearly the same as the
depth coordinate when viewed over the full depth range of a typical model such as in Figure

The author knows of no model routinely using the depth deviation coordinate. It does appear
to have advantages for certain applications over the depth coordinate. However, the zstar coordi-
nate discussed next resolves problems at both the top and bottom, and so is clearly preferable. The
depth deviation coordinate is not implemented in MOM4p1 for these reasons.

6.1.4 Zstar coordinate

To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordi-

nate
* zZz—T
zt=H . 6.6
<H+n) (6.6)

This coordinate is closely related to the “eta” coordinate used in many atmospheric models (see
Black| (1994) for a review of eta coordinate atmospheric models). It was originally used in ocean
models by Stacey et al.[(1995) for studies of tides next to shelves, and it has been recently promoted
by |Adcroft and Campin! (2004) for global climate modelling.

The surfaces of constant z* are quasi-horizontal. Indeed, the z* coordinate reduces to z when n
is zero. In general, when noting the large differences between undulations of the bottom topogra-
phy versus undulations in the surface height, it is clear that surfaces constant z* are very similar to
the depth surfaces shown in Figure These properties greatly reduce difficulties of computing
the horizontal pressure gradient relative to terrain following sigma models discussed next. Ad-
ditionally, since z* = z when 11 = 0, no flow is spontaneously generated in an unforced ocean
starting from rest, regardless the bottom topographyE] This behavior is in contrast to the case with

3Because of the use of partial bottom steps, there are two terms contributing to horizontal pressure gradients within
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sigma models, where pressure gradient errors in the presence of nontrivial topographic variations

can generate nontrivial spontaneous flow from a resting state, depending on the sophistication

of the pressure gradient solverﬁ The quasi-horizontal nature of the coordinate surfaces also fa-

cilitates the implementation of neutral physics parameterizations in z* models using the same

techniques as in z-models (see Chapters 13-16 of Griffies|(2004) for a discussion of neutral physics

in z-models, as well as Section[5.2.3]and Chapter[I6]in this document for treatment in MOM4p1).
The range over which z* varies is time independent

~H<z"<0. (6.7)

Hence, all cells remain nonvanishing, so long as the surface height maintains 1 > —H. This is a
minor constraint relative to that encountered on the surface height when usings = zors =z —n.

Because z* has a time independent range, all grid cells have static increments ds, and the sum
of the vertical increments yields the time independent ocean depth

Y ds = H. (6.8)
k

The z* coordinate is therefore invisible to undulations of the free surface, since it moves along
with the free surface. This property means that no spurious vertical transport is induced across
surfaces of constant z* by the motion of external gravity waves. Such spurious transport can be
a problem in z-models, especially those with tidal forcing. Quite generally, the time independent
range for the z* coordinate is a very convenient property that allows for a nearly arbitrary vertical
resolution even in the presence of large amplitude fluctuations of the surface height, again so long
asn > —H.

6.1.5 Depth sigma coordinate

The depth-sigma coordinate

oc=z"/H

_(z—n) (6.9)
~ \H+n

is the canonical terrain following coordinate. Figure illustrates this coordinate in a realistic
model. The sigma coordinate has a long history of use in coastal modelling. For reviews, see
Greatbatch and Mellor| (1999) and [Ezer et al. (2002). Models based on the sigma coordinate have
also been successfully extended to basinwide studies, as well as recent global work by Diansky
et al.| (2002).

Just as for z*, the range over which the sigma coordinate varies is time independent. Here, it
is given by the dimensionless range

—-1<o<0. (6.10)

the bottom level when s = z. As discussed by |[Pacanowski and Gnanadesikan| (1998), these two terms lead to modest
pressure gradient errors. These errors, however, are far smaller than those encountered with o coordinates.

4Shchepetkin and McWilliams| (2002) provide a thorough discussion of pressure gradient solvers along with methods
for reducing the pressure gradient error.
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Hence, all cells have static grid increments ds, and the sum of the vertical increments yields unity

Y ds=1. (6.11)
k

So long as the surface height is not depressed deeper than the ocean bottom (i.e., so long as 11 >
—H), then all cells remain nonvanishing
Some further key advantages of the sigma coordinate are the following.

e It provides a natural framework to represent bottom influenced flow and to parameterize
bottom boundary layer processes.

e Thermodynamic effects associated with the equation of state are well represented with this
coordinate.

However, some of the disadvantages are the following:

e As with the z-models, representation of the quasi-adiabatic interior is cumbersome due to
numerical truncation errors inducing unphysically large levels of spurious mixing, espe-
cially in the presence of vigorous mesoscale eddies. Parameterization of these processes
using neutral physics schemes may be more difficult numerically than in the z-models. The
reason is that neutral directions generally have slopes less than 1/100 relative to the hori-
zontal, but can have order unity slopes relative to sigma surfaces. The larger relative slopes
precludes the small slope approximation commonly made with z-model implementations of
neutral physics. The small slope approximation provides for simplification of the schemes,
and improves computational efficiency.

e Sigma models have difficulty accurately representing the horizontal pressure gradient in the
presence of realistic topography, where slopes are commonly larger than 1/100 (see Section
for a discussion of the pressure gradient calculation).

Grifties et al.|(2000a) notes that there are few examples of global climate models running with
terrain following vertical coordinates. Diansky et al. (2002) is the only exception known to the
author. This situation is largely due to problems representing realistic topography without incur-
ring unacceptable pressure gradient errors, as well as difficulties implementing parameterizations
of neutral physical processes. There are notable efforts to resolve these problems, such as the
pressure gradient work of Shchepetkin and McWilliams| (2002). Continued efforts along these
lines may soon facilitate the more common use of terrain following coordinates for global ocean
climate modelling. At present, the sigma coordinate is coded in MOM4p1 in hopes that it will
motivate researchers to further investigate its utility for ocean modelling.

6.1.6 Summary of the depth based vertical coordinates

Depth based vertical coordinates are natural for Boussinesq equations. These coordinates and
their specific thicknesses z s are summarized in Table Notably, both the sigma and zstar coor-
dinates have time independent ranges, but time dependent specific thicknesses. In contrast, the

5If n < —H, besides drying up a region of ocean, the specific thickness z; = H + 1 changes sign, which signals a
singularity in the vertical grid definition. The same problem occurs for the z* coordinate.
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Sigma surfaces

Latitude

Figure 6.3: Constant sigma surfaces as diagnosed in a z-model. Shown here is a section along
150°W, as in Figure Note the strong variations in the contours, as determined by changes in
the bottom topography.

depth and depth deviation coordinates have time dependent depth ranges and time independent
specific thicknesses. If plotted with the same range as those given in Figure surfaces of con-
stant depth deviation and constant zstar are indistinguishable from surfaces of constant depth.
This result follows since the surface height undulations are so much smaller than undulations
in the bottom topography, thus making the depth deviation and zstar coordinates very close to
horizontal in most parts of the ocean.

6.2 Pressure based coordinates

The second class of vertical coordinates that we discuss is based on pressure. Pressure-based coor-
dinates are used to discretize the non-Boussinesq equations, and these coordinates are also known
as mass based coordinates. This name is based on noting that for a non-Boussinesq fluid using pres-
sure, the mass of interior grid cells is constant without sources (e.g., see equation (3.217)).
Pressure coordinates provide a straightforward way to generalize Boussinesq z-models to non-
Boussinesq pressure models (Huang et al) 2001} [DeSzoeke and Samelson, 2002; Marshall et al.,
2004; |Losch et al., 2004). The reason is that there is an isomorphism between the Boussinesq equa-
tions written in depth based coordinates and non-Boussinesq equations written in pressure based
coordinates. The root of this isomorphism is the simplification of the density weighted specific
thickness p z s for pressure based coordinates. We detail this point in the following discussions.
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COORD DEFINITION RANGE Zs
geopotential | z —H<z<n 1
z-deviation |z =z—n —(H+n)<z/' <01

z-star z*=H(z—n)/(H+n) | —-H<z*<0 1+n/H
z-sigma o® =(z—-n)/(H+n) | -1<0<0 H+n

Table 6.1: Table of vertical coordinates based on depth. These coordinates are naturally used for
discretizing the Boussinesq equations. Note that the specific thickness z s is depth independent.
This property proves to be important for developing numerical algorithms in Section The
coordinates s = z,s = z*, and s = o(?) are coded in MOM4p1, whereas the depth deviation
coordinate is not.

Pressure based vertical coordinates that we consider include the following:

s=7p pressure (6.12)
S=pP—Pa pressure-deviation (6.13)
s = <}?—Pa> pressure-sigma (6.14)
Pb — Pa
s=p ( P~ Pa ) pressure-star. (6.15)
Po — Pa

In these equations, p is the hydrostatic pressure at some depth within the ocean fluid, p, is the
pressure applied at the ocean surface z = 7n from any media above the ocean, such as the at-
mosphere and sea ice, py, is the hydrostatic pressure at the solid-earth lower boundary arising
from all fluid above the bottom (ocean water and p, above the ocean), and p} is a time inde-
pendent reference pressure, usually taken to be the bottom pressure in a resting oceanE] Since
p. = —pg < 0is single signed for the hydrostatic fluid, pressure provides a well defined vertical
coordinate. Strengths and weaknesses of the corresponding depth based coordinates also hold
for the pressure based coordinates, with the main difference being that pressure based models are
non-Boussinesq.

6.2.1 Pressure coordinate
With a free surface, the vertical domain over which the p-coordinate
s=p (6.16)
ranges is given by
Pa <P = Po. (6.17)

Hence, the surface and bottom boundaries are time dependent, whereas the density weighted
specific thickness is constant
pzZs = —gil (618)

®Note that equation (11.64) of Griffies|(2004) used the time dependent py, rather than the time independent reference
pressure pj. The former vertical coordinate has not been used in practice, and so we focus here on that coordinate
defined with the reference pressure p%.
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where the hydrostatic equation p , = —p g was used. Relation is the root of the isomorphism
between Boussinesq depth based models and non-Boussinesq pressure based models.

The time dependent range for the pressure coordinate complicates the treatment of both the top
and bottom cells. In particular, if the bottom pressure is less than the time independent discrete
pressure level at the top interface of the lowest cell, then there is no mass within the bottom
cell. Likewise, if the applied pressure is greater than the discrete pressure level at the bottom
interface of the top cell, then there is no mass in the top cell. These results mean that grid cells
have static vertical coordinate increments ds = dp for all cells except the top and bottom. At the
top, d; (ds) = 9¢ pa and at the bottom d; (ds) = —9; p,. The associated mass per unit area in the
cells evolves according to d; (pdz) = —g ! 9; pa at the surface, and 9; (pdz) = ¢! 9 pp at the
bottom. Hence, the mass within the top cell decreases when the applied pressure increases, and
the mass in the bottom cell increases when the bottom pressure increases. Both the surface and
the bottom cells can therefore vanish depending on the applied and bottom pressures.

The sum of the vertical coordinate increments can be found by noting the total mass per area
is given by

g (pp—pa) =Y pdz
=Y pzsds (6.19)
= —g_l Z ds,

thus yielding the time dependent result
Y ds=—(pb — pa)- (6.20)

6.2.2 Pressure deviation coordinate

The pressure deviation coordinate
S=p—pa (6.21)

removes the restriction on upper ocean grid cell resolution since s = 0 is the time independent
value of the ocean surface. That is, this coordinate ranges between

0<s<pp—pa (6.22)

This coordinate is isomorphic to the depth deviation coordinate s = z — 1 discussed in Sec-
tion and shares the same limitations which prompt us not to have this coordinate coded
in MOM4p1.

In summary, grid cells have static vertical coordinate increments ds for all cells except the
bottom. At the bottom 0; (ds) = —0d; (pp — pa). The associated mass per unit area in the bottom
cell evolves according to d; (pdz) = g1 9; (pp — pa). As for the pressure coordinate, the sum of
the vertical coordinate increments yields

Y ds=—(pp— pa). (6.23)

6.2.3 DPstar coordinate

The pstar coordinate is given by

S (i pa) (6.24)
P= <Pb—Pa
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where p} is a time independent reference pressure. Two possible choices for pj include

Ph =28 / dz p™t, (6.25)

or the simpler case of
Pp =g Po H. (6.26)

The p* coordinate is isomorphic to the z* coordinate, with p* extending over the time independent
range
0<p <p. (627)

The sum of the vertical coordinate increments can be found by noting the total mass per area
is given by

g (pp—pa) =Y pdz
=) pzsds (6.28)

= (P Pa> ds
< s )
thus yielding the time independent result

Z ds = —pp. (6.29)

6.2.4 Pressure sigma coordinate

The pressure-sigma terrain following coordinate

o) — <P ~Pa > (6.30)
Pb — Pa

is the pressure analog to the depth based sigma coordinate o!*) = (z —1)/(H + 17). This coordi-
nate has been used by Huang et al.|(2001), and it shares the same advantages and disadvantages as
the depth-based sigma coordinate. Grid cells have static vertical coordinate increments ds for all
cells. The associated mass per unit area never vanishes in any cell, so long as the bottom pressure
is greater than the applied pressure.

The sum of the vertical coordinate increments can be found by noting the total mass per area
is given by

8 (pp—pa) =Y, pdz
=Y pzsds (6.31)

=-g ' (pp—pa) Y ds,

thus yielding the time independent result

Y ds=—1. (6.32)
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COORD DEFINITION RANGE gPZs

pressure p Pa<p<pp -1
p-deviation | p' = p — pa 0<p <p,—pa| —1

pstar PP =py(p—pa)/(Po—pa) | 0O<p" <pj —(po—pa)/py
psigma | 0¥ =(p—pa)/(pp—pa) [0<0<1 —(po— Pa)

Table 6.2: Table of vertical coordinates based on pressure. These coordinates are naturally used
for non-Boussinesq dynamics. Note that the density weighted specific thickness pz; is depth in-
dependent. This property proves to be important for developing numerical algorithms in Section
The coordinates s = p, s = p*, and s = o(P) are coded in MOM4p1, whereas the pressure
deviation coordinate is not.

6.2.5 Summary of the pressure based vertical coordinates

A technical reason that the pressure based coordinates considered here are so useful for non-
Boussinesq hydrostatic modelling is that pz; is either a constant or a two-dimensional field. In
contrast, for depth based models pz is proportional to the three-dimensional in situ density p,
thus necessitating special algorithmic treatment for non-Boussinesq z-models (see Greatbatch and
McDougall (2003) and (Grifties| (2004)). Table [6.2| summarizes the pressure-based coordinates dis-
cussed in this section. The pressure and pressure deviation coordinates have time dependent
ranges but time independent specific thicknesses p z s. The sigma and pstar coordinates have time
independent range but time dependent specific thickness.

As Table [6.2| reveals, the specific thickness z ; is negative for the pressure-based coordinates,
whereas it is positive for the depth-based coordinate (Table [6.I). The sign change arises since
upward motion in a fluid column increases the geopotential coordinate z yet decreases the hydro-
static pressure p. To establish a convention, we assume that the thickness of a grid cell in z space
is always positive

dz=12z4sds >0 (6.33)

as is the case in the conventional z-models. With z; < 0 for the pressure-based vertical coordi-
nates, the thickness of grid cells in s space is negative

ds <0 for pressure-based coordinates with z; < 0. (6.34)



PART II
Numerical formulations

The purpose of this part of the document is to describe algorithms used to numerically solve
the ocean primitive equations in MOM4p1.
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CHAPTER
SEVEN

Quasi-Eulerian Algorithms

There are two types of ocean models as distinguished by their solution algorithms (Adcroft and
Hallberg, 2006). Eulerian vertical coordinate algorithms diagnose the dia-surface velocity com-
ponent from the continuity equation. Lagrangian vertical coordinate algorithms specify the dia-
surface velocity component (e.g., zero diapycnal velocity in adiabatic simulations with isopycnal
coordinates). Eulerian in this context does not mean that a grid cell has a time constant vertical
position. Hence, the term quasi-Eulerian is often used. This chapter develops the semi-discrete
budgets of a hydrostatic ocean model and then presents quasi-Eulerian solution algorithms. No-
tably, as implemented in MOM4p1, the quasi-Eulerian algorithms are formulated assuming a time
independent number of grid cells. That is, MOM4p1 does not allow for vanishing cell thickness.
This assumption simplifies the algorithms in many ways, but in turn limits the extent to which this
code can be used for simulations where water masses change in a nontrivial manner (e.g., wetting
and drying is not handled in MOM4p1).

7.1 Pressure and geopotential at tracer points

We discussed the discrete pressure gradient body force appropriate for a finite difference dis-
cretization in Sections [4.2] and [4.3] We require the anomalous hydrostatic pressure in the depth
based models, and the anomalous geopotential height in the pressure based models. That is, for
depth based vertical coordinate models, we need a discretization of the anomalous hydrostatic
pressure (equation (4.20))

po=glpdz s=z

p =g [Mpdz s=z"00). @.1)

For pressure based vertical coordinate models, we need a discretization of the anomalous geopo-

tential (equation (4.25))

o' = ~(g/p)) [ ¢dz. 7.2)
—H

The vertical integrals involve some ambguity for the finite difference formulation, since the tracer
point is not vertically centred within the tracer cell for the case of a vertically nonuniform grid. In
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this case, we may choose to compute the pressure and geopotential at the tracer point using a
more accurate vertical integration that accounts for the non-centred placement of the tracer point.

The purpose of this section is to describe two methods used for the calculation of the pressure
and geopotential at the tracer grid point. Details of this discretization affect the manner used for
diagnosing the pressure conversion to buoyancy work, as described in Sections [10.4] and [10.5]
The MOM4p1 code provides both choices, with both producing analogous results for the surface
height and bottom pressure.

7.1.1 Pressure at tracer point: energetic method

If the equation of state is linear, and both density and velocity are advected with second order
centered differences, then the conversion of pressure work to buoyancy work will balance potential
energy changes. This equality led Bryan| (1969) to formulate the hydrostatic pressure calculation
according to

Phsr = Pi + g dawti pl, . (7.3)

That is, anomalous hydrostatic pressure is computed given knowledge of the thicknesses dzwt
and the density p;. In this equation, primes refer to anomalies relative to the reference Boussinesq
density

P'=p—po (7.4)

and .
P = (P + Pii1)/2 (7.5)

is the simple vertical average of density. This average is the same as a finite volume average only
if the grid cell thicknesses are uniform. With stretched vertical grids, the simple average differs
from the finite volume average presented in Section At the ocean surface, no average is
available, so we use the finite volume value for the pressure

Pie1 = g dzwty—g pf_;. (7.6)

Given this surface value, we then integrate downwards according to equation (7.3) to diagnose the
anomalous hydrostatic pressure at each discrete k-level.

7.1.2 Pressure at a tracer point: finite volume considerations

Although the finite volume method for computing the pressure force requires the pressure and
geopotential to be computed at the bottom of the tracer cells, we may choose to use a finite volume
motivated approach for computing the pressure and geopotential at the tracer point. Referring to
the right hand panel in Figure a finite volume motivated computation of hydrostatic pressure
at a tracer point is given by

p;(zl = gdztupk:1 ,02:1 (77)
Piy1 = Py +gdztlok pi + gdztupk 1 o), ;-

The pressure at k = 1 is the same as prescribed in the energetic method. However, for stretched
vertical grid cells, the interior cells have a different discrete pressure from that computed in the
energetic method. The finite volume approach is more accurate for stretched vertical grids.
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7.1.3 Discrete geopotential based on energetic considerations

Following in @ manner analogous to the anomalous hydrostatic pressure in Section[7.1.1], we have
the discretized anomalous geopotential

Qirpor = —(8/Po) dzWtinor Py

= 7.8
) = @, — (g/po) dzwty p,/cz. (7:8)

lteration starts from the bottom at k = kbot using the finite volume expression, and moves upward
in the column towards the surface.

7.1.4 Discrete geopotential based on finite volume considerations

Following in a manner completely analogous to the anomalous hydrostatic pressure in Section
[7.1.2] we have the discretized anomalous geopotential

q)2<=kbot = —/(g/Po) dztlokpot p;fzkbot/ / (79)
Dy =0y — (8/po) dztupyi1 Priq1 — (8/po) dztloy py.

lteration starts from the bottom at k = kbot using the finite volume expression, and moves upward
in the column towards the surface.

7.2 Initialization issues

When initializing a Boussinesq model, we place a fluid with initial in situ density o™ onto a grid
with vertical increments dzt. Hence, both the density and volume of the grid cells are specified.
The initial mass of fluid is thus implied from this initialization method. Furthermore, by definition,
the surface elevation n is zero.

For the nonBoussinesq model, we place a fluid with initial in situ density o™ onto a grid with
vertical pressure increments dst. Hence, both the density and mass of the grid cells are specified.
The initial volume of fluid is thus implied from this initialization method. Furthermore, by definition,
the bottom pressure anomaly, pbot_t — pbot®, is zero if we choose pbot® as the initial bottom
pressure.

The initialization methods are isomorphic. Unfortunately, when initializing the Boussinesq
model, there is no guarantee that its bottom pressure anomaly will be intially zero. Likewise, there
is no guarantee that the surface elevation n will be zero with the nonBoussinesq initialization. In
order to ensure that such is the case, an extra step is required. We outline these considerations for
the nonBoussinesq model. In this case, the issues of initialization become most apparent, since
a nonzero initial n is unacceptable for climate modelling. In particular, nonzero surface height
gradients affect the initial movement of sea ice, and such is undesirable.

There are three general ways to approach nonBoussinesq initialization. First, we can modify
the vertical pressure increments dst of the grid cells to accomodate the initial density and to retain
a zero surface height. This approach generally requires nontrivial horizontal deviations in the dst
array, so that it has full grid dependence dst(i, j, k). Such dependence is generally acceptable
for the bottom, where partial cells introduce this three-dimensional dependence to the vertical grid
increments. However, with this added dependence in the ocean interior, there is a possibility for
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dzwt(k+0) dztup(1)
o [2tk=1) .
dztlo(1)
dzwt(k=1)
dztup(2)
) )
dzt(k=2
dztlo(2)
dzwt(k=2)

dztup(k=kbpot)

® dzt(k=kbo

) °

dzwi(kerkbot) dztlo(k=kbot

Figure 7.1: A vertical column of three tracer cells and the corresponding vertical cell dimensions.
In MOM4p1, the vertical spacing is related by dzty = (dzwtx_1 + dzwty)/2. With this specifica-
tion, the average tracer T = (Tx + Tipr) /2 lives at the bottom of the tracer cell Ty and so is
co-located with the dia-surface velocity component w_bty. The right column exposes the half-
distances, which measure the distance from the tracer cell point to the top and bottom faces of the
tracer cell. The half-distances are used in the finite volume formulation of pressure and geopo-
tential computed at the tracer points (Sections and [7.1.4), whereas the grid spacing dzwt is
used for the energetically based computation of pressure and geopotential computed at the tracer

points (Sections and|7.1.3).

(=2

introducing pressure gradient errors, depending on the magnitude of the horizontal variations. If
the variations are minor, then this approach may be acceptable.

A second approach is to modify the initial density field. This approach, however, may fail after
some time integration, depending on the surface forcing. That is, over time the model may be
forced towards a density structure similar to the initial structure, in which case the possibility exists
for losing the bottom cell in the model if the evolved bottom pressure becomes lighter than the
pressure at the top of the bottom cell.

A third approach is motivated by one used with the MITgcm, and it is facilitated in the MOM4p1
code. Here, we deepen the bottom topography so that the initial mass (as set by the pressure
increments) and density result in vertical columns with zero initial surface height. This approach
may appear to be the least desirable, as we know the bottom topography generally more accu-
rately than the initial density. Yet depending on details of the initial density field and the pressure
increments, the changes in the bottom topography are often quite minor (see Section for
an example). We detail this approach in Section|/.3.3.4

These issues of initializing the nonBoussinesq model are fundamental to how the vertical grid
increments are determined for the model. So we now turn to a discussion of these increments.
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7.3 Vertical dimensions of grid cells

The density weighted thickness of a grid cell is of fundamental importance in the formulation
presented in this document. In particular, density weighted thickness of a tracer cell is a basic
ingredient and the values on a velocity cell are diagnosed according to the minimum surrounding
tracer cell values. Given these fields, most of the equations for the ocean model retain the same
appearance for arbitrary vertical coordinates. The technology of generalized vertical coordinates
then resides in the module specifying pdz (the MOM4p1 module ocean core/ocean_thickness
module), with extra work also needed for the pressure and grid modules.

In addition to the density weighted thicknesses, we are in need of the depth of a grid cell center,
depth of the grid cell bottom, and vertical dimensions within the grid cell. Information is needed for
these distances both in depth space (z-coordinate), and coordinate space (s-coordinate). These
needs introduce new time dependent arrays that are updated and saved for restarts.

Figure [7.1] defines notation for the grid cell thicknesses used in MOM4p1. Here, the left figure
exposes the vertical dimensions of the tracer grid cell, dzt and the distance between the T-cell
points, dzwt. The right figure exposes the half-distances, which measure the distance from the
T-cell point to the upper face of the cell, dztup, and the lower face, dztlo.

7.3.1 Thickness of a grid cell
The thickness of a grid cell is written

dz = z¢ds. (7.10)

For a tracer cell, this is written in the MOM4p1 code as
dzt = dzt_dst * dst. (7.11)

Inspection of the results from Tables[6.1]and lead to the thicknesses given in Table[7.1] which
are again applied to the tracer grid. The corresponding velocity cell thicknesses are diagnosed
based on the tracer cell values.

For the finite volume approach to computing the pressure and geopotential, as discussed in
Section |[7.1.2] we need a method to compute the half-thicknesses. For this purpose, we assume
the specific thickness factor dzt_dst is constant across the thickness of a tracer cell. We also
assume knowledge of the half-s-thicknesses dstlo and dstup, thus leading to

dztlo = dzt_dst * dstlo (7.12)
dztup = dzt_dst * dstup. (7.13)

The full cell thickness is then recovered by setting
dzt = dztlo + dztup, (7.14)

where
dst = dstlo + dstup. (7.15)
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COORD DEFINITION CELL THICKNESS

geopotential | z dz

zstar z*=H(z—n)/(H+n) dz = (1+n/H)dz*

z-sigma c@ =(z—n)/(H+n) dz = (H+n)do®

pressure p dz=—(pg)'dp

pstar p"=py(p—pa)/(po—pa) | dz = —[(po — pa) /(P& Pp)] dp”
psigma [ 0¥ = (p—pa)/(po—pa) [ dz=—[(po—pa)/(pg)]do?

Table 7.1: Table of vertical thicknesses dz for grid cells as determined on the tracer grid using the
vertical coordinates discussed in Chapter|6] The vertical coordinate increments are specified, and
the vertical thicknesses dz are diagnosed.

7.3.2 Vertical distance between tracer points

Through summation from the ocean surface, knowledge of the tracer cell thicknesses dzty within
a vertical column provides the depth of the bottom of any tracer cell within the column. For many
purposes, it is also important to know the depth where the tracer point is located. This information
is obtained via vertical summation from the distance between two vertically adjacent tracer cell
points. As seen in Section [7.1] when discussing the hydrostatic pressure and the geopotential,
the vertical distance between tracer points is known as dzwt and the corresponding velocity cell
vertical distance is dzwu.

7.3.2.1 Energetic based approach

For depth based vertical coordinates, dzwt is computed according to the results in Table [7.] given
the corresponding coordinate thicknesses dswt. For pressure based vertical coordinates using
the energetic approach from Section [7.1.1] we are guided by the result for the hydrostatic
pressure computed in a depth based vertical coordinate model. In general, this expression takes
the form

ds = (s;) dz (7.16)

where @ = (a; + ax,1)/2 is an unweighted discrete vertical average. Introducing model arrays
leads to

2
(S,z)k + (S,Z)k+1

dzwty = < > dswty. (7.17)

For example, with s = p, this relation takes the form

2

dzwt, = — _—
‘ (8 (P + Pr+1)

) dswty, (7.18)

where dswt is known and is negative, since pressure decreases upward, whereas geopotential
increases upward.



7.3. VERTICAL DIMENSIONS OF GRID CELLS 125

7.3.2.2 Finite volume approach

From the finite volume approach described in Section [7.3.1] we follow expressions (7.12) and
(7.13) for the thickness of a grid cell to write

dzwty—g = dztupg—1 (7.19)
dzwty~; = dztlox_; + dztupy (7.20)
dzwty—xbor = dZtlok—kbot- (7.21)

7.3.3 Summary of grid increments

We now summarize the previous results for the vertical coordinates z, z*, 0?), p, p*, and o). The
notation used in mom4 is used here to allow for ready implementation in the model code.

7.3.3.1 Geopotential vertical coordinate
The geopotential vertical coordinate has the following grid dimensions
dzt dst(i, j, k) =1

dzwt(i, j, k =0) = zt(k = 1) + eta_t(i, j) (7.22)
dzt(i,j,k=1) =zw(k = 1) + eta_t(i, j).

The initial values of the depth of tracer points, depth_zt, remain unchanged in time. However, the
thickness of the top cell is time dependent.

7.3.3.2 z* vertical coordinate
The z* coordinate has the grid dimensions
dzt dst(i, j, k) = 1 +etat(i, j)/ht(4,j)
dst(i, j, k) =dzt(i, j,k)|r=0
dswt(i, j, k) = dzwt(i, j, k)|r—0
dzt(i,j,k) = dzt_dst(i, j,k) * dst(i, j, k).

(7.23)

For the energetically based computation of hydrostatic pressure (Section [7.1.1), the distance be-
tween tracer points is computed according to

.. dswt(i, j, k=0)
dzwt(i, j,k=0) = —
zwt (i, ) dst dzt(i, j, k=1)
B 2dswt(i, j, k)
~ dst.dzt(i,j, k) +dst.dzt(i,j, k+ 1)

L dswt(i, j, k = kmt)
dzwt(i, j,k = kmt) = el .
zwt (i, ) = dstdzt(i, 3,k = knt)

dzwt(i, j, k = 1, kmt — 1) (7.24)

For the finite volume based computation of hydrostatic pressure (Section|7.1.2), the distance be-
tween tracer points is computed according to equations (7.19)-(7.21). Notice how the s-grid incre-
ments are constant in time, and are set by the z-grid increments at the initial model time step.
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7.3.3.3 Terrain following o(?) vertical coordinate

For the terrain following o(*) coordinate, we proceed in a different manner than for the geopotential
and z* coordinates. Here, a dimensionless partition of the o(#) coordinate is prescribed during
initialization, and then the vertical grid dimensions deduced from knowledge of the depth field ht.
The partitioning of o(?) can be chosen in many ways. We choose to base this partition on the
vertical grid dimensions dzt(k) and dzw(k) available in the Grid derived type. These are the full
cell grid dimensions, which thus make dst and dswt independent of horizontal position (i, j).

dzt dst(i, j, k) =ht(i, j) +etat(i,j)
dst(i, j, k) = dzt(k)/zw(nk)

dswt (i, j, k) = dzw(k)/zw(nk) (7.29)
(1,3,k)

dzt(i, j, k) = dzt_dst(i, j, k) = dst(i, j, k).

For the energetically based computation of hydrostatic pressure (Section [/.1.1), the distance be-
tween tracer points is computed according to

. dswt(i,j, k = 0)
dzwt(i,j,k=0) = —
zwt (i, J ) dst dzt(i,j, k=1)
B 2 * dswt(i,j, k)
~ dst.dzt(i,j, k) +dstdzt(i,j,k+1)

L dswt(i, j,k = kmt)
dzwt(i, i,k = kmt) = 3 .
zwt (i, ) = dstdzt(i, 3,k = knt)

dzwt(i,j, k =1, kmt — 1) (7.26)

For the finite volume based computation of hydrostatic pressure (Section [/.1.2), the distance be-
tween tracer points is computed according to equations (7.19)-(7.21).

7.3.3.4 Non-terrain following pressure vertical coordinate

As described in Section initialization of the nonBoussinesq model must take place in a manner
different from the Boussinesq model. That is, specifying the vertical grid increments with pressure
vertical coordinates introduces a fundamentally new consideration. Namely, the vertical grid di-
mensions dzt are a function of the initial in situ density p"t. However, with the present structure of
MOM4p1, we only know the initial density after an initial grid structure is established. Furthermore,
MOM4p1 does not allow for vanishing layers. Hence, there is a possibility that a first guess at a
vertical grid layout based on the bottom topography and the initial density, will not provide for a
realizable grid in a pressure model absent vanishing layers. This point necessitates a multiple step
process in the initialization of the pressure based model. We clarify these points in the following
discussion.

The first step of the initialization takes the initial temperature and salinity fields, and initial
grid specification file, all generated using the familiar MOM4 preprocessing code that assumes
geopotential vertical coordinates. From this information, we compute a vertical density profile
function

Zz’,j dati,jdzto(i, j, k) pinit
N Zi,j dati/]‘dzto(i, j, k)

Po (k) (7.27)
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Here, the initial density ' is assumed to live on the initial grid specified by thicknesses dzt°(i, j, k)
that are created just as if the model vertical coordinate were geopotential (including bottom partial
cells). The model is run for a time step to allow for this function to be generated and written to
a netCDF file. Then the model is rerun, now reading in this function as an input file for use in
subsequent steps of the initialization.

Note that the vertical density profile function p,(k) takes account of the possibility for larger
averaged density in the deep ocean, in which case the vertical pressure increments increase at
depth even moreso than suggested by the generally larger vertical depth increments towards the
deeper ocean. The utility of the density profile for specifying the pressure levels is a function of
many model details. For example, in the global one degree model described in Section [37.1.1]
using a reference profile proved to be detrimental to the abyssal flow in the tropics. We hypothesize
that the profile produced a vertical grid spacing that was much coarser than otherwise provided
with a depth basic vertical coordinate. Another possibility is there is a bug with the nontrivial p, (k)
profile. Hence, we recommend the trivial choice

Po(k) = po. (7.28)

Other model configurations may find different profiles to be more useful.

We now proceed to generate the vertical grid increments dst. As the model is pressure-based,
these increments should be a function only of the vertical grid index k, with the only exception being
at the bottom where partial bottom steps allow for i, j dependence

dstlo(i, j, k) = —g po(k) dzt10°(i, j, k) (7.29)
dstup(i, j, k) = —g po(k) dztup®(i, j, k) (7.30)
dst(i, j, k) = dstlo(k) + dstup(k), (7.31)
where again
dzt®(i, j, k) = dzt10°(i, j, k) + dztup®(i, j, k) (7.32)

are generated by assuming the model is a geopotential model so that the i, j dependence arises
just from the bottom partial cell adjustments.

Now that we have the vertical pressure increments dst(i, j, k), dstlo(i, j, k), and dstup(i, j, k),
and the initial density p"t, we recompute the vertical depth increments so that

1/i + 1y _dstlo(i,j,k)
dztlo (i, j, k) = (i1, K) (7.33)

Tre oy _dstup(i,j,k)
dztup' (i, j, k) = —g (T, 7, K) (7.34)
dzt!(i, j, k) = dztlo(i, j, k) + dztup(i, j, k). (7.35)

The fundamental question is whether the above procedure allows for the same number of
vertical grid cells to exist in a column with the pressure coordinate model as for the analog geopo-
tential model. A general aim followed here is to include pressure coordinate models in MOM4p1 in
a manner that represents an overall modest adjustment to what is commonly done for initializing
geopotential models. Given this aim, we assume that both the geopotential model and pressure
model have the same number of vertical grid cells within each column. That is, the kmt (i, j) array
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computed for the geopotential model is the same as for the pressure model. This assumption is
self-consistent with the same bottom topography array ht(i, j) only if

k=kmt(i,])
Y, dzt(i,j, k) <ht(d,]). (7.36)
k=1

More stringently, we aim to allow for a nontrivial bottom cell thickness dztmin in the pressure
model in order to regularize the numerical calculations in this cell, so that

k=kmt(i,j)—1
Y, dzt(i,j, k) <ht(i,j) — dztmin. (7.37)
k=1

If this condition fails, then we are unable to initialize the pressure model with the same density
distribution and bottom depths as in the geopotential model. There are two options: modify the
density or modify the bottom. The simplest option is to modify the bottom, and this option has been
facilitated in MOM4p1. Depending on details of the initial density and dztmin, the modifications
of the bottom are generally modest, and mostly localized to shallow ocean shelf regions. There is
no general rule, and the researcher may wish to iterate somewhat to refine the choice of bottom
topography for use with the pressure model. To appreciate the problem a bit more, we write the
above sum as

k=kmt(i,j)—1 o k=kmt(i,j)—1 dSt(i,j,k)
Z dZt(l, ],k) = — Z m
k=1 =1 &P (7.38)
k=1 P (i, j, k)

Thus, if we admit regions of the ocean where density is far less than the profile p,(k), then the
vertical column will be relatively thick. Hence, in order to maintain a zero initial surface height, as
chosen in the geopotential model, we depress the bottom topography by some nonzero amount.

Assuming the bottom topography is chosen appropriately, we have the following means for
computing the grid increments with the pressure vertical coordinate model. Here are the equations
that summarize this step

dzt_ dst(i, j, k) = —(g * rho(i, j, k)) !
dswt(i,j,k =1,kmt — 1) = —g * rho o(k) * dzwt(i, j, k)|r—0
dst(i,j, k =2,kmt — 1) = —g * rho_o(k) * dzt(i, j,k)|r=0
dswt(i, j,k=0) = —st(i,j,k = 1) + patm(i, j) (7.39)
dswt(i, j, k = kmt) = st(i, j, k = kmt) — pbot(i, j)
dst(i,j,k=1)= —sw(i, j,k=1)+patm(i,j)
dst(i, j, k = kmt) = sw(i, j, k = kmt — 1) — pbot(i, j)
dzt(i, j, k) = dzt_dst(i, j, k) * dst(i, j, k).

For the energetically based computation of hydrostatic pressure (Section [7.1.1), the distance be-
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tween tracer points is computed according to

dswt(i, j, k=0)
dst dzt(i,j, k=1)
2 * dswt(i,j, k)
dst dzt(i, j, k) +dst.dzt(i,j k+1)
dswt(i, j, k = kmt)
dst dzt(i, j, k = kmt)’

dzwt(i, j, k=0) =

dzwt(i, j, k= 1,kmt — 1) = (7.40)

dzwt(i, j, k = kmt) =

For the finite volume based computation of hydrostatic pressure (Section [7.1.2), the distance be-
tween tracer points is computed according to equations (7.19)-(7.21).

7.3.3.5 p* vertical coordinate

The same initialization procedure is followed for p* as for pressure. Following the initialization, the
model employs the following equations for setting the vertical grid increments

dzt dst(i, j, k) = ( pbOt(;L'?) - patm(i,j? . )
g * rho(i, j, k) * pbot®(i,j)
dswt(i, j, k) = dswt(i, j, k)|—0 (7.41)
dst(i,j, k) =dst(i,3,k)|r=0
dzt(i, j, k) = dzt.dst(i, j, k) * dst(i, j, k)

For the energetically based computation of hydrostatic pressure (Section|7.1.1), the distance be-
tween tracer points is computed according to

dswt(i, i,k = 0)
dst dzt(i,j, k=1)
2 * dswt (i, j, k)
dst.dzt(i, j, k) +dst.dzt(i, j, k+ 1)
dswt(i, j, k = kmt)
dst.dzt(i,j, k = kmt)’

dzwt(i, j, k=0) =

dzwt(i, j, k= 1,kmt — 1) = (7.42)

dzwt(i,j, k =kmt) =

For the finite volume based computation of hydrostatic pressure (Section [7.1.2), the distance be-
tween tracer points is computed according to equations (7.19)-(7.21).

7.3.3.6 Steps to initialize pressure and p* based models

We now summarize the steps required to initialize the pressure and p* based models.

e Determine dzt®(i, j, k) as z-model, with 1™ /) dzt%(i, j, k) = ht (4, j)

e Determine the density profile function rho_o(k) according to equation (7.27), with default
rho_o(k) = p,.
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e Set the pressure increments according to

dstlo(i, j, k) = —grho_o(k) dzt1o(i, j, k) (7.43)
dstup(i, j, k) = —grho_o(k) dztup®(i, j, k) (7.44)
dst(i, j, k) = dstlo(k) + dstup(k), (7.45)

e Insert the initial temperature and salinity to the grid points (1, j, k) to then determine the initial
density p"(7, j, k).

e Determine the modified thickness of the grid cells according to
dstlo(i, j, k)

dztlo (i, j, k) 2o (i, 7, K) (7.46)
1rs s dstup(i, j, k)
_ . 7
dztup (i, j, k) <o (i, 1,6 (7.47)
dzt!(i, j, k) = dztlo(i, j, k) + dztup(i, j, k). (7.48)
e Determine if
k=kmt(i,j)—1
Y dzt(ij k) <ht(i,j) — dztmin. (7.49)
k=1

If so, then make no modifications to the bottom topography. If not, then deepen the bottom
topography so that the following equality is satisfied

. k=kmt(i,j)—1
ht(i, )" = Y dzt(i,j k) + dztmin. (7.50)
k=1

e Determine the bottom cell thickness according to

k=kmt(i,j)—1
dzt(i,j, kmt) =ht(i,j)— Y, dzt(i,j k). (7.51)
k=1

7.3.3.7 Terrain following o7 coordinate

For the terrain following o?) coordinate, we use the same dimensionless partition as for the o(?)
coordinate to initialize the grid arrangement. However, we have been unable to derive a self-
consistent method to incorporate the in situ density into the algorithm, since to compute the bottom
pressure we must know dzt, but to know dzt requires the bottom pressure. Hence, we expect
there to be a large and spurious deviation in surface height just after initialization for runs with o(»)
coordinate.

During the integration, we make use of the following grid increments

dzt_dst(i,j, k) = — <pb0';(: -I].I),lo(f’a_]-tlmk()ll-])>
dswt(i, j, k) = —dzw(k)/zw(nk) (7.52)
dst(i, j, k) = —dzt(k)/zw(nk)
dzt(i,j, k) =dzt.dst(i,j, k) * dst(i, j, k)
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For the energetically based computation of hydrostatic pressure (Section|7.1.1), the distance be-
tween tracer points is computed according to

.. dswt(i, j, k=0)
dzwt(i,j,k=0) = —
zwt (i, J ) dst dzt(i,j, k=1)
B 2 * dswt(i, ], k)
~ dst.dzt(i,j, k) +dstdzt(i,j, k+1)

L dswt(i, j, k = kmt)
dzwt(i,j,k = kmt) = el .
zwt (i, ) = dstdzt(i, 3,k = knt)

dzwt(i, j, k = 1,kmt — 1) (7.53)

For the finite volume based computation of hydrostatic pressure (Section [7.1.2), the distance be-
tween tracer points is computed according to equations (7.19)-(/.21).

7.3.4 Surface height diagnosed in pressure based models

For models using a pressure based vertical coordinate, the surface height n is diagnosed, whereas
for depth based models it is computed prognostically (Section[7.4). To diagnose the surface height,
we use the identity

n=-H+) dz (7.54)

given the thickness dz of each cell determined via Table This is the original calculation pro-
vided in MOM4p1 for n. Another method, identical in the continuum but differing numerically due to
finite precision, uses the following identity valid for the three pressure-based vertical coordinates
supported in MOM4p1

n
Hin=Po"Pa_ / o dz. (7.55)
Po & S

This alternative calculation is preferable computationally as it separates the smaller density con-
tribution arising from density anomaly o’ = p — p,, from the larger bottom pressure contribution.
This separation facilitates a more precise calculation by reducing numerical roundoff.

It is useful to note a common occurrance with pressure based models. Namely, the surface
height will generally have a nonzero areal average even in the absence of mass fluxes. Such
should be expected since the pressure based models conserve mass, not volume. For example,
surface height can actually decrease even when mass is added to a column, so long as the col-
umn density increases by a sufficient amount. Hence, we are unable to make a general statement
regarding the sign of the surface height without knowledge of both the mass per area in the col-
umn (as determined by the bottom pressure) as well as the vertical sum of the inverse density.
Relatedly, the steric effect will cause the surface height to rise in regions of heating/freshing and
decrease in regions of cooling/evaporation.

7.3.5 Bottom pressure diagnosed in depth based models

For models using a depth based vertical coordinate, it is necessary to diagnose the bottom pres-
sure py, using the following identity

Po=patg ) pdz (7.56)

Here, we use the in situ density p and the thickness dz of each cell.
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7.4 Vertically integrated volume/mass budgets

The vertically integrated mass and volume budgets determine, respectively, the bottom pressure
and the surface height. The purpose of this section is to derive these budgets for use with depth
based and pressure based vertical coordinates.

7.4.1 Vertically integrated volume budget

The budget for the volume per unit horizontal area for a Boussinesq fluid integrated over the depth
of a grid cell takes the following forms, depending on whether the cell is in the interior, the bottom,
or the surface

dt(dz) = —Vs - (dzu) — (w®)s—g, | + (0)s—g, + dzSV) (7.57)
9 (dz) = =V - (dzu) — (w®))ezg,,, , +dzSV) (7.58)
9 (dz) = =V - (dzu) + (w®))es,_, + gw + dz SV (7.59)

We obtained these equations from the mass budgets (3.166), (3.184), and (3.195), with density
set to the constant Boussinesq reference value p,, and with S V a vqume source (with units of
inverse time). The vertical sum of these budgets leads to

d(H+n) =~V - Utqu+y dzsV, (7.60)
k

where we used

Ydz=H+n, (7.61)
k

which is the total thickness of the water column, and we introduced the depth integrated horizontal
velocity
Y dzu="U. (7.62)
k

Since H is the time independent ocean bottom, equation (7.60) provides a prognostic relation for
the surface height

ne=-V-Utqy+) dzsV. (7.63)
k

This is the free surface equation used for depth based vertical coordinate Boussinesq models.

7.4.2 Vertically integrated mass budget

The budget of the mass per unit horizontal area for a non-Boussinesq fluid integrated over the
depth of a grid cell takes the following forms, depending on whether the cell is in the interior, the
bottom, or the surface
dt(dzp) = —=Vs-(dzpu) — (p w(s))s:sk,l + (p w(s))szsk +dzpSM (7.64)
9t (dzp) = —Vs- (dzpu) — (pw)s—g, , +dzpSM (7.65)
9t (dzp) = =V - (dzpu) + (pw'®)s—s, + pwgw +dzpSM, (7.66)
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These are equations (3.166), (3.184), and (3.195). The vertical sum of these budgets lead to the
vertically integrated balance of mass per area for a column of fluid

o (;dzp> =-V- (;dzpu> +pwqw—|—;dsz(M). (7.67)

The vertical integral ¥, dz p is the total mass per area in the fluid column. In a hydrostatic fluid,
this mass per area is equal to the difference in pressure between the bottom and top of the column

; dzp =g~ " (po— pa)- (7.68)

Consequently, the mass budget generally takes the form

9t(Po — pa) = =8V - (Zdzpu> +gowqw+g Y dzpS™
k k

=gV U +gpuqw+g Y dzpS™
k

(7.69)

where
UP =) dzpu (7.70)
k

is the vertically integrated density weighted horizontal velocity. The time tendency for the applied
pressure could be provided by another component model. Without this information, it can be
approximated by, for example,

pa(t) —pa(t—1)

w . (7.71)
For the vertical integral of the horizontal momentum per volume, pu, note that z ; p is depth inde-
pendent for either choice of pressure based coordinates given in Table In summary, for the
pressure based coordinates in Table[6.2] the depth integrated mass balance takes the form

atpa ~

d(pp—pa) = -8V -UP+gpwqu+g ) pdzSM. (7.72)
k

7.4.3 Summary of the vertically integrated volume/mass budgets

In summary, the vertically integrated volume and mass budgets take on the isomorphic form

n: = —V-U—I—qw+2sz(V)
k

-1 (M) (7.73)
§ 0 (pob—pa) = -V -UP+pugw+ ) pdzS™M.
k

These budgets provide prognostic relations for the surface height i in the Boussinesq case, and
the bottom pressure py, in the non-Boussinesq case. The tendency for the applied pressure p,
must be determined by another component model, or approximated via equation (7.71).
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7.5 Compatibility between tracer and mass

Although we do not time step the vertically integrated tracer budget in an ocean model, it is useful
to write it down for diagnostic purposes. Furthermore, it allows us to introduce a compatibility
condition between tracer and mass budgets. To do so, recall the tracer budgets for the interior,

bottom, and surface grid cells, given by equations (3.165), (3.183), and
9¢(dzpC) =dzpS© —V,.[dzp(uC+F)]
—[p (@ C+ F¥)]seg
+[p (0 C + F®))]o—s,.
9 (dzpC) =dzpS© —V,-[dzp(uC +F)]
_ [p (w® C + 1:(5))]

S=Skbot—1
(©)
+ Qpot)
3t (dzpC) = dzpS© — vV, [dzp(uC +F)]
+[p ()t FO)]

+ pw gw Cw — QEt(l;J)rb)

5=S5k=1

Summing these budgets over a vertical column leads to

o (ZdzpC) =) dzpS© —v,. (Zdzp(uC—i—F))
k k k

+ (Pw qw Cw— Qgtéj)rb) + QE?;C;H)> .

(7.74)

As expected, the only contributions from vertical fluxes come from the top and bottom boundaries.
Furthermore, by setting the tracer concentration to a uniform constant, all the turbulent flux terms
vanish, in which case the budget reduces to the vertically integrated mass budget discussed in
Section This compatiblity between tracer and mass budgets must be carefully maintained
by the discrete model equationsE]

7.6 Diagnosing the dia-surface velocity component

The key distinction between Eulerian vertical coordinates and Lagrangian vertical coordinates is
how they treat the dia-surface velocity component

w®) =z3. (7.75)

1 As discussed by Griffies et al.[(2001), local conservation of an algorithm for tracer and volume/mass can readily be
checked by running a model with uniform tracer concentration and blowing winds across the ocean surface. Surface
height undulations will ensue, thus causing changes in volume for the grid cells. But the tracer concentration should
remain uniform in the absence of surface fluxes. Changes in tracer concentration will not occur if the volume /mass and
tracer budgets are compatible in the sense defined in this section.
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The Lagrangian models prescribe it whereas Eulerian models diagnose it. The purpose of this
section is develop Eulerian algorithms for diagnosing the dia-surface velocity component for the
depth based and pressure based vertical coordinates of Chapter [l As we will see, a crucial
element for the utility of these algorithms is that the specific thickness z ; is depth independent
using depth based coordinates in a Boussinesq fluid, and p z ; is depth independent using pressure
based coordinates in a non-Boussinesq fluid.

7.6.1 Depth based vertical coordinates

Rearrange the grid cell volume budgets (7.57)-(7.59) to express the dia-surface velocity compo-
nent for the top cell, interior cells, and bottom cell as

(W))s—g,_, = 0 (dz) —dzSY) + V- (dzu) — gu (7.76)
(W®))smg, = 31(dz) —dzSY) + V- (dzu) + ()=, . (7.77)
0 =20 (dz) —dzSY) + Vs - (dzu) + (0 )s—g,,., - (7.78)

These equations are written from the surface to the bottom, with this order familiar from the
z—coordinate version of MOM4p0. Equation indicates that there is no transport through
the ocean bottom. In a numerical model, this equation provides a useful diagnostic to check that
dia-surface velocity components in the cells above the bottom have been diagnosed correctly. A
nonzero result at the bottom signals a code bug.

We now detail how the dia-surface velocity component is diagnosed for the depth based vertical
coordinates discussed in Section To do so, we determine diagnostic relations for the time
tendency o; (dz) of the grid cell thickness as a function of vertical coordinate. Because z is
independent of depth for these coordinates, we are able to express d; (dz) as a function of 1,
which in turn can be diagnosed using the vertically integrated volume budget.

7.6.1.1 Depth coordinate

For s = z, the only grid cell that admits a non-zero d; (dz) is the surface cell, where 9; (dz) = 9;7.
Also, in MOM4p0 we assumed that there are no volume sources for k > 1. But this assumption
is not fundamental. Indeed, volume sources throughout the column are not a problem, so long
as their affects on volume conservation for the cell are properly handled in the diagnosis of the
vertical velocity component. These results lead to the following expressions for the dia-surface
velocity component w(®) =z = w

(W) ey, = —dzSY) + V., - (dzu) — gu (7.79)
(W), = —=dzSY) +V, - (dzu) + (0¥).—, | (7.80)
0=-dz8V) +V,-(dzu) + (@), .. (7.81)
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The right hand side of the surface height equation (7.63) can be used to eliminate n; in equation
(7.79), thus leading to a purely diagnostic set of equations

@)z, = —dz8V + V- (dzu) + Y dzSV) - V.U (7.82)
k

(w(s))z:zk = —dz8Y) +V, - (dzu) + (w(s))zzzkf1 (7.83)

0=—-dz8V) +V,-(dzu) + (@0),—s,,, .- (7.84)

The algorithm starts at k = 1 given knowledge of the right hand side terms in equation (7.82).
Movement down the vertical column leads to the diagnosis of w for the full column.

7.6.1.2 Depth deviation coordinate

For s = z — n, the only grid cell that admits a non-zero d; (dz) is the bottom cell where 9; (dz) =
d:1n. The dia-surface velocity component (w(5>) = s = w — 1 thus is diagnosed via

(w(s))s:sk:1 = —-dz8Y +v,. (dzu) — gw (7.85)
(w(s))s:sk - _dZ S(V) “I’ VS . (dZ 11) + (w(s))szsk71 (7.86)
0=09;n—dz8V) +v,- (dzu) + (w(S))SZSkbot—l' (7.87)

As with the depth coordinate s = z, we use the surface height equation (7.63) to eliminate 1 in
equation (/.87) and so lead to a fully diagnostic set of equations

(W)geg,, = —dzSY) — gy + V. - (dzu) (7.88)
(W), = —dz8V) + (w®),—,, , + V.- (dzu) (7.89)
0= —dz8Y + (w®),—s,,, , + V.- (dzu)
+aw+) dzSV —v.U. (7.90)
k

7.6.1.3 Zstar coordinate

Fors = z* = H(z—n)/(H + n), all grid cells have time independent ds since the range for
z* is time independent. However, the specific thickness z; = 1+ n/H is time dependent. The
dia-surface velocity component is thus diagnosed via the equations

(w(s))szsk:1 =dsH! nt—dz SV +v,. (dzu) — gw (7.91)
(W)sms, =ds H ' 1y —dzSY) + Vs - (dzu) + (0®))s—g, (7.92)
0=dsH 'n;—dzS8Y) + V- (dzu) 4+ (w®))s—g,,, ;- (7.93)

The surface height equation (7.63) is used to eliminate 71 ; from each of these equations. Note that
in verifying the correctness of these results, recall that Y, ds = H for s = z*.
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7.6.1.4 Depth-sigma coordinate

Fors = 0(® = (z—1)/(H +n), all grid cells have constant ds since the range for o is time
independent. However, it has a time dependent specific thickness z s = H + n. These results lead
to the following expressions for the dia-surface velocity component

(w(s))s:sk:1 =dsn;—dz SV +v,. (dzu) — gw (7.94)
(W®))se, = dsn; — dzSV) 4+ Vs - (dzu) + (w)ss, (7.95)
0=dsn;—dzS8Y) + V- (dzu) + (w))s—s,,,, - (7.96)

The surface height equation (7.63) is used to eliminate n, from each of these equations. In
verifying the correctness of these results, recall that ¥, ds = 1 for s = o).

7.6.1.5 General expression for dia-surface velocity component

In summary, for depth based vertical coordinates, the dia-surface velocity component is diagnosed
via

(w(s))s:Sk:1 =0 (dz) —dz SV +v,. (dzu) — gw
(w(s))s:Sk = d¢(dz) — dz SV 4 Vs (dzu) + (w(s))s:%1 (7.97)
0=0;(dz) —dzS8Y) + V; - (dzu) + (w®)

S5=Skbot—1

where the thickness of a grid cell evolves according to

dt (dz) = b1 1t s=z
9t (dz) = Ok ko =z—
t (dz) = Sk kpor Mt s=z—1 7.98)
d(dz) =ds(ns/H) s=H(z—n)/(H+n)
o (dz) = dsmn, s=(z—mn)/(H+n).
The surface height evolution
ne=-V-Utqy+) dzsV (7.99)
k

embodies volume conservation for a Boussinesq fluid column. The right hand side of (7.99) is
used in equations (7.98) to produce a purely diagnostic expression for the dia-surface velocity
components.

7.6.2 Pressure based vertical coordinates

We now diagnose the dia-surface velocity component for pressure based vertical coordinates. For
this purpose, rearrange the grid cell mass budgets (7.64)-(/.66) to express the vertical velocity
component as

(pw™ s, = 3 (dz p) —dz pSM + V- (dz pu) — pw gw (7.100)
(.0 w(s))s:sk = at(dz P) —dz pS(M) + Vs - (dZ pu) + (pw(s))s:s,#l (7'101)
0=20;(dzp) —dz pSM 4+ V, - (dz pu) + (pw™) (7.102)

S=Skbot—1"
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As for the depth based vertical coordinates, we write these equations from the surface to the
bottom. Equation (7.102) indicates that there is no transport through the ocean bottom. In a
numerical model, this equation provides a useful diagnostic to check that velocity components in
the cells above the bottom have been diagnosed correctly. A nonzero result at the bottom signals
a code bug.

We proceed as for depth based vertical coordinates by determining diagnostic relations for
d: (pdz) as a function of the pressure based vertical coordinates discussed in Section Be-
cause pz; is independent of depth for these coordinates, we are able to express d; (pdz) as a
function of d; pa and 9 pp. The time tendency of the applied pressure is set according to other
component models, or approximated as (7.71). The time tendency for the bottom pressure is
set according to the vertically integrated mass budget (7.72). Finally, we note that it is the density
weighted dia-surface velocity component p w(®) which is most naturally diagnosed in this approach.
Conveniently, itis pw®®) that is required for the non-Boussinesq tracer and momentum budgets dis-
cussed in Sections [3.6/and

7.6.2.1 Pressure coordinate

For s = p, the density weighted specific thickness is a constant for all grid cells
pzs=—g !, (7.103)

but both the surface and bottom grid cells admit a non-zero o; (pdz). At the surfaceE],

dz=—¢!d
perm e (7.104)
=—9 (Pa — Pbottom of cell k:l)
which then leads to
o (pdz) = —¢ 1 o; pa. (7.105)

That is, the top cell mass per area decreases when the applied pressure increases. This result
follows since the bottom face of the top cell has a fixed pressure, but the top face is at the applied
pressure pa. As noted in Section[6.2 if the applied pressure becomes greater than puotiom of cell k=1
then the top cell vanishes. For the bottom cell,

dz=—¢7'd
P g,l 3 (7.106)
= —8 " (Ptop of cell k=kbot — Pb),
and so
o (pdz) = g 10 pp. (7.107)

Hence, the bottom cell thickness increases as the bottom pressure increases. If the bottom pres-
sure decreases below pigp of cell k=kbot, then the bottom cell vanishes. These results lead to the

2Recall that our convention in equation is that ds < 0 for pressure based vertical coordinates. At the surface
with pressure coordinates s = p, the coordinate increment is dp = pa — Ppotiom of cell k—1- Lhis increment is negative
since the applied pressure is less than the pressure at the bottom interface to cell k = 1. For the bottom cell, dp =
Ptop of cell k=kbot — Pb» which is negative when the bottom pressure is greater than the pressure just above it.
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following expressions for the density weighted dia-surface velocity component

(p w(s))s:sk:] =0 pa—dsSM 4V, - (dsu) + ¢ pw gw (7.108)
(pw'®))s—s, = —ds SM 4+ V. (dsu)+ (p w(s))szsk_1 (7.109)
0=—3pp—dsSM 4+ vV, (dzu) + (pw®) (7.110)

5=Skbot—1"

As a check, a sum of these equations leads to the vertically integrated mass budget written
in pressure coordinates. These equations are converted to diagnostic expressions for the dia-
surface velocity component by substituting the known time tendencies for the applied pressure
s pa (€.9., equation (7.71)) and the bottom pressure d; py, via the column integrated mass budget
(7.72).

7.6.2.2 Pressure deviation coordinate

For s = p — pa, the only grid cell that admits a non-zero d; (p dz) is the bottom cell. At this cell,

dz=—¢'d
S (7.111)
= —8 " [Ptop of cell k=kbot — (Po — Pa)l,
and so
9t (pdz) = g0 (po — pa). (7.112)

The right hand side can be diagnosed via the column integrated mass budget (7.72). These results
lead to the following expressions for the dia-surface velocity component

(pw®))sms, , = —ds SM + V- (dsu) + g pw gw (7.113)
(pw®))smg, = —ds SM + V, - (dsu) + (pw®)s—g, (7.114)
0=—0 (pp— pa) —dzSM 4V, . (dsu) + (pw(s))szskbm_l. (7.115)

As a check, the sum of these equations recovers the vertically integrated mass budget (7.72)
written in pressure coordinates.

7.6.2.3 Pstar coordinate
For s = p* with
p" = po (p—pa)/(po— pa), (7.116)

all grid cells have time independent constant ds. We are then led to the following mass per
horizontal volume of a grid cell

pdz =pzsds
o (7.117)
= —(gpb)" (po—pa)ds.
The time tendency
d (pdz) = —ds (gpp) " 01 (po — pa) (7.118)

can be diagnosed via the column integrated mass budget (7.72). We then use these results in the
general expressions (7.100)-(7.102) to generate the algorithm for diagnosing the vertical velocity
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components. As a check, the sum of these equations recovers the vertically integrated mass
budget (7.72) written in pressure coordinates. Note that in verifying this identity, it is important to
note that Y, ds = —py{ for the pstar coordinate, which results from the following identities

Po—Pa=2g ) pdz
k

= pzsds
g Xk: s (7.119)
— (P Pa) ds
( Pb ;
where we used the hydrstatic balance (7.68) for the first equality.

7.6.2.4 Pressure sigma coordinate

Fors = 0P = (p — pa)/(pb — pa), all grid cells have time independent ds since the range for
o is time independent. However, this coordinate has a time dependent density weighted specific
thickness, thus leading to

pdz=pzsds

= —g ! (Po— pa) ds.
We use these results in the general expressions (7.100)-(7.102) to generate the algorithm for
diagnosing the vertical velocity components. As a check, the sum of these equations recovers the
vertically integrated mass budget (7.72) written in pressure coordinates. In verifying this identity, it
is important to note that ¥, ds = —1 for s = o(#).

(7.120)

7.6.2.5 General expression for the dia-surface velocity component

In summary, for pressure based vertical coordinates, the dia-surface velocity component is diag-
nosed via

(pw)sms, = 0t (dz p) — dz pS™ + V- (dz pu) — puw
(pw®)omy, = 01(dz p) —dz pS™ + V- (dz pu) + (pw))s—s,_, (7.121)
0=20(dzp) —dz pSM 1+ V, - (dz pu) + (pw'®)

5=Skbot—1"

where the density weighted thickness of a grid cell evolves according to

890 (pdz) = =810t pa+ Okkbot Ot Po  S=p
89: (pdz) = 8 kbot O (Po — Pa) S=p—Ppa
. . (7.122)
g9t (pdz) = —(ds/py) ot (po — pa) s=pp(p—pa)/(pPb— Pa)
g9t (pdz) = —ds o (pp — pa) s=(p—pa)/(po— pa)
and the bottom pressure evolution
Ot (pp —pa) = —8gV-UP+gpwqgw+ g Zpsz(M) (7.123)
%

embodies mass conservation for a non-Boussinesq fluid column.
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7.6.3 Comments about diagnosing the dia-surface velocity component

We emphasize again that a critical element in the Eulerian algorithms for diagnosing the vertical
velocity components is the ability to exploit the depth independence of the specific thickness z ; for
the depth based coordinates for a Boussinesq fluid, and the density weighted specific thickness
pz s for the pressure based coordinates for a non-Boussinesq fluid. These properties allow us to
remove the time tendencies for surface height and pressure from the respective diagnostic rela-
tions by substituting the depth integrated budgets for the depth based models, and
for the pressure based models. Absent the depth independence, one would be forced to consider
another approach, such as the time extrapolation approach to approximate the time tendency pro-
posed by Greatbatch and McDougall (2003) for implementing a non-Boussinesq algorithm within
a Boussinesg model.

7.7 Vertically integrated horizontal momentum

We now outline the split between the fast vertically integrated dynamics from the slower depth
dependent dynamics. This split forms the basis for the split-explicit method used in MOM4 to
time step the momentum equation. For this purpose, we formulate the budget for the vertically
integrated momentum budget.

7.7.1 Budget using contact pressures on cell boundaries

Before proceeding with a formulation directly relevant for MOM4, we note the form of the vertically
integrated budget arising when we consider pressure acting on a cell as arising from the accumu-
lation of contact stresses. For this purpose, we vertically sum the momentum budgets given by

equations (3.238), (3.241) and (3.246), which leads to
(O +f2A) ) (dzpu) =— Z(i A (dzMpu)+V;-[dzu (pu)]>

+Z<—Vs (pdz) —|—dzpF> (7.124)

+ [Pb VH — Tbottom}.

Contact pressures on the top and bottom of the grid cells cancel throughout the column, just as
other vertical fluxes from momentum and friction. The remaining contact pressures are from the
bottom and top of the ocean column and the vertically integrated contact pressures on the sides of
the fluid column. Correspondingly, if we integrate over the horizontal extent of the ocean domain,
we are left only with contact pressures acting on the solid boundaries and undulating free surface.
Such is to be expected, since the full ocean domain experiences a pressure force only from its
contact with other components of the earth climate system.

7.7.2 Budget using the pressure gradient body force

As discussed in Section|3.7.2] we prefer to formulate the contribution of pressure to the linear mo-
mentum balance as a body force, whereby we exploit the hydrostatic balance. Hence, to develop
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the vertically integrated horizontal momentum budget, we start from the form of the budget given
by equations (5.19), (5.20), and (5.21), rewritten here for the interior, bottom, and surface grid cells

[0+ (f+ M)2A] (dzpu) = pdzS™ — V, - [dzu (pu)]
—dz(Vsp+pVs®)+dzpF

7.125
o u— kug) e, 712
+p (@ - ruz) ],
[0+ (f+ M)2A] (dzpu) = pdzS™ — V, - [dzu (pu)]
—dz(Vsp+pV;®)+dzpF
( (S)P pV;D) P 7.126)
- [,O (w u-— Ku,Z) ]stkbut—l
_ Tbottom
[0+ (f+ M)2A](dzpu) = pdzS™ — V, - [dzu (pu)]
—dz (Vsp+pVs®)+dzpF
Vsinds ppVs®)tdzp (7.127)
+ [T + Pw Gw uw]
+p (@Y u—ruz) g,
A vertical sum of the momentum budgets leads to
@+ f27) Y(dzpu) = ¥ pdz S
- Z(i A (dzMpu)+V;-[dzu (pu)]>
(7.128)

—|—Zdz <—Vsp—pV5(D—|—pF>

+ Twind . Tbottom + Ow Gw Uw.
Fluctuations in the surface height contribute both to fluctuations in the horizontal pressure gradient
and the geopotential gradient. These fluctuations lead to fast barotropic or external gravity waves,
and so they must be integrated with a small time step. In contrast, the slower baroclinic or internal
motions can be integrated with a larger time step, upwards of 100 times longer depending on de-
tails of the motions. Hence, it is advantageous for ocean climate modeling to develop an algorithm
that splits between the motions when time stepping the equations. Details of this split depend on
whether we work with a depth based or pressure based vertical coordinate.

7.7.3 Depth based vertical coordinates

We follow the discussion in Section |4.2.1| where the pressure gradient is split according to either
equation (4.18) for s = z* or s = (¥, and equation (4.17) for s = z. For geopotential coordinates
s = z this split takes the form

Vsp+pVs® =V (pa+ psurt) + Vs pé:linic +0' Vs @ (7.129)

fast slow
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where psut = p(z = 0)gn, p = po + 0 and plinec = fZO o' dz. For zstar or sigma coordinates,
this split takes the form

Vsp+0oVs® =V (pa+pogn)+Vsp +p' Vs @ (7.130)

fast slow

where p' = ¢ [J' p’ dz is the anomalous pressure field. The Boussinesq form of the vertically
integrated momentum budget (7.128) thus takes the form

po 0+ F2A) Y(dz1) = G — (H+ )V (pa+ pour) 7.131)

for s = z coordinates, and similarly for s = z* and s = o(® coordinates. In either case, G is
the vertical integral of the depth dependent terms on the right hand side of equation (7.128). G
embodies all contributions that are generally evolving on the slower baroclinic time scale. This
equation, along with the vertically integrated volume budget discussed in Section form the
barotropic system for the Boussinesq fluid in MOM4p1. These equations are time stepped to
resolve the fast waves using a predictor-corrector or leap-frog scheme discussed in Chapter 12 of
Criffies| (2004) (see also Section[8.2), where G is held fixed over the course of the barotropic cycle.
Note that the predictor-corrector is preferred due to its enhanced dissipation of small spatial scale
features, which are of some concern on the B-grid due to the gravity wave null mode (Killworth
et al., (1991}, Griffies et al., [2001).

7.7.4 Pressure based vertical coordinates

We now follow the discussion in Section 4.2.3| where the pressure gradient is split according to
equation (4.27) into a slow three dimensional term and fast two dimensional term

Vsp+pVs® =pVs® —(0'/p,) Vsp+ (p/po) V (Po + po Dp) - (7.132)
slow fast
where .
' =—(g/po) / o dz. (7.133)
—H

The vertically integrated pressure gradient can be written

Y dz(Vsp+pVs®@) =) dz[p Vs @' —(0'/p,) Vs p)
+V (po+po Do) Y (p/po) dz
= Zdz [P Vs o — (P//Po) Vs pl
+(gp0) " (po — Pa) V (Po + po D),

where we used the hydrostatic balance to write

g§) pdz=po—pa (7.135)
The vertically integrated momentum budget (7.128) thus takes the form

(7.134)

@+ f2A) Y.(dzpu) = G —(gp0) " (po— pa) V (Pb + po Pb), (7.136)




144 CHAPTER 7. QUASI-EULERIAN ALGORITHMS

where G is the vertical integral of the depth dependent terms on the right hand side of equation
(7.128), including the slow contribution to the pressure gradient force. The time stepping of equa-
tion then proceeds as for the Boussinesq case discussed in Section To help reduce
errors in the calculation of the pressure gradient, it is useful to consider the following split of the
bottom pressure

Po=Pb+pogH, (7.137)
so that the vertically integrated mass and momentum budgets take the form
O (ph—pa) = —8V-UP+gpuqu+g Y, pdzSM (7.138)
k
@+ f2A)UP = G~ (gpo) " (po— pa) V pp. (7.139)

The advantage of this formulation is that we remove the time independent bottom geopotential
po & H from the pressure gradient contribution to the vertically integrated velocity. As this contribu-
tion is huge, its removal enhances the numerical accuracy of the resulting pressure gradient.



CHAPTER
EIGHT

Time stepping schemes

The purpose of this chapter is to detail various issues of time stepping the discrete equations
of MOM4p1. It is written in two main parts, with the first part focusing on details of the scheme
inherited from MOM4.0, and successfully used for climate modelling. The second part revisits
the MOM4.0 scheme, and proposes some alternatives that are presently under investigation in
MOM4p1. The motivation for revisiting the MOM4.0 schemes is that they show problems when
used with radiating open boundary conditions. Martin Schmidt led the studies into these alternative
time stepping schemes, with further discussion in the appendix to Herzfeld et al.| (2010).

8.1 Split between fast and slow motions

An algorithm of practical utility for climate modeling must split the fast and slow dynamics so
that the slow dynamics can be updated with a much longer time step than the fast dynamics.
These algorithms are known as split-explicit methods. Alternatives exist whereby the fast dynam-
ics are time stepped implicitly and so may use the same time step as the slow dynamics. We
prefer split-explicit methods since they are more efficient on parallel computers and arguably more
straightforward (Griffies et al., 2001).

For a hydrostatic fluid, the fast motions can be approximated by the vertically integrated dy-
namics of Section and the vertically integrated mass or volume budgets of Section[7.4] The
remainder constitutes an approximation to the slower dynamics. Motions constituting the fast dy-
namics are embodied by the barotropic or external mode, and the slower motions are embodied
by advection as well as the baroclinic or internal mode. Given the fundamental nature of the mass
conserving non-Boussinesq flow, we formulate the split between the fast and slow modes using
density weighting. For the Boussinesq flow, the density weighting reduces to an extra p, factor
that trivially cancels.

Following the discussion in Section 12.3.5 of |Griffies| (2004), we consider the following split of
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the velocity

Yy pdzu Y, pdzu
= 4u-—
Y pdz Y pdz

slow fast

=a-+u-.

(8.1)

The fast barotropic velocity
ur

Yi pdz
is updated according to the vertically integrated momentum equation of Section The slow
baroclinic velocity & has zero density weighted vertical sum, and so its update is independent
of any depth independent forcing, such as fast fluctuations in the surface height associated with
external gravity waves. Therefore, we choose to update the slow dynamics using all pieces of
the momentum equation forcing, except contributions from the rapid pressure and geopotential
fluctuations. This update produces a velocity u’ that is related to the baroclinic velocity via

1 Yk pdzu’
Yi pdz

A similar relation was discussed in Section 12.4.2 of (Griffies|(2004). For global climate simulations,
the time step available for the update of the slow dynamics is much larger (50 to 100 times larger)
than the fast dynamics. It is this large time split, and the attendant improved model efficiency, that
motivate the added complication arising from splitting the modes. Completing the updates of u’
and U” allows for an update of the full horizontal velocity via

, Yk pdz u,> U’
= — + . 8.4
“ <u Yk pdz Yk pdz ®4)

732

(8.2)

d=u (8.3)

8.2 Time stepping the model equations as in MOM4.0

We present here some details of the time stepping schemes available in MOM4p1. Much of this
section is taken from the paper |Griffies et al.| (2005) that documents two ocean climate models
developed at GFDL; the OM3.0 and OM3.1 models. Time stepping in OM3.0 is based on the
standard MOM approach originating from the work of Bryan| (1969), and detailed for an explicit
free surface by Killworth et al. (1991) and Griffies et al.| (2001). An alternative was developed for
OMB3.1.

The main motivation for developing an alternative was to address tracer non-conservation as-
sociated with time filtering used to suppress the leap frog computational mode appearing in the
standard method. The proposed time staggered method has much in common with that used by
Hallberg| (1997) for his isopycnal model, as well as by Marshall et al.| (1997) and |(Campin et al.
(2004) for their hydrostatic and non-hydrostatic z-coordinate models.

The purpose of this section is to detail features of the time stepping schemes employed in
OMS3.0 and OM3.1. Further details are provided in Chapter 12 of Griffies (2004). We also refer
the reader to the pedagogical treatments of time stepping given by Mesinger and Arakawa| (1976)),
Haltiner and Williams| (1980), and Durran| (1999)). For simplicity, we focus here on the Boussinesq
system assuming z-coordinates for the vertical. The more general case of arbitrary vertical coor-
dinates with Boussinesq or nonBoussinesq equations follows trivially from the discussions here.
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8.2.1 The standard scheme used in OM3.0

We start by describing the standard approach used in MOM for time stepping tracers and baroclinic
velocity. For the thickness weighted tracer equation, this update takes the form

(h T)T+1 _ (ET)T—l
2 ATleap

=V, [(hu)" T P+ " F ] = & [w™ T"" 1+ FFF]. (85)

Here, h is the time dependent thickness of a tracer cell and T is the associated tracer concen-
tration. Horizontal and vertical advection velocity components are written (u, w), and (F, F;) are
the horizontal and vertical SGS flux components. The horizontal gradient operator is written V,
and ¢y is the vertical finite difference operator acting across a discrete level k. Prognostic fields
are updated in time increments of Atje,,. The thickness of a tracer cell is updated analogously to
the tracer, as required to maintain compatiblity between volume and tracer evolution (see Section
(Griffies et al., 2001).

The time tendency in equation has been aproximated with a centred in time discrete
operator. Skipping the central time step 7 introduces a spurious computational mode, where even
and odd steps decouple. We choose time filtering to suppress the associated instability, with &
and T denoting the time filtered thickness and tracer concentration. Absent time filtering, the
discrete time tendency has a second order global truncation error, whereas time filtering degrades
the truncation error to first order (see Section 2.3.5 of Durran (1999)). We comment further on
time filtering in the subsequent discussion, as it is central to why we considered alternative time
stepping schemes.

Global ocean models generally employ anisotropic grids, with significantly more refined vertical
spacing than horizontal. When admitting realistically fast vertical mixing processes, parameterized
by F,, a time implicit method is used to overcome the stringent time step constraints of an explicit
approach. Hence, F; is evaluated at the future time T + ATjeqp. In contrast, coarser grid spacing
in the horizontal generally allows for an explicit implementation of the horizontal SGS fluxes. Due
to the dissipative nature of SGS fluxes, stability considerations require them to be evaluated at
the lagged time T — ATjeap, With evaluation at the central time T numerically unstable. That is, the
horizontal SGS fluxes are implemented with a forward time step of size 2 ATjgap.

In contrast to dissipative terms, numerical stability dictates that tracer concentration in the
advection operator be evaluated at the central time 7 if using central spatial differencing. As
reviewed by |Griffies et al. (2000a), this approach has been common in z-models for decades.
This form of the time stepping gives rise to the commonly referred name leap frog applied to
the standard time stepping used in MOM. However, it is important to note that leap frog in the
tracer equation is used only for advection, and only for central spatial discretizations of advection.
Dissipative terms are implemented with either a forward or an implicit time step as described
above.

We found the dispersive errors from central differenced tracer advection to be unacceptable,
due to the introduction of spurious tracer extrema and the large levels of spurious dianeutral mixing
when convective adjustment acts on dispersion errors (Griffies et al., [2000b). We chose the third
order upwind biased scheme to address these issues. As reviewed in |Durran| (1999), upwind
biasing introduces a damping or dissipative element to numerical advection. Consequently, upwind
biased fluxes must be evaluated at the lagged time T — AT,y just like the dissipative horizontal
SGS fluxes. A similar situation arises when implementing the Quicker advection scheme, in which
one separates a dissipative portion evaluated at the lagged time step from a non-dissipative piece
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evaluated at 7 (Holland et al., 1998; Pacanowski and Griffies, [1999). This is the origin of the two
time labels placed on the tracer concentration for the advective flux in equation (8.5).

For the Sweby advection scheme, the split into dissipative and non-dissipative terms is not
possible. The full advective flux is thus evaluated at the lagged time step. This result may sug-
gest increased levels of dissipation using Sweby relative to Quicker. Indeed, this is the case in
regions where dissipation is welcomed, such as near river mouths where Quicker was found to
introduce unacceptable tracer extrema. In other regions of the simulation, we have seen negligible
differences between the two advection schemes.

An update of the thickness weighted baroclinic velocity using the standard time stepping
scheme in MOM takes the form

h’l’+1 u7+1 _ ETfl e

2AT

i =—M"2 xhu"
+ (W ")k — (W u" )i
— V.- (h"u"u")
—h"(fz x ) trapezoidal
— WV (p"/po)
+ i (Fu)(Tfl,Tﬁ’l)‘ (8.6)

As for the tracer update, time filtering is applied to the lagged values of velocity and velocity cell
thickness to suppress time splitting. Central differences are used to spatially discretize velocity
self-advection, thus necessitating its evaluation at the central time step. Pressure is temporally
evaluated likewise. The friction operator (F*)(*~17+1) arises from horizontal and vertical fluid
deformations. Analogous to the treatment of tracer SGS fluxes, horizontal deformations are eval-
uated at T — ATieap (forward time step) and vertical deformations at T + ATieap (implicit time step).

Inertial energy is realistic in the climate model since it includes a diurnal cycle of solar insola-
tion, and the atmosphere and sea ice fields passed to the ocean (wind stress, fresh water, turbulent
and radiative quxes are updated every two hours. Inertial energy has important contributions to
the mixing coefficients determined by the model’s boundary layer scheme.

The model’s baroclinic time step is smaller than that needed to resolve inertial oscillations (e.g.,
Section 12.8.3 of Griffies| (2004)). We nonetheless encountered an inertial-like instability in the cli-
mate model’s Arctic sector when implementing the Coriolis force explicitly in time (see Chapter[11]
for a discussion of a discrete implementation of the Coriolis Force). This instability is presumably
related to the coupling between the ocean and sea ice, although the precise mechanism remains
under investigation. The climate model remained stable, however, when implementing the ocean’s
Coriolis force with a trapezoidal or semi-implicit method (Section[11.3). Hence, this is the method
employed in both OM3.0 and OM3.1.

8.2.2 Problems related to tracer conservation

Consider now the discrete time tracer equation in the abbreviated form

(h T)T+AT|eap — (ET)T*ATleap + 2 AT G, (8'7)

1 As recommended by [Pacanowski| (1987), wind stress applied to the ocean surface is computed using the relative
velocity between the atmospheric winds and the ocean currents.
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where G symbolizes the advective and diffusive terms as well as boundary fluxes (we ignore
source/sink terms for brevity). Thickness at the lagged time step results from a time average as
described in |Griffies et al.| (2001), whereas time filtering of tracer concentration is taken in the
form suggested by Robert (1966) and |Asselin| (1972) (see also Section 2.3.5 of [Durran (1999))E]
Integrating equation over the model domain leads to the balance of total tracer content in
the model. Total tracer at time T + AT,y is determined by the input of tracer through boundaries
during the 2 ATe,p, time step, plus the volume integrated product of the time filtered thickness and
tracer concentration, 1 T, at the lagged time T — ATjeqp. Notably, because of time filtering, the
model’s total tracer changes even in the case of zero boundary fluxes.

The magnitude of tracer change associated with time filtering can be negligible for many pur-
poses, as discussed in |Griffies et al.| (2001). However, we found the changes unacceptable
when developing ecosystem models, where precise conservation is desired. Additionally, filter-
ing contributed to a globally averaged heat non-conservation in the climate model on the order of
+0.03W m~2. This non-conservative heat flux is a few percent of the surface insolation change ex-
pected from doubling greenhouse gas concentrations in the atmosphere. It is therefore of concern
for our climate change simulations. Consequently, alternative approaches were investigated.

8.2.3 The time staggered scheme used in OM3.1

The alternative scheme we employ in OM3.1 discretizes the time derivative with a forward time
step. That is, it does not skip any time levels. Additionally, it staggers tracer and velocity fields by
one-half time step in a manner analogous to spatial staggering on Arakawa grids. We therefore
refer to this method as a time staggered scheme.

Forward time stepping does not admit time splitting, and so no time filters are needed. The
alternative scheme therefore ensures tracer is conserved, which is our primary motivation for
moving away from the standard method involving the leap frog. There are other consequences
of changing the time tendency discretization, and the purpose of this section is to expose these
issues.

A time staggered update of thickness weighted tracer is given by

(h T)T+1/2 _ (h T)T*l/Z

= V. [(hu) T Y2+ i F V2] — 5 [0 T V2 + EFTV2]0 (8.8)
ATstag

The two equations and become identical when the following holds:
o time steps are related by ATstag = 2 ATieqp,
e time filtering in the standard method is not used, and
e tracer advection employs an upwind biased scheme.

In effect, the time staggered method stays on just one of the two leap frog branches. This is the
fundamental reason that the two methods should be expected, for many purposes, to yield similar
solutions.

2We chose filtering for tracer over the alternative of periodically using a forward or backward time step, which
was the method used by |Cox| (1984). The use of a periodic forward or backward time step introduces an unphysical
periodicity to the simulation, and in particular was found by Marotzke| (1991) to interact in unphysical ways with
convective adjustment.
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We note the following points to keep in mind when transitioning to the staggered approach from
the standard leap-frog.

e Centred spatial differencing of advection is unstable with a forward time step. Hence, for
tracer advection we must employ an upwind biased advection scheme when using the stag-
gered approach. For our purposes with global ocean climate modelling, such advection
schemes are motivated to resolve problems with other schemes. Nonetheless, this conse-
quence of changing the time stepping scheme may be unacceptable for certain applications.
An alternative method is to retain the ability to discretize advection with centred spatial dif-
ferences, but to alter the temporal evaluation of the advection operator according to Adams-
Bashforth methods (Durranl (1999), or other schemes. In particular, we chose a temporally
third order accurate Adams-Bashforth method for velocity self-advection, thus maintaining
the traditional centred spatial differences of this operator. The third order Adams-Bashforth
method requires the advection operator at time steps 7, T — 1, and T — 2, thus increasing
memory requirements.

¢ When choosing a forward time step for the tendency, the Coriolis force must be computed
using an implicit or semi-implicit approach, such as that described in Chapter A time
explicit approach is numerically unstable. In contrast, the standard approach with the leap
frog allows for an explicit leap frog time stepping of the Coriolis force, as well as the semi-
implicit or implicit.

e A leap frog discretization of the time tendency updates the ocean state by ATy, through
taking a 2 ATeap step for the discrete time tendency. Consequently, gravity waves and dis-
sipative operators (i.e., diffusion, friction, and upwind biased advection) are time step con-
strained based on 2 Atjeap. In constrast, the staggered scheme updates the ocean state by
Atstag and it employs Atgiag to compute tendencies. It is therefore time step constrained
based on a ATstag time step. Hence, the staggered time step Atgtag can generally be twice
that of the leap frog ATieap

ATStag - 2 Aﬂeap. (8.9)

The computational cost of OM3.1 with the staggered scheme is therefore one-half that of
OMS3.0 using the standard scheme. There can be little argument that such an improvement
in efficiency is of great use for ocean modelling.

8.2.4 Sensitivity to the time stepping scheme

During the bulk of our development, the ocean model employed the standard time stepping scheme
for tracer, baroclinic, and barotropic equations. Upon developing the staggered time stepping
scheme for the tracer and baroclinic equations, we became convinced that the modified scheme
has utility for our climate modelling applications. The question arose whether switching time step-
ping schemes would require retuning of the physical parameterizations.

Tests were run with the ocean and ice models using an annually repeating atmospheric forcing
with daily synoptic variability, again repeating annually. Runs using the staggered scheme had a
two hour time step for both tracer and baroclinic momentum, and a predictor-corrector scheme



8.2. TIME STEPPING THE MODEL EQUATIONS AS IN MOM4.0 151

(e.g., Killworth et al., [1991}; Griffies, 2004) for the barotropic equations with a 90s time stepﬂ The
comparison was made to the standard time stepping scheme using one hour time steps for the
tracer and baroclinic equations, and (3600/64)s for the leap frog barotropic equations.

Analysis of these solutions after 10 years revealed that regions with relatively high frequency
temporal variability, such as the equatorial wave guide, exhibit the most differences instantanously.
Figure illustrates the situation along the equator in the East Pacific. The standard simulation
exhibits substantial time splitting, even with a nontrivial level of time filtering from a Robert-Asselin
time filter. Moving just five degrees north of the equator, however, reveals that the simulation
has much less relative variability, and a correspondingly negligible amount of time splitting. Even
though the simulation along the equator showed substantial time splitting, over longer periods
of time, the large scale patterns and annual cycles showed negligible differences between time
stepping schemes. Indeed, time averaging, even over just a day, seems sufficient to smooth over
most of the instantaneous differences.

Tests were then run with the GFDL coupled climate models CM2.0 (using OM3.0 as the ocean
component) and CM2.1 (using OM3.1). Instantaneous differences were much larger, as expected
due to the nontrivial natural variability in the coupled system with a freely evolving atmospheric
component. Nonetheless, differences for large scale patterns and seasonal or longer time aver-
ages were within levels expected from the model’s natural variability.

8.2.5 Dissipative aspects of the predictor-corrector

The purpose of this section is to expose the dissipative aspects of the predictor-corrector scheme
available for use in the barotropic equations in MOM4p1. A similar treatment is given in Section
12.8.1 of |Griffies| (2004).

In two space dimensions, the predictor-corrector equations for an update of the surface height
and vertically integrated horizontal velocity in a Boussinesq model are

n

1 A_t” — yV.U" (8.10)
Un+1 —ur )
— ="V (8.11)
At
nn-i—l _ nn
— = —Vv.-urth (8.12)

where n symbolizes the barotropic time step. For brevity we dropped the fresh water and source
terms appearing in the free surface equation (7.63), and we assumed an unforced linear shallow
water system with squared wave speed ¢? = g H. Setting the dimensionless dissipation parameter
v > 0 to zero recovers a forward-backward scheme discussed by Killworth et al.| (1991). Keeping
v > 0 was useful in our simulations and was motivated by similar experiences in the Hallberg
Isopycnal Model (Hallberg, |1997).

3We found the predictor-corrector to be suitable for the barotropic equations due to our ability to increase the
barotropic time step beyond that of the leap frog. Additionally, it preferentially dissipates grid scale features, which are
commonly found when discretizing gravity waves on a B-grid (Killworth et al.|[1991} Griffies et al., 2001). We present
an analysis of the dissipative aspects in Section
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Eliminating the predicted surface height n* leads to

Un+1 —_ur

T = —C2 VTI” + 7/(32 AtV [V . Un] (813)
n+1l _ n

% — _v.urt (8.14)

To directly see how the surface height evolves, eliminate U to find

ntl i 4 =1
L (A’Z)2 T — eV +y (V) (=), (8.15)

Taking the limit At — 0, yet with ¥ At constant, leads to a dissipative wave equation
(01 — > V) n = (v At) (cV)? . (8.16)
A single spatial Fourier mode with wavenumber amplitude « thus satisfies
<d2/dt2 +y At (ck)2d/dt + (CK)2) n=0. (8.17)

This is the equation for a damped harmonic oscillator with inverse e-folding time (1/2) y At (c«)>.
With v > 0, external gravity waves are selectively dissipated in regions where the surface height is
changing in time, and where the spatial scales are small. Faster waves are damped more readily
than slower waves. These properties are useful when aiming to suppress the B-grid computational
null mode discussed in Killworth et al.| (1991) and Griffies et al.| (2001).

8.3 Surface height and bottom pressure smoothing

As discussed by Mesinger (1973), Killworth et al.| (1991), |Pacanowski and Griffies| (1999), Griffies
et al. (2001), and Section 12.9 of |Griffies| (2004), there is a ubiquitous problem with B-grid models
due to a null mode present when discretizing inviscid gravity waves. This mode manifests in the
velocity field when using a relatively small viscosity. Additionally, it manifests in the surface height
or bottom pressure, especially in coarsely represented enclosed or semi-enclosed embayments
where waves tend to resonate rather than to propagate. The pattern is stationaryﬂ and appears as
a plus-minus pattern; i.e., as a checkerboard. As there is generally no dissipation in the surface
height budget

n: =V -U+gquw, (8.18)

suppression of the null mode requires some form of artificial dissipation. An anlogous situation
exists with the bottom pressure equation in a pressure based vertical coordinate model.

Various methods have been described in the literature (e.g., [Killworth et al., 1991}, Griffies et al.,
2001) to address this problem. The following constraints guide how we specify the filter.

e For the Boussinesq fluid, the tracer and surface height budgets must remain compatible in
the sense defined in Section Hence, if a filter is added to the surface height equation,
one must correspondingly be added to the tracer equation. Likewise, the non-Boussinesq
tracer equation must have a filter added if the bottom pressure equation has a filter.

4Hence the term “null,” thus indicating it has a zero eigenvalue.
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e The filter should be zero in the case that the surface height is locally a constant, or if the
bottom pressure remains locally the same as the reference bottom pressure.

The following filter for the surface height in a depth based vertical coordinate model has been
found suitable for suppressing noiseE] in the model of Griffies et al.| (2004), and a variant on this
form sufficient for geopotential vertical coordinates was described in Section 12.9 of Griffies|(2004)

9t 1 = [0t Nnofiter + V - (AVN") dv (8.19)
at (dzt T) = [at (dzt T)]no filter T+ 5k,1 V- [A \Y% (T]* T)] 5vn. (8.20)

In these equations, A > 0 is a diffusivity, oy ,, vanishes if the surface height is locally constant, and
.1 vanishes for all but the surface grid cell at k = 1. The surface height n* is defined by

n"=n+ |77min’ + Toft (8.21)

where nmin is the global minimum of the surface height, and nq is a nonzero offset. The use of
n* rather than n does not alter the filter acting on the surface height, since V n* = V . However,
n* is important for the tracer, since it ensures that n* T has the same sign as T. If we instead
diffused n T, regions where n < 0 could lead to negative diffusion, which results in tracer extrema
and potential instabilities. The alternative 6,1 V - [A V (dzt T)] is not desirable for z* and o vertical
coordinates, in which case the bottom topography potentially adds a nontrivial level of smoothing
even when the surface height is a uniform constant.

Global conservation of volume and tracer is ensured by using no-flux conditions at the side
boundaries. Local conservation is ensured since the tracer and volume equations are compatible,
as evidenced by setting the tracer concentration to unity in the tracer equation which, upon vertical
integration, recovers the surface height equation (see Section|[7.5). Note that a more conventional
treatment of the filter in the tracer equation is given by the convergence of the thickness weighted
flux —n AV T. However, V - (n AV T) is not compatible with the filter applied to the surface height,
and so this alternative approach will lead to local non-conservation.

For pressure based vertical coordinates, we use the following filter

di pp = [at Pb]no fiter + V- (AV Pg) ov Pp (8.22)
o (p dzt T) = [at (p dzt T)]no fitter + Ok kb V [A \Y (g_l pg T)] oy P (8.23)

where oy v vanishes where V p; vanishes. The modified bottom pressure pj > 0 is defined by

e = po— P+ Imin(ps — p3)| + P, (8.24)

where pgff is a nonzero offset pressure. The positive pressure pj is defined in a manner analogous
to the definition of n* given by equation (8.21). Note that subtracting out the reference bottom
pressure pp is useful prior to performing the Laplacian operations. Doing so ensures that the filter
does not overly smooth the bottom pressure in regions where its undulations arise from variations

5For added scale selectivity, it is sometimes useful to employ a biharmonic operator instead of a Laplacian. However,
much care should be exercised when using the biharmonic, as it is not positive definite and so can lead to negative tracer
concentrations. Therefore, the biharmonic, although present in the MOM4p1 code, is not recommended for general use.
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in the bottom topography. Such variations are physical, and do not reflect a problem with the B-
grid and so should not be filtered. The term ¢! pg, appearing in the tracer equation acts like an
effective mass per area

(pdzt)®" = ¢~ 1 p;, (8.25)

which is positive since pj > 0. That is, the filter on the bottom pressure equation acts like a mass
source in the bottom cell. Hence, tracer must be rearranged in the bottom cell in order to maintain
compatibility (see Section [7.5). This filter satisfies the global and local conservation constraints,
while adding a level of filtering needed to smooth the bottom pressure.

8.4 Introduction to time stepping in MOM4p1

For the remainder of this chapter, we step back from the OM3 simulations and revisit some of
the basic algorithmic details of the time stepping schemes used in MOM4p1. Before doing so, let
us summarize advantages of the staggered time stepping scheme employed by MOM4p0. For
climate modelling, this scheme has proven to be a great improvement over the traditional leap-
frog based methods found in earlier GFDL ocean codes, as well as many other ocean circulation
models (Griffies et al. (2000a)). The improvements include the following.

e There is no need to employ explicit time filters (e.g., Robert-Asselin filter) with the staggered
scheme, thus enhancing temporal accuracy over the time filtered leap-frog scheme.

e The time staggered scheme conserves seawater mass and tracer mass to within numerical
roundoff, whereas the leap-frog based methods, due to the use of explicit time filtering, fail
to conserve.

e The time staggered scheme updates the state of the ocean one time step by employing
tendencies based on that one time step. In contrast, leap-frog based schemes update the
state over one time step by using tendencies based on two time steps. Hence, the leap-frog
based schemes have a CFL stability constraint based on the two time step tendencies, and
S0 can be run at only one-half the time step of the staggered scheme. Thus, the staggered
scheme is generally one half the computational cost of the leap-frog based schemes.

The purpose of the following sections of this chapter is to expose salient points regarding
the time stepping algorithm that have been raised when developing the radiating open boundary
condition.

8.5 Basics of staggered time stepping in MOM4p1

Fundamental to the time staggered method is the need to provide a surface height n at integer
time steps n(7) as well as half integer time steps (7 + At/2). The surface height at integer time
steps is needed to couple to velocity variables, which are placed on integer time steps, whereas
half integer time steps provide a surface height for tracers. In addition, due to the split between
barotropic and baroclinic modes, the surface height is updated over the small barotropic time steps
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n®)(1,t,), where a raised (b) denotes a field evaluated on the small barotropic time step. The first
time label T designates which baroclinic branch the cycle started, and

th =T+ nAt (8.26)

is the barotropic time step. The relation between the large time step At and small time step At is
given by
2AT = NAtL (8.27)

The barotropic time stepping procedes from the intitial barotropic time ty = 7 to the final time ty =
T+ 2 At. The integer N is a function of the split between barotropic and baroclinic gravity waves,
which can be on the order of 100 in a global model. Deducing the connection between n(7),
n(t+ At/2), and n®) (7, t,) is a focus of these notes. Correspondingly, we require a connection
between the barotropic time cycled vertically integrated velocity U®) and U(r).

The barotropic cycle integrates over time 2 At for every At update of the baroclinic system.
Why the doubling of the time integration? This method is based on experience with split-explicit
time stepping schemes, where we have found it important to provide sufficient time averaging to
damp instabilities arising from the incomplete split between the fast and slow motions available with
a vertical integration. Longer time averaging is possible, though less convenient algorithmically,
less accurate, and more expensive.

A fundamental constraint of any time stepping scheme is that the tracer and volume equa-
tions must remain compatible with one another. Compatibility means that the tracer concentration
equation reduces to the volume conservation equation when setting the tracer concentration to a
constant. Without compatibility, tracer and volume conservation are lost, and the algorithm is of
little use for ocean climate modelling.

After completing the barotropic cycle, which extends from t) = 7 to ty = 7+ 2 AT, we aim
to have a prescription for updating the vertically integrated velocity U(7 + At), the free surface
height n(t + At/2), as well as n(7 + AT).

8.6 Predictor-corrector for the barotropic system

The preferred barotropic time stepping algorithm is the predictor-corrector scheme. The first step
in the algorithm “predicts” the surface height via

T](*) (T/ ti’H—l) _ n(b) (T/ tn)

— _v.u® 2
A V-U® (1, t,) + &, (8.28)

where £ is the fresh water forcing or volume source, both of which are held constant over the
course of the barotropic cycle. We expose the time labels on these fields in later discussions.
The raised (*) denotes an intermediate value of the surface height. This is the “predicted” value,
to be later “corrected.” The nondimensional parameter 0 < -y acts to dissipate the small scales
of motion (see Section 12.8 of [Griffies| (2004)). Setting ¥ = 0 recovers a second order accurate
forward-backward scheme, in which case the predictor step is eliminated. Larger values of
v reduce the order of accuracy, yet provide effective damping. However, as shown in Section 12.8
of |Griffies| (2004), values of y larger than 1/4 can compromise the scheme’s stability. The value
v = 1/5 has been found useful for many purposes.
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The predicted surface height n(*)(T, t,+1) is used to compute the surface pressure via

00 57 (T, tni1) = g (T, tys1) L5 (8.29)

where the applied pressure p, has been dropped for brevity but can be trivially added. The surface
pressure is used to update the vertically integrated velocity

U® (t,t,) +UO (T,t,,4)
2

u® (T, tns1) — u®) (T,tn)
At

=|—fzA
= D(7) Vi (7, tusa) + G(7) | (8.30)
For the vertically integrated transport, the Coriolis force is evaluated using the Crank-Nicholson
semi-implicit time scheme in equation (8.30). Inverting provides an explicit update of the vertically

integrated transport

U®) (7, 1) = [14+ (F /22 [UP (1, b0) + (FA2) VO (1, t00)] (831)
V(b)(Tl tn+l) = [1 + (f At/2)2]71 [V(#)(T, tn+l) - (f At/Z) u(#) (T/ t11+1)] (832)

where U®)(1,t,,1) is updated just with the time-explicit tendencies

UM (1, t,1) — U (1,t,)

At = (f/2) VO (x,ts) = D(7) 3 ps” (7, 1) + G¥() (8.33)
V(1 tia ) VR (£/2) U (r, 1) D)0y 7 1 bai) 4 GY(). (530

The “corrector” part of the scheme steps the surface height using the updated transport

107, tyi1) = n® (7, tn)
At

= -V -UO (7, t,.1) +E. (8.35)

Note that n®)(t, t,,1) is used rather than the predicted height n*)(t,t,,1), since n()(t, t,,1) is
computed with the altered time step y At. Temporal dissipation is localized to the predictor portion
of the time stepping, with the corrector part hidden from this dissipation. Because of the predictor
step, the convergence of the vertically integrated transport is computed twice in the predictor-
corrector scheme, thus increasing the cost relative to a forward-backward approach where y = 0.
The payoff is an extra parameter that can be used to tune the level of dissipation. Additionally,
there is added stability towards representing gravity waves so that At can be longer than when
using the leap-frog method.

Let us detail how the barotropic steps accumulate over the course of a particular barotropic
cycle. For this purpose, write out the first and second corrector steps for the surface height

n®) (7, tar) = 1O (1, tao)
At

rl(b) (T, tn:Z) — T’[(b) (T/ tnzl)
At

= F(ty1) (8.36)

— F(tya), (8.37)
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where the right-hand side of equation (8.35) is abbreviated as F. Adding these two equations
leads to
Tl(b) (T/ tﬂ:Z) - Tl(b) (T/ tn:O)
At
where the intermediate value n(® (t,ty,=1) has identically cancelled. This result easily generalizes,
so that

= F(tnzl) + F(tn:Z)r (8~38)

107, tyen) = n® (7, tuo) _ 1 i

N At

This result does not hold for a leap-frog algorithm, since the intermediate values of the surface
height do not generally cancel completely, as they do here for the predictor-corrector.

F(t,). (8.39)

8.7 The Griffies (2004) scheme

The only piece of the forcing F(t,) that changes during the barotropic cycle is the convergence of
the vertically integrated velocity. The result then suggests that the time averaged vertically
integrated velocity should be given back to the baroclinic part of the model upon completion of the
barotropic cycle. To have this velocity centered on the integer time step T + A, it is necessary to
run the barotropic cycle to T + 2 At. Hence, upon reaching the last barotropic time step

th—=N = T + 2AT, (8.40)

the vertically integrated velocity is time averaged,

U= Z (T, tn). (8.41)

To produce the updated vertically integrated velocity at baroclinic time T + A, the vertically inte-
grated velocity U(t + AT) is identified with this time averaged value,

U(t+ AT) = U. (8.42)

The surface height is needed at the integer time steps in order to specify the thickness of the
velocity cells. There are two options for updating the surface height to time step 7 + At. First, we
could take the instantaneous value from the barotropic portion of the cycle

n(t+ A1) = n® (1, t,_5 ). (8.43)

This approach has not been tried, since it likely leads to a meta-stable algorithm due to the ab-
sence of time averaging, depending on the predictor-corrector dissipation parameter y. In contrast,
extensive experience indicates that added stability is realized by using the time averaged surface
height

n(t+Ar) = N—|—1 Z n® (T, t,). (8.44)

Notably, tracer and volume conservation is not compromlsed by this specification since it is only
used to define the surface height carried by the velocity cells. However, the surface height at half
integer timesteps needed for the tracer equation is diagnosed using equation (8.41),

n(t+At/2) —n(r - At/2) _
AT

—V - U(T) + qu(T) + S (7). (8.45)
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As described in Section this approach may cause divergence of sea level at integer and half
integer time steps.

8.8 Algorithms motivated from predictor-corrector

The previous algorithm makes a distinction between how the integer and half-integer surface
heights are updated. This distinction exposes the algorithm to possible time splitting between
these surface heights. The splitting has been found to be unacceptable for models with radiating
open boundary conditions, whereas other boundary conditions have shown no problem. Given the
interest in radiating boundary conditions, we consider here an alternative approach which is mo-
tivated from details of the barotropic predictor-corrector method. It will turn out that the schemes
developed here are not algorithmically closed. However, approximations are considered in [8.9.2]
to close the algorithms.

8.8.1 Barotropic time stepping and surface height on integer time steps

The predictor step in the predictor-corrector algorithm updates the surface height according to
1T, tu1) =1 (7, tn) = AtF(ty11). (8.46)

We now expose the time labels on all terms appearing in the forcing, whereby we set volume
sources
F(tup1) = =V - UG (1, t,41) + qu(t + AT/2) + ST (1 4 AT/2). (8.47)

Only the convergence of the vertically integrated velocity U(?) (7, ty4+1) changes on each barotropic
time step, whereas the water forcing gw (7 + A7/2) and source S (1 4 At/2) are held fixed.
To begin the barotropic integration of the surface height, it is necessary to prescribe an initial
condition. We choose to set
n®) (7, t) = n(7) (8.48)
for the surface height, and
U (1,t)) = U(1) (8.49)

for the vertically integrated velocity. This choice of the starting point is essential for n, but dif-
ferent approximations are possible for the vertically integrated velocity. Here, n(7) and U() are
centred at an integer baroclinic time step, which again is the time step where the velocity field is
centred using the MOM4p1 time staggered method. These two prescriptions lead us to ask how
to compute the updated surface height n(t + A1) and vertically integrated velocity U(t + AT).
Experience with various versions of the split-explicit time stepping in MOM motivates us to take for
the surface height a time average over the full suite of barotropic surface heights according to

1 N
n=0

We choose this simple form of time filtering, in which all terms within the barotropic time stepping
contribute equally. Although more sophisticated time filters are available, this one has been found
suitable for our purposes. Without time filtering, the algorithm can be very unstable and thus is
unsuitable for large scale modelling. As shown below, this time averaging for the surface height
motivates a different form for the time averaging of the vertically integrated velocity field.
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8.8.2 Surface height on half-integer time steps

The fundamental prescription (8.50) for the integer time step surface height is readily extended to
the half-integer surface height by setting

n(r+Ar/2) = 1O+ ”2(7 +A1), (8.51)

This prescription couples the integer and half-integer time steps, and ensures that both are de-
termined by time averages over the barotropic cycle. The question then arises how to make this
prescription compatible with the time stepping for the tracer concentration. Compatibility is re-
quired for conservation of volume and tracer, and so is of fundamental importance. Compatibility
is also needed with the baroclinic velocity scheme, but keeping in mind the uncertainties of wind
stress parameterisation, minor approximation should be possible. Addressing these issues forms
the remainder of this section.

To proceed, we first deduce the time stepping algorithm for the integer time steps which is
implied from the barotropic time stepping and the time average (8.50). For this purpose,
start by using the initial condition (8.48) in the time average to find

1 N

nt+ar)=—— Y n®(r,t,) (8.52)
N+1 ,;0
T 1 N
= £<+)1 + 57 L ). (8.53)

n=1

lterating the barotropic time stepping equation (8.46) and using the initial condition (8.48) renders
n
N (7, ta) = n(t) + At Y F(t). (8.54)
i=1
Substitution of this result into equation (8.53) then leads to
n(t+At) —n(r) = AL i Zn: F(t). (8.55)
N+1 n=1 i=1

The double sum on the right hand side arises from the need to ensure that over the course of the
barotropic cycle, changes in volume correspond to changes in forcing; in particular, with changes
in the convergence of the depth integrated transport. To facilitate computing the double sum within
the barotropic time stepping scheme, we employ the following identity to reduce the double sum
to a single sum

N n N
Y Y Fti) =) (N—n+1)F(t), (8.56)
n=1 i=1

n=1

which can be readily verified by induction.
The sum (8.56) does not represent a straightforward time average. It does, nonetheless, mo-
tivate defining a “modified average” forcing that is implied by the barotropic cycle running from
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th—o = T to tny = T+ 2A7. In particular, the relation 2At = N At between baroclinic and
barotropic time steps motivates the following definition for the averaged forcing

- 2 N =n
F= N(N+1) ngl 1;1 Fh).
) N (8.57)
— NN ) ngl (N—n-+1)F(t;),
which renders
n(t+A7) —n(t) ¢ (8.58)

AT

Note that the average operator (8.57) reduces to the trivial result F = F in the special case when
each of the barotropic time steps see a constant forcing F(t;) = F. That is,

N
FY n (8.59)
1

F &3/2) (N+1), (8.60)

N
Y Y Et)

n=1 i=1

where the last step used a common summation identity. This special case supports our definition
of the averaging operator, and furthermore checks the integrity of the manipulations. In particular,
since the fresh water and volume source are assumed to be constant over the barotropic time
steps, we have

. 2 N n
[ = NNTD) n; ,221 F(t) (8.61)
2 N
— NN L L VUt au(r AT/ + ST (e AT/2) (862)

which leads to

n(t+ At) —n(1)
AT

= -V -U+gu(t+AT1/2) + S (1 + AT/2). (8.63)

So far, we have avoided placing a time label on the modified average operator. In particular,
the question arises how the averaged vertically integrated velocity

L 2 N n
_ ®) (T ¢
U= NOESY n; 1; U (r,t;) (8.64)

is related to the updated velocity U(7 4+ At) or U(7 4+ At/2). Absent the second summation, the
resulting average would be closely centred on the time step T + AT, but the barycenter of the
double sum is at T + At/2. We now discuss algorithms based on both approximations.
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8.8.3 Method A:U(T+ A1) =U

In this method, we consider U(t + At) = U, so that

2 N =n
U(T+AT) = —/——— U (1, t). (8.65)
TEAD= N RV
Given this assumed time labelling of U, we are able to update the three dimensional velocity to the
new time step T + At after the baroclinic velocity is updated. The prescription (8.65) implies that
the integer time step surface height, which is computed as the time average in equation (8.50),
also satisfies the following time tendency equation
n(t+ A1) —n(1)
AT
The definition (8.51) of the half-integer time step surface height then implies that it satisfies the
tendency equation

n(t+At/2) —n(t — At/2)

= —V -U(T+AT) + gu(T + A1/2) + S (1 + AT/2). (8.66)

A = —V - U(T+A1/2) 4 gu(7) + ST (1), (8.67)
where
Ut + Arj2) = OO+ g(T + A7) (8.68)
du(T) = qw(T 4+ AT/2) —;qW(T—AT/Z) (8.69)
S(z) = SO (T + AT/2) er S (1 — At/2) ‘ (8.70)

8.8.3.1 Compatibile tracer concentration

For the surface height on half integer time steps, we must maintain compatibility with tracer con-
centration fields, which are also centered on half-integer time steps. Compatibility means that time
stepping the surface height must take the identical form to time stepping tracer concentration, so
that the two equations agree in the special case of a constant tracer concentration. Without such
compatibility, tracer and volume are not conserved by the discrete model. This point was empha-
sized by |Griffies et al.| (2001) in the context of the leap-frog based algorithm exclusively used in
earlier versions of MOM.

Compatibility implies that the tracer concentration must be forced with the water source (8.69),
the volume source (8.70), and, because of equation (8.67), with the half-integer advection veloc-
ity. Given these considerations, a compatible staggered time discretization of thickness weighted
tracer, absent subgrid scale processes, takes the form (note the shorthand used for the time la-
bels)

h'r+1/2 CT+1/2 _ hT—1/2 CT—l/Z

- . T+1/2 ~1-1/2
A Vs [(hu) CcT 12 (8.71)

+ [w'r+1/2 CT—l/Z]k _ [w'r+1/2 CT_l/Z]kflz (8.72)
where the thickness weighted advection velocity on half-integer time steps is given by

2 .

(hu) (8.73)
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8.8.3.2 Why this scheme is not closed

This algorithm is not closed, and so is not practical. The reason is that the compatible tracer
equation requires the thickness weighted advection velocity (1 u)™t/2. However, this ve-
locity requires the updated thickness weighted velocity (hu)*™"!, but the velocity at time u™"! is
not known until the momentum is updated.

8.8.4 Method B: U(T +At1/2) =U

Since the barycenter of the double sum (8.56) is T + At/2, it is reasonable to prescribe U(t +
At/2) = U, so that

U(T+ AT/2) = i f U (1, 1). (8.74)

2
N(N+1) &= &

The prescription (8.65) implies that the integer time step surface height, which is computed as the
time average in equation (8.50), also satisfies the following time tendency equation

n(t+ A1) —n(1)
AT

The definition (8.51) of the half-integer time step surface height then implies

= —V - -U(T+A1/2) 4 gu(T + AT/2) + S (T 4 AT/2). (8.75)

n(t+At/2) —n(t — At/2)

AT = =V - U(1) + gu(1) + 8(1), (8.76)
where
U(r) = U(T+ A1/2) —; U(t — At1/2) 677
g (T) = gu(T + AT/2) —;—qw(’r— AT/2) 578)
St (1) = S (14 At1/2) jZL S (1 — AT/2) | 579

8.8.4.1 Compatibile tracer concentration

Compatibility implies that in contrast to Section the tracer concentration must be forced
with the water source (8.78), the volume source (8.79), and, because of Equation with the
integer advection velocity. The compatible staggered time discretization of thickness weighted
tracer, absent subgrid scale processes, takes the form

pTtl/2 ct+1/2 _ pT-1/2 cT-1/2

_ . T ~T—1/2
A = —Vs-[(hu)TCT /7] (8.80)

+ [T CTV2) — [t T2y, (8.81)

where the thickness weighted advection velocity on integer time steps is given by

(h u)’l’+1/2 + (h u)T—1/2

(ha)* = !

(8.82)
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8.8.4.2 Why this scheme is not closed

This scheme is not closed algorithmically. That is, the velocity scheme cannot be completed after
the barotropic sequence is ready, because U(t + At) is still unknown. The compatible tracer
equation requires also the thickness weighted advection velocity (hu)™1/2, which itself
requires the updated thickness weighted velocity (hu)*"!. The velocity at time u™"!, however,
is not known until the momentum is updated which in turn requres the barotropic scheme to be
completed. Yet the momentum is updated only after the tracer is updated. The repeated mapping
between integer to half integer steps would reduce accuracy. A significant rearrangement of the
baroclinic and tracer equation may facilitate the use of this algorithm. However, many attempts
have failed.

8.9 Algorithms enforcing compatibility

We present three methods for time stepping the equations in MOM4p1. Method | is that one
discussed in Section[8.7|based on Griffies| (2004) and [Griffies et al.| (2005). Method Il is a modifi-
cation to Method I, and Method Il is a closed algorithm based on the barotropic predictor-corrector
from Section Methods Il and Ill each aim to provide a closed and compatible scheme that
maintains stability with the radiating open boundary condition. Methods | and Il are implemented
in MOM4p1, with Method Il remaining untested.

8.9.1 Method I: Griffies (2004)

We first summarize the method of |Griffies| (2004) and Griffies et al.|(2005), as described in Section
[8.7] To produce an algorithm that maintains compatibility with tracer concentration, and is algo-
rithmically closed, we take the philosophy here that the fundamental fields are those which live
on the baroclinic time steps (including baroclinic velocity and tracer fields). The barotropic fields
are coupled to the baroclinic and tracer fields, but details of the barotropic algorithm do not dictate
details of the baroclinic and tracer algorithm. In particular, details of whether we use a barotropic
leap-frog or predictor-corrector are unimportant, nor are details of the initial values used for the
surface height and vertically integrated velocity (so long as the initial values are reasonable). This
philosophy is in contrast to that taken in Section and further described in Method IIl below,
where the barotropic predictor-corrector motivated details of the baroclinic and tracer updates.

The main steps of this scheme prescribe an updated vertically integrated velocity and updated
surface height, both as time averages over the barotropic time steps

U(t+AT) =

Z \

N
Z (T, ta) (8.83)

N
n(t + At) Z (T,tn). (8.84)

The half-integer time step surface height is driven by the convergence of the time averaged verti-
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cally integrated velocity, as well as surface boundary fluxes and interior volume sources

n(t+At/2) —n(t — At/2)

AT = —V-U(7) +gu(1) + S (7). (8.85)

The compatible evolution equation for the tracer concentration follows from the update to the half-
integer surface height

pTH1/2 cTt1l/2 _ pT-1/2 0112
AT

= —V,-[(hu)"C""1/?] (8.86)
+ [w" CT V) — [ CT . (8.87)

There is a distinction in this method between n(7 + At), which is based on a time average, and
n(t + At/2), which is based on a baroclinic forward time step. This dichotomy has been found to
allow splitting between the surface heights when using radiating open boundary conditions.

8.9.2 Method II: Algorithm based on barotropic predictor-corrector

We were led to the non-closed algorithms in Section [8.8] by aiming to treat the barotropic system
in a systematic manner, and by prescribing the use of a particular form of time averaging for the
surface height. Alternative methods can be found by altering the form of the time average, or by
jettisoning time averaged operators altogether. However, we are not in favour of jettisoning the
time average, as past explorations of this approach have led to unacceptably unstable schemes.
Instead, we consider approximations described in the following that close the algorithm.

To start, we follow the scheme proposed in Section|8.8.4} in which the integer time step surface
height is updated via a time average as in equation

n(t+At) = N—|—1 Z n®(t,t,), (8.88)

and the half-integer time step surface height is also a time average via

n(7) +n(r+ A7)

n(t+At/2) = >

(8.89)

Following the details of the barotropic predictor-corrector, we are led to the updated vertically inte-
grated velocity via the sum in equation (8.74) and using the barycenter for the time step placement
as in Section[8.8.4]

N n
U(T+AT/2) = N(N+1) )y Z Uz, b) (8.90)

As described in Section |8.8.2, this sum arises from the need to maintain consistency with volume
fluxes passing across the radiating open boundaries, and thus for providing a stable scheme with
radiating open boundaries.
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As noted in Section the prescription does not lead to a closed algorithm, since
we need to know the updated velocity U(t + A1) at the end of the barotropic cycle in order to
update the three dimensional velocity field u(7 + At). The following approximation which closes
the algorithm has also been found to lead to a stable scheme with radiating open boundaries

U(t+ A1) = U(T + AT/2). (8.91)

The half-integer time step surface height, which is defined by the time average (8.89), also satisfies
the time tendency equation

n(t+At/2) —n(t — At/2)
AT

It follows that the compatible tracer equation is given by

= —V-U(7) + qu(t) + S (7). (8.92)

pTH1/2 ct+1/2 _ pT-1/2 o112
AT

= —V,-[(hu)TC" /7] (8.93)
+ [w* CT V2 — [w* CTV2), . (8.94)

The discrete tracer equation thus takes the same form as in Methods | and .

8.9.3 Method III: Modified Griffies (2004)

To possibly resolve the problem of splitting between the integer and half-integer time steps en-
countered with Method | in radiating open boundary problems, we consider here an alternative
approach, whereby the integer time step surface height is prescribed as the time average of the
half-integer time step surface height

2n(t+ A1) = n(t+ At/2) + n(t + 3A7/2). (8.95)

That is, the integer time step surface height is no longer based on a time average, but instead
evolves according to

n(t +At) —n(1)

I = —V - U(T+AT/2) + gu(T+ AT/2) + S (1 + AT/2), (8.96)
where
2U(t+ A1/2) = U(1+ A1) + U(71) (8.97)
2qw(T+AT/2) = quw(T+ AT) + qu(T) (8.98)
28 (14 At/2) = S (1 + A1) + S (7). (8.99)

The problem with this prescription is that it is not closed, since the surface boundary condition
module only provides information about the surface forcing at the present time step. Likewise, we
do not know the updated volume source. Hence, to close the algorithm we make the following
approximation

gw(T+ AT/2) = qu(T) (8.100)
S (1 + AT/2) ~ s (1), (8.101)
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which amounts to saying that the boundary forcing and volume source term remain constant over
the course of a baroclinic time step; i.e., we cannot obtain information at higher frequency for these

fields. Hence, we are led to the following update for the integer time step surface height

n(t+ A1) —n(7)
AT

= —V-U(1+ A1/2) + qu(t) + S (7).

(8.102)

Although of some interest, this scheme has not yet been coded in MOM4p1. It thus remains

untested.
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Figure 8.1: Upper left panel: Instantaneous sea surface temperature over January 1 at
(105°W,0°N) as realized in a simulation using the standard time stepping scheme with an hour
tracer time step (noisy time series) and the staggered scheme with a two hour tracer time step
(smooth time series). Upper right panel: Surface heating applied at (105°W, 0°N) from the Robert-
Asselin time filter used to damp the leap frog splitting. Lower left panel: Instantaneous sea sur-
face temperature over a single day at (105°W, 5°N) as realized in a simulation using the standard
scheme with an hour tracer time step and the staggered scheme with a two hour tracer time step.
Note the width of the temperature range is set the same as at the equator. In general, the agree-
ment of the solution off the equator, where the leap frog splitting is minimal, is far greater than on
the equator. Lower right panel: Surface heating applied at (105°W, 5°N) from the Robert-Asselin
filter. Note the much smaller magnitude relative to the values on the equator.
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CHAPTER
NINE

Equation of state and related quantities

The purpose of this chapter is to present some features of the equation of state used in MOM4p1,
with the discussion here an extension of that given in |Griffies et al.| (2004). The realistic equation
of state used in MOM4.1 is based on an early version of that documented in Jackett et al.| (2006).

9.1 Introduction

It is important that the equation of state be accurate over the range of temperature, salinity, and
pressure values occurring in ocean simulations. Reasons for needing such accuracy include the
following.

e Density is needed to compute the hydrostatic pressure, whose horizontal gradients drive
ocean currents in the primitive equations.

e The locally referenced vertical derivative of density determines the static stability of a vertical
fluid column. This stability determines conditions for convective instability and is used to
compute Richardson numbers necessary for mixing for such schemes as [Pacanowski and
Philander| (1981), [Chen et al.| (1994), Large et al.|(1994), and |Simmons et al.| (2004).

e The locally referenced derivatives with respect to potential temperature and salinity

_(9p
po= (99>p,s 9.1)

0
pe= (;’) 92)
S Pfg

are important for computing both the vertical stratification, and to compute the neutral slopes
used for sub-grid-scale tracer transport as in Griffies et al. (1998); |Griffies| (1998).

e The following combination of second derivatives is used to diagnose the potential for cabbel-

169
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ing to occur in the ocean McDougall (1987)

da o dx Pod 28/3
c= %255 (5)

2
=—p ! [P,ee —2pps (Pe) +p,3s <p9> ] :
P,s p,s
e The following combination of second derivatives is used to diagnose the potential for ther-
mobaricity and halobaricity to occur in the ocean [McDougall (1987)

(9.3)

=)
_da  «adf
T Bop oD

-1 Peo
= —p Pop —Pps | — .
[ peonr <P,s>]

Note that the name thermobaricity is generally used for this parameter, and we evaluate it
as given here. However, there are actually contributions from both halobaricity (dependency
of haline contraction coefficient on the pressure) and thermobaricity (dependency of ther-
mal expansion coefficient on the pressure). But the thermal piece is generally far larger
McDougall (1987).

In early versions of MOM, density was computed according to the Bryan and Cox| (1972) cubic
polynomial approximation to the UNESCO equation of state (Gill (1982)). That approach was quite
useful for certain problems. Unfortunately, it has limitations that are no longer acceptable for global
climate modeling. First, the polynomials are fit at discrete depth levels. The use of partial cells
makes this approach cumbersome since with partial cells it is necessary to generally compute
density at arbitrary depths. Second, the cubic approximation is inaccurate for many regimes of
ocean climate modeling, such as wide ranges in salinity associated with rivers and sea ice. For
these two reasons, a more accurate method is desired.

Two equations of state (EOS) are currently available in MOM4 for computing density. The
first is a linear equation of state whereby density is a linear function of potential temperature and
salinity. This EOS is relevant only for idealized simulations with the Boussinesq approximation.
The second EOS is that proposed by Jackett et al. (2006). As they argue, their EOS is more
accurate than the UNESCO EOS due to the use of more accurate empirical data as reported in
Feistel (1993), [Feistel and Hagen| (1995), and |Feistell (2003). Such equations of state are now
standard in ocean climate modeling.

9.2 Linear equation of state

The default linear equation of state in MOM4 assumes that density is a linear function of potential
temperature and salinity. There is no pressure dependence. Due to the absence of pressure
effects, the linear equation of state leads to a density that is more precisely thought of as a potential
density. The form used for this equation of state is

p(x,t) = pg — &0(x,t) + fs(x, t). (9.5)
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The default settings are

& = 0.255kg/m3/°K (9.6)
B=0 (9.7)
po = 1035kg/m?. (9.8)

Hence, the density partial derivatives are given by

po=—& 9.9)

ps = B. (9.10)

The cabbeling and thermobaric parameters vanish for this linear equation of state.

9.3 Jackett et al. equation of state

Feistel (1993), Feistel and Hagen| (1995), and |Feistell (2003) studied the equilibrium thermody-
namics of seawater and produced a more accurate EOS than UNESCO by using more recent
empirical data. McDougall et al.| (2003) produced a fit to [Feistel and Hagen| (1995) to render an
expression convenient for use in ocean models, and |Jackett et al.| (2006) updated this equation of
state based on [Feistel (2003). MOM4.0 has the McDougall et al.| (2003) equation of state, with
MOM4p1 moving to the updates provided by Jackett et al.| (2006) version. Either EOS is highly
recommended for purposes of realistic ocean climate simulations, where accuracy over a wide
range temperature, salinity, and pressure is crucial. The following equation has been fit over the
range

Opsu < s < 40psu (9.11)
—3°C <606<40°C (9.12)
0db < p < 8000db. (9.13)

The EOS has 25 terms. Its general form is motivated by that of Wright (1997). Appendix
A to Jackett et al.| (2006) provides the following equation for in situ density p written in terms of
pressure, salinity, and potential temperature

p(s,0,p) = 9.14)

where p is the guage pressure in units of decibars, 6 is the potential temperature referenced to zero
pressure in units of Celsius, and s is salinity in psu. Note the conversion between mks pressure
and decibars is given by

10~*db =1 Pa. (9.15)

The gauge pressure is given by

p = Papsorute — 10.1325dbars 9.16)
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where the absolute pressure is the in situ pressure measured in the ocean. Salinity is measured
in practical salinity units (psu), consistent with modern oceanographic measurements. As em-
phasized in Jackett et al. (2006), this salinity is distinct from the salt concentration in parts per
thousand. To a good approximation, a constant factor distinguishes the two

s(ppt) = 1.004867 s(psu) (9.17)

The salinity variable in MOM4 is interpreted as psu salinity, since this facilitates a more direct com-
parison with observations. Notably, to perform salt budgets for diagnostic purposes, it is necessary
to multiply by 1.004867 to generate salt budgets in terms of mass of salt. A check value for this
equation is p = 1033.213387 kg. m~2 with s = 35psu, 8 = 20°C, and p = 2000db = 2 x 10”Pa.
The polynomial functions P, and P; are given by

Pn:ao—|—a16—|—a262+a393+a4s+a556+a652

+azp+asg p62 +agp s+ ay p2 +an p2 6> (9.18)
Pi=0by+b10+b,0%°+b30°+by0* +bss+besO+bys6® + bgs>/? + bys>/? 62
+biop+bip* 0 +biap’e. (9.19)

The coefficients a,, and b,, are tabulated in Table A2 |Jackett et al.| (2006). Rearrangement in order
to reduce multiplications leads to

P,=a,+6(ay+0(ay+a30))+s(as+as6+ags)

+p (a7 +ag6* +ags + p (ayo + a11 6%)) (9.20)
Py :b0+9(b1—|—9<b2—|—9(b3—|—9b4)))+S(b5+9<b6+b792)+51/2 (bg—l—bg@z))
+P(b10 +p9(b11 92—|—b12 p)) (9.21)

The first order partial derivatives of density are

ap> <1 <apn> 1 <apd> )
WY o= (L) = (2 (9.22)
<89 5 p P, 20 5 p g 00 op

d\ (1 (oP,\ 1 (9P

(as>9,p -f (Pn < ds )9,p d < ds >9,p> (923)
ap) 1 <8Pn> 1 <8Pd>

) =p = - — (=4 . (9.24)
<ap 0,5 (Pn ap 0,5 Py ap 0,5

Since divisions are computationally more expensive than multiplications, we find it useful to rear-
range these results to

PN s )} P,
(ae)s,p—“’d) (ael,p‘p(ae)S,J 625

\ . [/op, oP;
(as>6,p B (Pd) < aS >9,p P <as>9,p] (926)

). |(5),, 7 (5)
(ap 0,s (d> L ap 0,s g ap 0,s ( )
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where (P;)~! can be saved in a temporary array, thus reducing the number of divisionsE]

The second order density partial derivatives are

002 "0 00 P o2

) 'aan ) ap an azpd]
<8Zp> _ (Pd)_l 'aan ) ap an BZPd]
P

| 0s2 s 9s " os2

The first order partial derivatives of the equation of state functions are given by

(a;;n> =a1+2a0+3a36° +ass+2agp6+2a11 p° 0
P
<a n) =as+as0+2ags+agp
9s /g,
<apn) =ay+ag60> +ags+2a10p+2a11 p 6
ap 0,s
<881;1) = b1 +2b20+3b30% +4b,0° + bgs +3b7560* +2bys*/?0
+3by1 p? 0% + b1o p°
(ﬁ) = bs +bs 0+ b7 0° + (3/2) by s'/* + (3/2) by s'/2 67
0,p
0P,
( p> _b10—|—2b11p93+35121929
0,5

IWe thank Trevor McDougall for pointing out this simplification.
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(9.28)

(9.29)

(9.30)

(9.31)

(9.32)

(9.33)

(9.34)

(9.35)

(9.36)

(9.37)

(9.38)
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with rearrangement leading to

oP,
(a@) :Ell+9(2ﬂ2+3a39)—|—a55—|—2p9(g8+a11p) (939)
sp
<apn> :a4—|—a59+2a6s+a9p (940)
0s o,
(%%) =a;+ag0® +ags+2ayp+2ay p6* (9.41)
0,s
(aI;i> :bl+9(2b2+9(3b3+4b49))—|—S(b6—|—9(3b79+2b951/2)) (9.42)
5P
+ p2 (3 b11 32 + blZ p)
(i}?) = bs 0 (bs + b7 6%) 1 (3/2)s'/% (bs + by %) (9.43)
o.p
<8Pd> =big+2b11 p6° + 3 b1y p*0. (9.44)
ap 0,s

The second order partial derivatives of the equation of state functions are given by

0°P,

52 =2ay+6a30+2agp+2ay p? (9.45)
a;? =246 (9.46)
gjla)g - (9.47)
aas2 ?;9 - (9.48)
z?;?; = 2ag0 +4an po (9.49)
%zgpf = 2Dy +6b30+12b,0> +6b7560 +2bgs>2 + 6byy p> 0 (9.50)
a;fzd — (3/4)bgs /2 + (3/4) bys /767 ©.51)
i) = bg +3b; 0%+ 3bys!/?0 (9.52)
ds 0
g: f-:;i =0 9.53)
Py _ 6b11 p 62 +3byy p. 9.54)

00 dp



CHAPTER
TEN

Mechanical energy budgets and conversions

The purpose of this chapter is to discuss energetic balances. Here are the assumptions made for
the manipulations of this chapter.

Choosing to maintain the integrity of certain energetic balances on the B-grid lattice pre-
scribes the form of the discrete advection velocity components located on the sides of tracer
cells.

Second order finite differenced advective fluxes are used for momentum. Tracer fluxes can
remain arbitrarily discretized.

We choose a finite difference computation of the pressure gradient force, as described in
Sections and The finite volume method for computing the pressure force, as
described in Section[3.7.1] does not lend itself to the results of this chapter.

Details of the time stepping scheme play a role in determining the form of the energy diag-
nostics.

Energy balance diagnostics are important for checking the integrity of certain finite difference
algorithms. Consequently, it is useful to provide a careful suite of energy diagnostics for
algorithm development purposes.

10.1 Energetic conversions in the continuum

In the continuum, the horizontal momentum equation for a shallow ocean fluid is given by (see
chapter 4 of |Griffies|, |2004)

(pu)s+V-(pvu)+ (f+ M) (2Apu)=—V:p+pF (10.1)

for the non-Boussinesq case, and

(W + V- (vu) + (f + M) (2 A u) = =V:(p/po) +F (10.2)

for the Boussinesq case. The evolution of horizontal kinetic energy can be found by taking the
scalar product of horizontal velocity u with the momentum equation. When globally integrating the
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kinetic energy evolution, the forcing terms can be transformed into terms that highlight physically
interesting processes. These manipulations identify conversions between one form of energy and
another. The form of these conversions can be deduced from the momentum equations, boundary
conditions, mass or volume conservation, and integration by parts. Maintaining an analog of these
energetic conversions on the discrete lattice has been found to be very useful in the development
of ocean model algorithms. The reason is that these conversions provide the modeler with a
powerful set of diagnostics to test the integrity of the numerics.

There are three forms of energy conversion of interest in MOM4. The first involves the pressure
gradient term, the second involves the advection term, and the third involves friction. We address
only the inviscid terms in this chapter. Part 5 of |Griffies| (2004) describes how friction dissipates
kinetic energy in both the continuous case and for a particular friction algorithm available in MOM4.

10.1.1 Pressure work conversions in Boussinesq fluids

Let us first examine how pressure work is converted to other processes in Boussinesq fluids. For
this purpose, consider the following identities found using z for the vertical coordinate

(10.3)
:/dA(ﬁ)p(ﬁ-v)+g/dep

:/dA(ﬁ)p(ﬁ-v)—i—/dedCD/dt

where dV = dxdydz is the volume element and d®/dt is the material time derivative of the
geopotential ® = gz. To reach these results required volume conservation for a parcel in the form

of the constraint V - v = 0, the hydrostatic relation p,, = —p g, and the definitions
= gdz/dt
gw=gdz/ (10.4)
=do/dt.

Assuming no-normal flow at the solid boundaries leaves only the surface boundary at z = n for
the surface integral. The surface kinematic boundary condition, and volume conservation, lead td]

and so
/qu-va— / dxdypaV-U+/ded(I)/dt. (10.6)
z=n

In a rigid lid model, the first term vanishes. For the free surface model it represents the work done
by atmospheric pressure on the depth integrated flow. The second term is the volume integrated
work done by vertical currents against the buoyancy force. In generalized vertical coordinates, the
buoyancy term takes the form

do/dt = (9 +u-Vi+w®a,) ®

(10.7)
= (0 +u-Vy)D+gw,

1See Section 3.4 of (Griffies| (2004) for derivation.
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where equation (6.72) of Griffies (2004) was used to express the material time derivative in general
vertical coordinates. Hence, the pressure conversion becomes

/qu-Vp:— / dxdypV-UJr/ dVp[(@+u-Vs) @ +gw®]. (10.8)
z=n

Buoyancy contributions now comprise three terms instead of the one found with z-coordinates.
This result reflects the non-orthogonal nature of generalized vertical coordinates.

10.1.2 Pressure work conversions in non-Boussinesq fluids

For non-Boussinesq flows, pressure conversion takes the form

/qu-Vp: / pﬁ-v+/dV(pdCD/dt—pV-v). (10.9)

z=n
The p'V - v term represents pressure work on the changing volume of fluid parcels found in the
compressible non-Boussinesq fluid. The boundary condition
dA@g fi-v =dxdy (n:— pwqw/p) (10.10)

is discussed in Section 3.4.3 of (Griffies| (2004). The generalized vertical coordinate form of equa-
tion (10.9) follows similarly to the Boussinesq case, where extra terms arise from expanding the
material time derivative.

10.1.3 Boussinesq kinetic energy advection conversion

Just as for the pressure gradient term, the scalar product of the horizontal velocity and the advec-
tion of momentum can be converted into alternative forms. To see this conversion in the continuum,
write the advection of horizontal velocity in the Boussinesq fluid as

A=-V- -(vu)—MzAv. (10.11)
The scalar product of A with the horizontal currents leads to

u-A=—-u-V-(vu)

_ _v.K), (10.12)

where K = u - u/2 is the horizontal kinetic energy per mass. Integrating over the volume of the
domain, and using the surface and solid wall boundary conditions, leads to

AE/qu-A

(10.13)
— / dxdy KV - U.

z=n

Consequently, the global integral of kinetic energy advection reduces to a boundary term, which
vanishes in the rigid lid model but remains nontrivial in a free surface model.
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10.1.4 Non-Boussinesq kinetic energy advection conversion

For the non-Boussinesq fluid, we consider
A=-V (pvu)— M2z A pv. (10.14)
The scalar product of A with the horizontal currents leads to

u-A=-u-V-(pvu)

10.15
=-V-(vK)=KV:(pv), ( )
and integrating over the volume of the domain yields
A= / dVu-A
—— [ dAg Kph- —/dVICV-
:/n () > PRV (pv) (10.16)

= — / dxdle(pn,t—pqu)—/dVICV-(pV),
z=n

where we used the surface boundary condition (10.10) for the last step.

10.2 Conservation, consistency, and accuracy

Accuracy is often a primary consideration for numerical methods. Additionally, ease of analysis
and interpretation are also important. The presence of discrete analogs to continuous conserva-
tion properties assists in the interpretation of the numerical simulation. Unfortunately, conservation
and accuracy are often incompatible.

Traditionally, climate modelers have chosen conservation properties over accuracy. For exam-
ple, conservation of scalar properties are essential to ensure that heat and salt are conserved
over the course of a long climate integration. Another property that certain models claim is con-
servation of mechanical energy. This claim, however, is unfounded for the space-time discrete
equations in all models discussed in|Griffies et al.| (2000a). All ocean climate models break kinetic
energy conservation when discretizing in time. This point is explained below in the discussion of
equation (10.17).

What is often meant by energy conservation statements is the more qualified property whereby
certain spatially discrete terms are discretized so they do not alter global kinetic energy in the ab-
sence of boundary forcing. Deriving energetically consistent numerical schemes requires some
care. In particular, ensuring that pressure work transfers into vertical buoyancy work in the Boussi-
nesq model necessitates a particular form for the discrete advection velocity. We discuss this point
in Section[10.4]

When considering energetic issues using alternative time stepping schemes, one often en-
counters the situation where certain terms, such as advection and pressure gradients, are eval-
uated at staggered time steps. Indeed, the preferred method discussed in Chapter 12 of |Griffies
(2004) staggers the velocity and tracer one-half time step relative to one another. Hence, pres-
sure gradients, whose temporal placement is set by density, is off-set in time from momentum
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advection, the Coriolis force, and friction. These details are important when interpreting ener-
getic consistency of a space-time discrete model. Often the more sophisticated the time stepping
scheme (e.g., the three-time level Adams-Bashforth method discussed in Chapter 12 of |Griffies
(2004)), the more difficult it is to maintain energetic consistency.

Energetic consistency is necessary but not sufficient for ensuring the discrete system con-
serves mechanical energy in the unforced inviscid limit. For example, time stepping according to
the leap-frog method, which possesses useful energy consistency properties, precludes mechan-
ical energy conservation. The Robert-Asselin time filter breaks energy conservation in a manner
analogous to its corruption of global tracer conservation (Section 12.5.4 of |Griffies| (2004)). Fur-
thermore, even without time filtering, the continuum identity

2u- at u = at (u : u) (1017)

is generally not satisfied by discrete time stepping schemes. As noted on page 158 of Durran
(1999), trapezoidal time differencing allows for this property. Other schemes commonly used do
not. As trapezoidal time differencing is semi-implicit and not readily implemented for the primitive
equations, it is not considered in the following.

10.3 Thickness weighted volume and mass budgets

We make use of the thickness weighted volume budgets for the Boussinesq fluid when deriving
the discrete energetic balances. The volume budgets are given by equations (7.76), (7.77), and
(7.78). We expose them here for completeness

(W®)s—g,_, = 0 (dz) —dzSY) + V, - (dzu) — gu (10.18)
(w(s))s:sk = 9¢(dz) —dzSM) + V, - (dzu) + (w(s))s:SH (10.19)
0=09;(dz) —dzS8Y) + V, - (dzu) + (w(s))szskbm_l. (10.20)

We also make use of the thickness weighted mass budgets for the non-Boussinesq case, given by
equations (7.100), (7.101), and (7.102). We expose them here for completeness

(pw(s))s:sk:1 =0 (dz p) — pdz SM + Vs (dz pu) — pw qw (10.21)
(Pw(s))s:sk = 0y(dz p) — pdz SM 4 Vs (dz pu) + (pw(s))szskq (10.22)
0=0;(dz p)—pdzSM + V. (dz pu) + (p w(S))S:Skbut—l' (10.23)

As described in Section depth based vertical coordinates used in MOM4p1 (Section
allow for the time derivative 9; (dz) to be diagnosed from the vertically integrated volume bud-
get. Likewise, the pressure based vertical coordinates (Section allow for the time derivative
d: (pdz) to be diagnosed from the vertically integrated mass budget. These two properties are
important to ensure the utility of the Eulerian algorithms employed by MOM4p1.

10.4 Discrete Boussinesq pressure work conversions

We now consider manipulations of the globally integrated discrete B-grid representation of u- V. p
for the Boussinesq case. In this section, discrete grid labels are exposed when needed, with many
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labels suppressed to reduce clutter. The material in this Section is based on a similar z-coordinate
discussion given in Griffies et al. (2004).
Consider the domain integrated scalar product of

u-Vyp=u-(Vsp+pV;0)

=u-V (pa+psui) +u-(Vsp' + 0 Vs 0). (1024
To reach this result we use equation with s = z* or s = ¢(?), in which case
Psurf = £ Po 1 whens = z* ors = o(® (10.25)
is the rapidly fluctuating surface pressure term, and
n
p=g /p’ dz  whens=z"ors= o (10.26)
z

is the slower fluctuating pressure anomaly where p’ = p — pg. When s = z is the vertical coordi-
nate, equation (4.17) is used, in which case

Psurt = & Psurf 1l when s =z (10.27)
and
0
p =g / o dz  whens =z (10.28)
V4
On the discrete lattice we consider
- /dV u-V.p— 7P, (10.29)
where
=— Y douu FDX_NT(FAY (pa+ psur))
i,jk
— Y dvuv FDY_ET(FAX(pa+ psurt))
7,k
v , , (10.30)
— Y dou [u FDX_NT(FAY(p')) +v FDY_ET(FAX(p'))]
i,k
— Y dou [u FAY(FAX(p') 8;®)/dzu+ v FAX(FAY(p") §;®@)/dyu]
i,k
with
dou = dau dzu (10.31)
the U-cell volume. MOM4 employs the following discrete forward derivative operators
dit1 — 4
FDX NT(a) = -+ (10.32)
dxu
FDY ET(a) = 22— %, (10.33)

dyu
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where the derivatives live on the east and north faces, respectively, of a tracer cell. The operators
6;a and é;a compute the forward difference

(Sia = 4jy1 —4a; (10.34)
5]‘11 = 4jy1 —4aj (1035)

of a discrete field. MOM4 also employs the following forward averaging operators

FAX(a) = “Z“T”l (10.36)
aj41+a;
FAY(a) = % (10.37)

The first group of terms in equation arises from applied pressure and surface geopo-
tential acting on the vertically integrated velocity. The second represents the constant s lateral
pressure gradient taken between cells living on the same discrete k-level. The third arises from
the use of generalized vertical coordinates, where the depth of a k-level is generally a function of
horizontal position.

10.4.1 The vertically integrated term P,

The first term in equation (10.30) can be vertically integrated to yield

P1 =— Y daudzu u FDX_NT(FAY (pa + psur))

i,k
— Z dau dzu v FDY _ET(FAX(pa + psurt))
i,jk (10.38)
E— Z dau U FDX_NT(FAY (pa + psurt))
ij
— Y dau V FDY_ET(FAX(pa + psurt))
i
where
(U,v) =Y dzu(u,0) (10.39)
k

is the vertically integrated horizontal velocity field. The P; term represents the effects of applied
pressure and geopotential working on moving vertical columns of fluid.

10.4.2 Advection velocity components for tracers

Focus on the zonal piece of the second term, where

Py =— ) daudzuu FDX_NT(FAY(p'))
ijk
]‘ / /
=-3 Y dyu dzu u §;(p + piiq)
= — Y BAY(dyu dzu u) &;p}.

(10.40)
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The boundary terms were dropped since they vanish for either periodic or solid wall conditions.
We also introduced the backward meridional average operator
_ajtajia
— 5 .

Now define the zonal thickness weighted advective transport velocity on the eastern face of a
tracer cell as

BAY (a) (10.41)

BAY (dyu dzu u)

10.42
dytei,j ( )

uh,eti, ik =

where dyte; ; is the meridional width of the tracer cell's east side (see Figure for definitions
of grid distances). Doing so leads to
Pox =— Z 51‘;7/ (dyte uh,et)
=Y p' 6 (dyte uh_et) (10.43)
=) p' dat BDX_ET(uh_et),

where boundary terms vanish, and

a;,j dytei,]' — i1, dytei_llj

10.44
dati,]’ ( 0 )

BDX_ET(a) =

is a backwards finite difference operator for fields defined on the east face of tracer cells. Similar
manipulations with the meridional term v d,p’ leads to

P> =Y p' dat (BDX_ET(uh_et) 4+ BDY_NT(vhnt)), (10.45)
i,jk
with
BAX(dxu dzu v)
ik = 10.46
Vhlltz,],k dx‘tni,]' ( )

the meridional tracer advective velocity on the north face of the tracer cell. Finally,

a; ;dxtn; ; —a; ;1 dxtn; ;_
BDY_NT(a) = —/—— da:f‘ 1 (10.47)
L]

is a backwards finite difference operator for fields defined on the north face of tracer cells.

The horizontal velocity components uh_et and vh_nt are defined at the sides of the tracer cells.
They are the discrete representation of the thickness weighted advective velocity components that
transport tracer and volume through the east and north cell faces. When fluid volume converges
horizontally to a tracer cell, there is a corresponding dia-surface velocity component and a gener-
ally nonzero time tendency for the cell thickness. The thickness weighted volume budgets given
by equations (10.18), (10.19), and describe these effects.

Given that the advective velocity components uh_et and vh nt are defined at the sides of the
tracer cells, we are led to define a dia-surface velocity component w_bt; at the bottom of the cell.
It can generally be written by the discrete form of equation (10.19)

w_ bty :at (dZtk) —dzty S(V)

(10.48)
+ BDX_ET(uh_et;) + BDY_NT(vhnty) +w.bt;_;.
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Again, the time tendency on tracer cell thickness dzty is known in MOM4p1 from information about
the vertically integrated volume budget (Section[7.6.1.5). So this expression is indeed a diagnostic
expression for w_bty, evaluated from the surface down to the bottom. At the ocean surface, the
dia-surface velocity component is determined by the input of water to the system

’w,btkzo — —qw.\ (10.49)

The minus sign is a convention, where positive w represents upward transport whereas positive gy
represents downward transport of fresh water through the ocean surface into the ocean domain.
Note that in general, water can enter the ocean domain at any depth through the source term S(V).
At the ocean bottom, we are ensured of a proper discretization so long as

Wbti—ipor =0 (1050)

is diagnosed. This statement is valid on the B-grid since the ocean bottom on tracer cells is
flat. It has proven to be a very useful diagnostic to verify the integrity of the volume conservation
discretization throughout a vertical column.

10.4.3 Completing the manipulations for P,

Substituting expression (10.48) for the vertical advective velocity component into equation (10.45)
leads to
P> =Y pj dat (wbty —wbty_; — 0 dzty + dztx SV)). (10.51)
i,jk

Now move the vertical difference operator from the dia-surface velocity to the hydrostatic pressure
via the following identity

kbot kbot

Y pi dat (wbty —wbty 1) = —pi_ wbty_odat — ) datwbty (piq — pi), (10.52)
k=1 k=1

where we used the lower boundary condition py,,. ; Wbty = 0 to reach this result. The next step
requires us to specify how the hydrostatic pressure is computed. There are two ways, described

in Sections[Z.1.Iland[7Z.3.2

10.4.3.1 Energetic approach

Section noted that the older energetically based method specifies the hydrostatic pressure
at the tracer point depth (Figure|10.1) according to

Pr_; = §dztupy—; p;El k=1

10.53
Ph = Pi+gdawtip] k> 1, (10.53)

where
—Z
P = (P Phyr)/2 (10.54)
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is the algebraically averaged density over the region between two tracer points Ty and Ty, and
dzwty is the vertical distance between the tracer points (Section [7.3). Substituting this result into

equation (10.52) renders

kbot kbot -
Y pj dat (whbt, —wbty_q) = —pj_; wbty_odat —g Y dat dzwtyw bty p,’{Z. (10.55)
k=1 k=1

This result then leads to

Pr=—-g Z dat dzwt, w bty pT(Z
ik
— Y dat pj_, wbty_g— Y dat p| [9; dzty — dzt, SV ].
oy ik

(10.56)

10.4.3.2 Finite volume approach

Section [7.1.2] noted that a finite volume based method specifies the hydrostatic pressure at the
tracer point depth according to

Pher = gdztupies o), 10.57
Py = P+ gdztlog pp + g dztupii ppys- (1057

Substituting this result into equation (10.52) renders

kbot
Z py dat (wbty —wbty 1) = —pj_; wbty_odat

k=1
bt (10.58)
— ¢ Y datwbty (dztloy p + gdztupyy1 Pfq)-
k=1
This result then leads to
Pr=—g Z dat w_bty (dztlog p} + gdztupksi1 Py 1)
i,k
10.59
— Y dat pj_, wbty_g— ¥ dat p| [9; dzty — dzt, SV ]. (10-59)
ij i,k
10.4.4 The geopotential gradient term P3
Now consider the zonal piece of the geopotential gradient from equation (10.30)
Psx = — Y dxudyudzu u FAY (FAX(p') 5;0) /dxu. (10.60)

i,jk
Transferring the forward average FAY to a backward average BAY leads to

Psx = — Y, BAY(dyudzu u) FAX(p') 5;®, (10.61)
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ok

dhwt(k)

®Kk+1

Figure 10.1: Schematic of the vertical grid cell arrangment used for computing the hydrostatic
pressure at a depth k + 1 in terms of the pressure at depth k using the equation p; ., = p| +

gdzwty p7{z. The vertical average of density is meant to account for the part of density within each
of the two adjacent cells. The factor of 1/2 used in the average operator yields an approximate
average when vertical cells are non-uniform. Yet the 1/2 factor is used for all vertical grid spacing
since it renders a simple conversion of discrete pressure work to discrete gravity work.

where boundary terms vanish. Introducing the zonal thickness weighted advective transport ve-

locity (10.42) yields

Psx = — )_dyteuh et FAX(p') 5;0. (10.62)

Moving the difference operator 6;,® = @;,; — ®@; from the geopotential to the remaining terms
gives

Pax = Z ® 5;(dyte FAX(p') uh_et)

10.63
=Y ®dat BDX_ET(FAX(p') uh_et), (10.63)

where boundary terms vanish. Similar manipulations with the meridional piece of P; lead to

P3 =) ®dat [BDX_ET(FAX(p')uh_et)+BDY_NT(FAY(p') vhnt)] (10.64)
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10.4.5 Summary for the Boussinesq pressure conversion

In summary, for the older energetically based method for computing hydrostatic pressure, the
projection of the horizontal velocity onto the downgradient pressure field is given by

P =—Y daull FDX_NT(FAY (pa+ psut))

ij

— Y dauV FDY_ET(FAX(pa + psur))
ij

— ) dat pj_; w bty
ij

- g Z dat dzwty w bty ,07,’(2

i,jk

— Y dat p} [3; dzty — dzt SV ]
i,jk

+ Y @ dat [BDX_ET(FAX(p') uh_et) + BDY_NT(FAY(p') vhnt)].
i,jk

(10.65)

Within the MOM4 energy analysis diagnostic, the code computes the left hand side of equation
and compares to the right hand side. Differences are due to coding errors. This diagnostic
is very effective because it involves advective velocities on the tracer cells, both tracer and velocity
cell distances, the calculation of pressure, and details of partial steps. Each require precise dis-
cretization in order to ensure an energy conversion error at the roundoff level. In a similar manner,
for the finite volume approach to computing hydrostatic pressure, we have the projection of the
horizontal velocity onto the downgradient pressure field is given by

P =—Y daull FDX_NT(FAY (pa + psurt))

ij

— Y dauV FDY_ET(FAX(pa+ psur))
ij

— Y dat p_; whbteg
ij

— ¢ ) datwbt (dztlog pf + g dztupk 1 pf,q)

i,jk

— Y dat p} [0 dzty — dzt SV ]
i,jk

+ ) @ dat [BDX_ET(FAX(p')uh_et) + BDY_NT(FAY(p') vhnt)].
i,jk

(10.66)

10.5 Discrete non-Boussinesq pressure work conversions

Now consider manipulations of the globally integrated discrete B-grid representation of u - V p for
the non-Boussinesq case. Here, we are concerned with the domain integrated scalar product

u-Vyp=u-(Vsp+pV;0)

10.67
— (o/p)u-V (po+po®y) L u- (0 /p) Vep+pvea], OO
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< dxtn(i,j) >
A A
dyt(i.j)
< dxt(i) ¢ (i.)) > dyte(i.j)
Y Y

Figure 10.2: Time independent horizontal grid distances (meters) used for the tracer cell T; ; in
MOMA4. dxt; ; and dyt; ; are the grid distances of the tracer cell in the generalized zonal and merid-
ional directions, and dat; ; = dxt; j dyt; ; is the area of the cell. The grid distance dxtn; ; is the zonal
width of the north face of a tracer cell, and dyte; jis the meridional width of the east face. Note
that the tracer point T; ; is not generally at the center of the tracer cell. Distances are functions of
both i and j due to the use of generalized orthogonal coordinates.

where equation (4.27) was used for the pressure gradient as implemented in pressure based
vertical coordinate models. In order to maintain a clean analog to the Boussinesq case, we were
led in Section to introduce the discrete representations of the pressure gradient so that

—/qu-Vzp—>73 (10.68)
becomes in the discrete case
PP =— Z daurhodzuu FDX_NT(FAY (pp + po Pp))
i,jk
— ]Z daurhodzuv FDY _ET(FAX(pp + po @p))
i,jk
+ édau dzu u FAY(FAX(p') 8;p)/dxu (10.69)
L],
+ i daudzu v FAX(FAY(p') (5jp)/dyu
i,k

— Y daurhodzu [u FDX_NT(FAY(®')) + v FDY_ET(FAX(®'))].
i,k
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We now consider these terms individually.

10.5.1 The vertically integrated term P,
The first term in equation (10.69) can be vertically integrated as

P1=— Y dau rhodzuu FDX_NT(FAY (po/po + ®p))
i,j,k
— ]Z dau rhodzuv FDY _ET(FAX(pp/po + ©p))
ik
=— Z]dau UP FDX_NT(FAY (po/ 00 + ®p))
=
— ]Zdau VP FDY _ET(FAX(pp/po + @p))
ij

(10.70)

where
(U?,v?) =Y rhodzu (u,0) (10.71)
k

is the vertically integrated density weighted horizontal velocity field. The P; term represents the
effects of applied pressure and geopotential working on moving vertical columns of fluid.

10.5.2 Defining the advection velocities

To motivate the definition of the advection velocity for the non-Boussinesq case, we focus on the
zonal part of the geopotential term

P3x = — ) dau rhodzu u FDX_NT(FAY(®'))
i,jk

1 10.72

:—EZdyu rhodzu u &;(®) + @} 4) ( )

= — ) BAY(dyu rhodzu u) 5;®;.
The boundary terms were dropped since they vanish for either periodic or solid wall conditions.

Now define the zonal thickness weighted and density weighted advective transport velocity on the
eastern face of a tracer cell

BAY (dyu rhod
uhrho_et; j; = ( dyutr odzuu) (10.73)
yte; ;

This definition of the non-Boussinesq advection velocity component leads to

P3x =—)_ 6’ (dyte uhrho_et)
=) @' 5; (dyte uhrho_et) (10.74)
=) @' dat BDX_ET(uhrho_et),
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where boundary terms vanish. Similar manipulations with the meridional term v d,,p, and reintro-
ducing the two-dimensional pieces, leads to

P3 =) @' dat (BDX_ET(uhrho_et) + BDY_NT(vhrhont)), (10.75)
with
vhrho nt; ;. = BAX(dxu rhodzu v) (10.76)
" dxtni,]-

the meridional density and thickness weighted advective tracer velocity on the north face of the
tracer cell.

As for the Boussinesq case, the horizontal advective velocities uhrho_et and vhrho nt are
defined at the sides of the tracer cells. They are the discrete representation of the thickness and
density weighted advective velocity transporting tracer and volume through the east and north cell
faces. When mass converges horizontally to a tracer cell, there is a corresponding dia-surface
velocity component and a generally nonzero time tendency for the cell thickness. The thickness
weighted mass budgets given by equations (10.21), (10.22), and describe these effects.

Given that the advective velocities uhrho_et and vhrho nt are defined at the sides of the
tracer cells, we are led to define a density weighted dia-surface velocity component wrho _bt; at
the bottom of the cell. It is determined by the discrete form of equation (10.22)

wrho_bt; =d;(rhodzt); — rhodzt SM (1077)
+ BDX_ET(uhrho_ety) + BDY_NT(vhrho nty) 4+ wrho_btj_;. ‘
As for the velocity cells, we use vertical coordinates so that the tracer cells maintain
pdzt = (p z;s) () dst (10.78)

where (pzs) is depth independent. The time tendency on density weighted tracer cell thick-
ness (rhodzt), is known in MOM4p1 from information about the vertically integrated mass budget
(Section [7.4.2). So equation is indeed a diagnostic expression for wrho_bty, evaluated
from the surface down to the bottom. At the ocean surface, the dia-surface velocity component is
determined by the input of fresh water to the system

’wrho,btkzo = —pPw qw.‘ (10.79)

At the ocean bottom, we are ensured of a proper discretization so long as

|wrho_bty_por = 0] (10.80)

is diagnosed.

10.5.3 Completing the manipulations for P;

Substituting expression (10.77) for the vertical advective velocity component into equation (10.75)
leads to

Ps; = Z @} dat (wrho bty —wrho bt;_; — J; (rhodzt); + rhodzty SM. (10.81)
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Now move the vertical difference operator from the dia-surface velocity to the hydrostatic pressure
via the following identity

kbot
) @ dat (wrho bty —wrho bty_;) = — dat ®;_; wrho bt;_g
k=1

. (10.82)

+ Y datwrho bty (@) — @),
k=1

where we used the lower boundary condition @y, , ., wrho bt = 0 to reach this result. The next
step requires us to specify how the anomalous geopotential height is computed. There are two
ways, described in Sections[7.1.3|and[7.1.4]

10.5.3.1 Energetic approach

In Section [7.1.3], we noted that the older energetically based method specifies the anomalous
geopotential height at the tracer point depth (Figure [10.1) according to

O} = ), — (g/po) dzwty p], - (10.83)

In contrast to the hydrostatic pressure calculation (10.53), the geopotential calculation procedes
from the bottom upwards. Substituting equation (10.83) into equation (10.82) renders

kbot
) @} dat (wrho bty —wrho_ bty 1) = — ®;_; wrho bt;_dat

k=1
. (10.84)

—(g/po) Y, datdzwty wrho,bthILZ,
k=1

which then leads to

Pz = —(g/po) Z dat dzwty wrho_bt; pjz
i,jk
— ) dat @;_; wrho bt;_g (10.85)
ij '
+ Z dat @’ [ (rhodzt), SM — 9, (rhodzt); ]
i,jk

10.5.3.2 Finite volume approach

Section noted that the finite volume based method specifies the anomalous geopotential
height at the tracer point depth (Figure [10.1) according to

Dirpor = —(8/Po) dzt10kbor Ph_gpor (10.86)
olf = @y, — (g/po) dztupy i1 o4 — (§/P0) dztlok py.
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Substituting equation (10.86) into equation (10.82) renders

kbot
Y @} dat (wrho bty —wrho bty 1) = — ®;_; wrho bt;_odat
k=1

kbot

— (8/po) Y, dat wrho bty (dztupyy1 p}; + dztlok o),
k=1

which then leads to

P3 = —(g/po) ), dat wrho bty (dztupy(1 p},q + dztlox p})
ijk
— ) dat @;_; wrho bt
ij
+ ) dat @' [(rhodzt); SM _ 9, (rhodzt)y ].
ijk

10.5.4 The pressure gradient term P,

Now consider the zonal piece of the geopotential gradient from equation (10.69)

Po Pax = Y dxudyudzu u FAY(FAX(p') 8;p)/dxu
ijk

Transferring the forward average FAY to a backward average BAY leads to

po Pax = — Y BAY(dyudzu u) FAX(p') 8ip,

191

(10.87)

(10.88)

(10.89)

(10.90)

where boundary terms vanish. Further manipulations, analogous to the Boussinesq case in Sec-
tion[10.4.4] do not appear possible since the density weighted advection velocity will not appear.
Instead, the p’ weighted velocity appears, and this is not relevant. So we simply write this term in

its unmanipulated form

P =p,' Y daudzuu FAY(FAX(p') 5;p)/dxu
i,jk
+ p, ' Y daudzu v FAX(FAY(p') 5;p)/dyu.
ijk

10.5.5 Summary for the non-Boussinesq pressure conversion

(10.91)

In summary, for the older energetically based method for computing the anomalous geopotential,
the projection of the horizontal velocity onto the downgradient pressure field in the non-Boussinesq
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case is given by

P =-Y dauUP FDX_NT(FAY(po/p, + ®p))
=
— idau VP FDY_ET(FAX(po/po + ®p))
ij
— ) dat @;_; wrho bt;_g
ij
_ (g/po) Z;{ dat dzwty wrho_ bty pil'f (10.92)
i,
— Y dat @} [3 (rhodzt); — pdzt, SM |
ijk
+ p, ' Y daudzu u FAY(FAX(p') &;p)/dxu
ijk
+ p; ! Z daudzu v FAX(FAY (') 8;p) /dyu.
ijk

In a similar manner, for the finite volume approach to computing anomalous geopotential height,
the projection of the horizontal velocity onto the downgradient pressure field is given by

P =-Y dau U’ FDX_NT(FAY (po/po + ®p))
&
_ idau VP FDY_ET(FAX(pp/po + ®p))
i,j
_ Z dat @)_, wrho bt;_g
i
— (g/po) i;{ dat wrho_bty (dztupx41 pjq + dztlok p) (10.93)
_ Z dat @; [0 (rhodzt); — rhodzty S(M)]
i,jk
+ p; ' Y daudzu u FAY(FAX(p') 5:p)/dxu
ijk
+ p, ! Y daudzu v FAX(FAY(p') 8;p)/dyu.
i,jk

10.6 Discrete Boussinesq kinetic energy advection

We now consider how kinetic energy is advected in the discrete case. For this purpose, we assume
that momentum advection is evaluated at a single time step, as is the case for a leap-frog version of
MOM4. But for the preferred staggered scheme, momentum advection is implemented according
to a third order Adams-Bashforth (chapter 12 of Griffies, |2004). In this case, the following results
are understood to be relevant when we take the scalar product of the horizontal velocity with
one of the three Adams-Bashforth terms contributing to the advection tendency. Even though
the conversion properties are compromised, the utility of the kinetic energy conversion diagnostic
remains. A second assumption made here is that velocity advection is discretized using second
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order centered advection. The following is a generalization of material presented in |Griffies et al.
(2004).

10.6.1 Coriolis force

We first verify that the scalar product of horizontal velocity and the advection metric term trivially
vanishes at each grid point on the B-grid. Written as in the numerical model, keeping only grid
labels of relevance, we have

2
u- M(2AvV) = Y uyuz_y (uy dhldy — up dh2dx) = 0. (10.94)
n=1
In this equation,
dhldy = 9, Indx (10.95)
dh2dx = dyIndy (10.96)

are the model arrays carrying information about the partial derivatives of the grid spacing in the
two orthogonal directions. The sum in equation vanishes trivially at each grid point upon
writing out the two terms. Similar manipulations are appropriate for the Coriolis force, so long
as the Coriolis force is evaluated explicitly in time. When semi-implicit time stepping is used, the
cancellation is broken.

10.6.2 Horizontal convergence

Next consider the scalar product of the horizontal convergence term with the horizontal velocity u,
and integrate over the full ocean

Apor, =— Y dauu- BDX_EU(uh_eu * FAX(u))
i,jk
— Y dauu-BDY_NU(vhnux FAY (u)).
ijk

(10.97)

Note the use of thickness weighted advection velocity components uh_eu and vh_nu provides for
the vertical grid increment dzu needed for the discrete volume integral. The forward averaging
operators FAX and FAY are the unweighted averages used to estimate velocity on the velocity cell
faces. They are used to define the centered difference advective fluxes of velocity. MOM4 also
uses the backward derivative operators

dyue; ;a; — dyue;_1 ;a;_
BDX_EU(a) = —ocb] — Y081, i (10.98)
aui,]'

dxuei,j llj — dxuei,j_l a]'_l

BDY_NU(a) = (10.99)

dau,', j

These backward derivative operators act on fields defined at the east and north face of velocity
cells, respectively (see Figure for definitions of grid distances).
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10.6.3 Diagnosing the vertical transport for U-cells

Thickness weighted horizontal advective velocities uh_eu and vh nu are defined in MOM4 by
remapping the horizontal advective velocities uh_et and vh.nt, defined in Section [10.4.2] onto
the velocity cell faces. The satisfy continuity via a U-grid version of the T-grid result (10.48)

w_bug = 0 (dzug) — dzu sV

(10.100)
+ BDX_EU(uh_eu;) + BDY_NU(vh nug) + w_buy_1,

where the volume source S(V) and tendency o, (dzux) have been mapped from their counterparts
on the tracer grid. In this equation, w_bu is the dia-surface advective velocity component defined
at the bottom face of a velocity cell.

To diagnose the vertical transport w_bu, we need to start at either the bottom or top of the ocean
column, given a boundary condition. On the B-grid, the bottom of the bottom-most U-cell does not
live on the ocean bottom, unless the ocean bottom is flat. Hence, a nontrivial mass or volume
transport generally occurs through the bottom of a velocity cell column. That is, in general

W bUg—gpor # 0, (10.101)

which contrasts with the case on the T-cells (equations (10.50) and (10.80)).

A thorough discussion of this issue is provided in Section 22.3.3.2 of the MOM3 Manual
(Pacanowski and Griffies, [1999). For present purposes, we note that it is sufficient to start the
integration at the ocean surface and integrate downwards, just as for the tracer cells. Equivalently,
we can use the remapping operator in MOM to map w_bt; to w bu,. Either way, the continuity
equation (10.100) is maintained.

10.6.4 Discrete integration by parts on horizontal convergence

We now perform the discrete analog of integration by parts. For this purpose, expand the back-
wards derivative and average operators on the zonal flux terms, dropping the j, k labels for brevity

2 ) dauu;- BDX_EU(uh_eu FAX(u)) =
i

Z u; - [dyuel- uh_eu; u; ;1 + dyue; uh_eu; u;

—dyue;_; uh_eu;_1 u; — dyue;_; uh_eu;_1 ui,l]

= Z u; - u; (dyue; uh_eu; — dyue; | uh_eu; 1)

+ Zui - (dyue; uh_eu; u;;1 — dyue; ; uh_eu; 1 u;_1). (10.102)

Focus now on the second group of terms, where shifting sum labels leads to

nx nx

Z u; - u;y1 dyue; uh_eu; — Z u; - u;_q1 dyue;_; uh_eu; 1 =
i=1 i=1

nx+1 nx

Z u;_1 - u; dyue;_; uh_eu; 1 — Z u; - u;_q dyue;_; uh_eu; 1
i=2 i=1

= Uyy - Uyys1 dyue,, uh_eu,, — uj - ug dyuey uh_eu. (10.103)
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Figure 10.3: Time independent horizontal grid distances (meters) used for the velocity cell U; ; in
MOMA4. dxu; ; and dyu; ; are the grid distances of the velocity cell in the generalized zonal and
meridional directions, and dau; ; = dxu; j dyu; ; is the area of the cell. The grid distance dxue; ; is
the zonal width of the north face of a velocity cell, and dyue; jis the meridional width of the east
face. Note that the velocity point U; ; is not generally at the center of the velocity cell. Distances
are functions of both i and j due to the use of generalized orthogonal coordinates.

This result vanishes for either solid wall or periodic boundary conditions. Similar manipulations
apply for the meridional term, thus leading to

Apor: = — Y K (dyue; uh_eu; — dyue;_; uh_eu;_;)
- Z K (dxue; vh nu; — dxue; ; vhnu; 1) (10.104)
=—) dau K [BDX_EU(uh_eu) + BDY_NU(vhnu)],

where

1
Kijx = 5 Wi ik Wik (10.105)

is the discrete kinetic energy per mass.
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10.6.5 Discrete integration by parts on vertical convergence

Now focus on the vertical advection term, which takes the form

kbot
2 Avers = Y, dau uy - [—w bug_y (w1 + ug) +wbuy (ug + tyq)]
k=1
kbot
= Z dau uy - uy (w_buy —w_ bug_q)
k=1
Kbot (10.106)
+ Z dau (w_buy ug 1 - ug —wbug 1 ug-ug_q1)
k=1
kbot
=2 Z dau Ky (w_bug — w_buy_1)
k=1

— Z dau w_bug (up - uy) + Z dau w_bUyper (Ukpot+1 * Ukpot)-
The horizontal velocity at k = kbot + 1 vanishes
Wipor+1 = 0, (10.107)
since k = kbot + 1 is interpreted as part of the solid earth. In contrast,
W = Uy (10.108)

is the horizontal velocity of the fresh water. This velocity is often set equal to the surface ocean
velocity u,, = uy, yet MOM4 retains the option of providing a different value. This result then leads

to
kbot

2 Avert = 2 Z dau Ky (wbu, —wbu, 1) — Z dau w_bug (u; - uy). (10.109)
k=1 i

10.6.6 Final result

Combining the results for Ay,,, and A, renders

Ahorz =+ Avert = - (1/2) Z dau w_buy (u1 . uw)
nk
— ) dau K [BDX_EU(uh_eu) + BDY_NU(vh nu)]
k=1
nk
— ) dau K (wbw_1 — wbuy) (10.110)
k=1

= —(1/2) Z dau w_bug (u; - uy)

+ Z dau K [0 (dzuk) — dzuy SV ],
ijk

where we applied volume conservation over each U-cell as given by equation (10.100).
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10.7 Discrete non-Boussinesq kinetic energy advection

Building on the results from Section [10.6] we now consider the conversion of kinetic energy ad-
vection in the discret non-Boussinesq discete. For this purpose, consider

Apor; = — ) dau dzuu - BDX_EU(uhrho_eu x FAX(u))/dzu
i,jk
— Y daudzuu-BDY_NU(vhrho nu x FAY (u))/dzu.
ijk

(10.111)

Thickness weighted and density weighted horizontal advective velocities uhrho_eu and vhrho nu
are defined in MOM4 by remapping the horizontal advective velocities uhrho_et and vhrho nt,
defined by equations (10.73) and (10.76), onto the velocity cell faces. These horizontal transports
satisfy continuity via a U-grid version of the T-grid result

wrho_buy, =9;(rho_dzu); — rho_dzu SM

10.112
+ BDX_EU(uhrho_eux) + BDY _NU (vhrho nuy) + wrho_buy_;. ( )

where the mass source has been mapped from the tracer to the velocity grid. In this equation,
wrho_bu is the density weighted dia-surface advective velocity component defined at the bottom
face of a velocity cell. As in the Boussinesq case discussed in Section this vertical transport
is diagnosed using the continuity equation, or equivalently via the MOM remap operator.

In general, results for the Boussinesq case transparently generalize to the non-Boussinesq
case, which allows us to write by inspection

A=—-(1/2) Z dau wrho_ bug (u7 - uy)
nk
— ) dau K [BDX_EU(uhrho_eu) + BDY_NU (vhrho_ nu)]
k=1
nk
— Z dau K (wrho_bug_; — wrho buy) (10.113)
k=1

=—(1/2) ) dauwrho_ buj (u; - uy)

+ ) dau K [9; (rho_dzuy) — rho_dzuy SM7.
ijk
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CHAPTER
ELEVEN

Temporal treatment of the Coriolis force

The purpose of this chapter is to present the two methods used in MOM4 for temporally discretizing
the Coriolis force. Much of this material was presented in the MOM4 Guide of |Griffies et al.| (2004).
It is useful to repeat this material, however, in the context of the density and thickness weighting
used in MOM4p1 as well as the preferred forward time step for the tendencies (Section rather
than the older leap frog (Section [8.2).

11.1 Inertial oscillations

The inviscid horizontal momentum equation in the absence of pressure is given by
(d/dt+fzA)u=0, (11.1)
which is equivalent to the second order free oscillator equation
(d?/d + fA)u=0. (11.2)

Here, d/dt is the material time derivative relevant for Lagrangian observers. Motions which satisfy
this equation are termed inertial oscillations and they have period given by

27 11.97
Tinertial = 7 = sin ¢

hour (11.3)

where Q = 7.292 x 10~°s~! is the earth’s angular speed. The period of inertial oscillations is
smallest at the North pole where ¢ = /2 and Tgmgjiest ~ 12 hour.

An explicit temporal discretization of the inertial oscillation equation will be unstable if
the time step is longer than some fraction of the inertial period, where the fraction depends on
details of the time stepping. Coarse resolution models (models with resolutions on the order of
4-5 degrees) may find this time step constraint is the most stringent of the model's baroclinic
momentum processes. To get around this limitation, a semi-implicit temporal treatment has been
traditionally considered, as in |Bryan| (1969).

Additional issues with coupling to sea ice may warrant an implicit treatment even for ocean
models run with a momentum time step that well resolves the inertial period. In these cases,

199
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temporal details of ocean-ice coupling have been found to cause enhanced energy at the inertial
period. Semi-implicit time stepping of the Coriolis force may assist in damping this energy.

It is for these reasons that MOM4 provides an option to time step the Coriolis force either
explicitly or semi-implicitly in the baroclinic portion of the model. The namelist parameter acor sets
the level of implicitness, as described in Section

11.2 Explicit temporal discretization with leap frog

Consider now just the linear part of the inertial oscillation equation, where advection is dropped
0+ f2A)u=0. (11.4)

Following the time integration discussions in (O’'Brien| (1986) and Bryan| (1991) (see also Section
2.3 of Durran| (1999)), introduce the complex velocity

W=u+iv (11.5)

where i = +/—1 and w should not be confused with the vertical velocity component. In terms of
w, equation (11.4) takes the form

dw=—ifw (11.6)
which has an oscillatory solution
w = w, el (11.7)
with period
Tinertial = 277/ f (11.8)

Time discretizing equation (11.6) with a centered leap-frog scheme leads to
w(T+ A1) = w(t — AT) —iAw(T) (11.9)

with
A= 2fAT (11.10)

a dimensionless number. We can write the finite difference solution in terms of an amplification
factor

w(T+ A1) = Gw(T). (11.11)
Substituting this ansatz into equation (11.9) leads to the quadratic equation
G?+iAG—1=0 (11.12)
whose solution is
—q A/ A2
G= AL : AT rd (11.13)
If
A2 =fAT <1, (11.14)

then |G| = 1, which means the two finite difference solutions are neutral and stable. One root is
an unphysical mode, known as the leap-frog computational mode, and the other corresponds to
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the physical solution. If A > 2 then |G| > 1 which means both roots are unstable. Hence, stability
requires a time step satisfying

At < f7L (11.15)
That is,
Tinertial 2m
= 11.1
AT ; >2m, (11.16)

meaning the leap-frog scheme remains stable if there are at least 2 7r time steps per inertial period.
At the North Pole, this constraint means

At < 1.9 hours. (11.17)

For the baroclinic part of the model algorithm, At < 1.9 hours can be the limiting time step for
coarse resolution global models, thus motivating an alternative approach discussed in Section

11.3 Semi-implicit time discretization with leap frog

To overcome the time-step constraint on the baroclinic time step, we now consider a semi-
implicit time stepping scheme within the leap-frog portion of the baroclinic algorithm. As with
any implicit approach, stability can be enhanced relative to explicit schemes. The price to pay is
dissipation of the inertial motions. See section 2.3 of Durran| (1999) for discussion.

A semi-implicit treatment of the Coriolis force, within a leap-frog scheme, leads to

w(T+ A7) —w(t— A1) = —iA[(1 —y) w(Tt — AT) + yw(T + AT)] (11.18)

where 0 < y < 1 is a dimensionless number whose value is set according to stability consid-
erations. We can write w(t + At) = Gw(t — AT), with the semi-implicit scheme yielding the
amplification factor

1—iA(1—7y)
== 11.19
1+iAy ( )
The squared modulus |G|? is used to determine conditions for stability
1—yA2(1—vy)]*+ A2
IG]> = Loy -yt (11.20)

[1+(rA)?)?

For y = 0, |G| > 1 which leads to an unstable scheme. Fory = 1/2, |G| = 1 and so the scheme
is neutral. With 1/2 < y < 1, |G| < 1, and so the scheme is unconditionally stable. Hence, we
arrive at the stability range for the semi-implicit parameter

1/2<y<1, (11.21)

with v = 1 yielding the most stable scheme. Section 2.3.2 of Durran (1999) details the impact
on the phase and amplitude of inertial waves depending on the value of y. That analysis shows
that y = 1/2 is the most accurate, with zero amplitude error and favorable phase errors relative to
other methods.
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11.4 Semi-implicit time discretization with forward step

As discussed in Section 12.8.3 of |Griffies (2004) (see also page 51 of Durran| (1999)), the Coriolis
force with a forward time step is unstable, and so an alternative must be considered. We apply
here the semi-implicit approach from Section with a forward time step rather than the leap
frog. Here, we consider

w(t+ A1) —w(t) = —iA[(1 —y)w(T) + yw(T + AT)] (11.22)

where again 0 < y < 1 is a dimensionless number whose value is set according to stability
considerations. The dimensionless parameter A is given by

A = fAT. (11.23)

Note the factor of 2 needed for the leap frog scheme (equation (11.10)) is now absent for the
forward scheme. All of the analysis in Section follows through, with the factor of 2 the only
distinction.

11.5 As implemented in MOM4

Both an explicit and semi-implicit treatment of the Coriolis force in the baroclinic equations are
available in MOM4 when using leap frog tendencies, with the semi-implicit treatment required
when using the forward tendencies. For both cases, the semi-implicit piece is handled at the end
of a baroclinic time step, even after the implicit treatment of vertical mixing. The logic used in the
code can be a bit confusing, so it is useful to expose some details here.

11.5.1 Algorithm in the code

Let us separate that portion of the Coriolis force proportional to y from the portion independent
of y in order to ease coding for the case with a fully explicit Coriolis force. We also expose the
thickness and density weighting used in MOM4p1. Since velocity is updated first as the density
and thickness weighted velocity, it is useful to introduce a shorthand

u=(pdz)u. (11.24)
We consider now three cases for handling the Coriolis force.
¢ An explicit treatment of the Coriolis force with the leap frog takes the form

—f2AT— —f2z Au(T), (11.25)

e whereas a semi-implicit Coriolis force with the leap frog is

—fzAhu— —f2 A [(1-vy)u(t— A1) +yu(r+ AT1)]

:—fi/\ﬁ(T—AT)—f)/i/\ [ﬁ(T+AT)—ﬁ(T—AT)], (11.26)
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e and a semi-implicit Coriolis force with a forward time step is

—fzAu——fz2A[(1—p)u(t)+yu(t+AT)]

=—fzANu(t)—fyz A [u(t+ A1) —u(1)]. (11.27)

We now consider the remaining terms in the equations of motion. As stated earlier, when
treating the Coriolis force with an implicit piece (i.e., with > 0), this is handled last. We write
those accelerations independent of y in the form

S:u* =F (11.28)

where F includes the thickness weighted and density weighted accelerations from velocity self-
advection, the horizontal pressure gradient force, friction force (both explicit and implicit), as well
as that piece of the Coriolis force independent of . If the Coriolis force is computed explicitly, then
F is the full time tendency for the baroclinic velocity. For the semi-implicit treatment, we require
those contributions proportional to y. For the leap frog, this leads to

u(t+AT) =u(t— A1) +2ATé6u* —Ay2z A [u(t+ AT) —u(t — A1) ] (11.29)
where again A = 2 f At. Writing out the components leads to

u(t+ A7) =u(t — A7) + 2AT 6 u" + Ay [v(T+ AT) — 0(T — AT) ] (11.30)
U(T+AT) =0(T — AT) + 2AT 6,0 — Ay [u(T + A1) — u(T — AT)], (11.31)

and solving for u(t 4+ At) renders

_ _ Sl + Ay 65"
(T + A1) :u(T—AT)—i—ZAT( TH(A%; > (11.32)
_ _ Sl — Ay Syl
o(T+ AT) =0(T — AT) + 2 AT ( T1+ ()\)/)ZT > (11.33)

The forward time stepping scheme is handled analogously, which leads to the update for the two
components

~ ~ Su* + Ay b:0%
AT) = A 11.34
u(t+ At) = u(t) + ’T( T (A2 > ( )
~ - St — Ay S
o(t+ AT) =0(1) + AT < 15 (A2 ) , (11.35)
where again A = f At.
11.5.2 Namelist parameters
In the code,
At = dtuv (11.36)

is the baroclinic time step, and
Y = acor (11.37)
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is a namelist parameter setting the level of implicit treatment for the Coriolis force. The method
for discretizing the Coriolis force in the baroclinic part of the model is set according to the value of
acor, with

acor = 0 = explicit Coriolis: only stable for leap frog (11.38)
1/2 < acor < 1 = semi-implicit Coriolis: required if using forward step. (11.39)

The vertically integrated part of the model algorithm typically uses a time step much smaller than
f~1. Hence, it is not necessary to discretize the Coriolis force semi-implicitly when time stepping
the vertically integrated equations with a leap frog algorithm. However, when using the predictor-
corrector described in Section 12.7 of |Griffies| (2004), 1/2 < y < 1 is required for stability, and we
choose y = 1/2.

11.5.3 Energy analysis

In the continuum, the Coriolis force does no work on a fluid parcel since it is always directed
orthogonal to the flow direction
v-fz Au=0. (11.40)

This property is respected on the B-grid when we discretize the Coriolis force explicitly in time
v(t)- fz2 ANu(t) =0. (11.41)
However, the semi-implicit treatment does not respect this property since in general the product
v(T)- f2 AN [(1—7y)u(t — AT) + yu(t + AT)] (11.42)

does not vanish unless the flow is in time independent steady state.
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TWELV

Open boundary conditions

The purpose of this chapter is to present the method used in MOM4p1 for prescribing open bound-
ary conditions (OBCs), with further documentation with examples presented by |Herzfeld et al.
(2010). If there is one point to take from this chapter, it is the following.

The numerical schemes for OBCs are very much dependent on details of the model
setup. Hence, MOM4p1 is provided with many options.

This chapter was written by Michael Herzfeld, Martin Schmidt, and Stephen Giriffies. The
algorithm and code developers for the MOM4p1 OBC are

Mike.Herzfeld@csiro.au
Martin.Schmidt@io-warnemuende.de
Zhi.Liang@noaa.gov
Matthew.Harrison@noaa.gov

Please email them directly for queries about the documentation or the OBC code.

12.1 Introduction

Numerical circulation models of marginal seas with biological, chemical and sediment dynamic
components require a high model resolution and involve a large number of variables. Working
with regional models is one method to meet this challenge with a reasonable amount of com-
puter resource consumption. Mostly, the exchange of mass, heat, momentum and dissolved or
suspended matter with the outer ocean is important. At the model boundary an open boundary
condition (OBC) must apply, which permits flux out of - and into the model area.

This chapter describes the numerical schemes implemented for this purpose in MOM4p1. They
are described in detail in the corresponding literature. It seems, that an universal open boundary
condition suitable for all kinds of regional models does not exist. Hence, we have chosen to
implement several schemes, which can be selected and modified by namelist parameters.

Open boundary conditions for a regional model is a complex problem. To be more specific,
consider a large model ocean, subdivided by a virtual boundary into a western and an eastern
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sub-basin. Wind forcing, heat flux or fresh water flux in the eastern subbasin drives elevation of
the sea surface, currents and changes in the density field as well. The information on such events
in the eastern part is transmitted to the west by waves, at large time scales also by advection. If
the virtual boundary is replaced with the open western boundary of a regional submodel of the
eastern subbasin, the results of the regional submodel and those of the larger model must be the
same. Hence, waves generated in the eastern subbasin must be able to pass an open boundary
without reflection and refraction, just as if it was not there. In the same manner, processes forced
in the western subbasin influence the eastern part by waves too. If this is of importance for the
eastern model part, the western open boundary condition must generate these waves.

Hence, the required boundary condition is solution of the hydrodynamic equations at the
boundary itself and is basically unknown. Simplifying assumptions on the nature of the flow near
the boundary are needed to close the numerical schemes at the boundary. For ocean models
many different methods are known. Here we confine ourselves to methods, which combine a
radiation condition, to facilitate outward directed wave propagation through open boundaries in
combination with relaxation to prescribed values of ocean variables, to simulate the influences
from outside the model domain. Relaxation of boundary values helps also to eliminate numerical
errors of the boundary scheme and to prevent the model from divergence by the accumulation of
numerical errors over longer model integration time.

12.2 Types of open boundary conditions

The purpose of this section is to describe the sorts of boundary conditions implemented in MOM4p1.
For realistic applications the numerical solution near a boundary is always a superposition of out-
going and incoming waves, which cannot be separated. Applying the radiation condition and
relaxation of boundary values to this complex variables, turns OBC into a mathematically ill-posed
problem and there is no universally perfect scheme for open boundary conditions. Hence, often
the OBC configuration must be established by trial and error on a case by case basis. So what
may work fine in one application may not work if one alters the bathymetry, geography, forcing,
subgrid scale parameterizations, or numerical implementation of the OBC.

12.2.1 Open boundaries in the ARAKAWA B-grid

Because MOM4p1 uses the ARAKAWA B-grid, tracers and sea level points are the outmost points,
where the numerical scheme has to be closed by an open boundary condition. Velocity points are
within the model domain. At points adjacent to the boundary the non-linear advective terms and
diffusion terms are undefined. To close the numerical scheme for these terms, velocity points
beyond the boundaries are defined by appropriate extrapolation. The remaining terms in the mo-
mentum equations can be calculated using pre-existing fields. This formulation of the open bound-
ary conforms to a stencil originally proposed by |Stevens| (1990)/Stevens| (1991). This approach
effectively limits any error introduced by the OBC to the two non-linear terms, thus preventing any
error associated with the OBC from rapidly propagating into the interior via the Coriolis terms.
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Figure 12.1: Open boundary conditions in the Arakawa B-grid. Circles mark tracer points, crosses
velocity points. Open boundary conditions apply at green points.

12.2.1.1 Notation

Boundary points are marked with a capital B. The first points beyond the boundary outside the
model domain is B + 1, the first internal point in the model domain is B — 1. See also Figure [12.1]

12.2.1.2 Boundary conditions for the sea level

The boundary conditions presented here refer to circulation models which use explicit solvers for
the sea surface height where the variablity of the sea level is governed by waves. Hence, the
boundary condition for the sea level is based on the wave like properties of the solution and has
the form of a radiation condition for outgoing waves. Boundary conditions for the sea level apply
at points marked with green circles in Figure figure:grid.

12.2.1.3 Boundary conditions for tracers

The tracer propagation is described by an advection-diffusion equation, which does not have a
wave like solution itself. However, the underlying velocity field may be wave like. Hence, especially
vertical tracer advection, which is not well defined near an open boundary, can be approximated by
a radiation condition. The boundary condition used here combines a radiation condition, approxi-
mations for horizontal advection and relaxation towards prescribed data. Boundary conditions for
the tracers apply at points marked with green circles in Figure [12.1]
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12.2.1.4 Boundary conditions for velocity

Boundary conditions for velocity vectors apply at points marked with a green cross in Figure fig-
ure:grid. At these points horizontal and vertical velocity advection is set to zero. An exception is
the metric term, which is well defined. Removing it implies horizontal inhomogeneity in the flow
fields, which show up especially in nearly uniform flow.

To get a well defined friction operator, velocity beyond the boundary must be defined too. This
is done with a no gradient condition. This condition applies at points marked with a this black cross
in Figure[12.1]

For some application it may help, to take vertical advection of tracers at boundary points into
consideration. A no gradient condition for the tangential velocity enhances +-structures, which are
typical for the Arakawa B-grid, and couples such structures into the tracer equations. Hence, the
tangential velocity at points beyond the boundary should be set to the value of the second interiour
point, which prevents infiltration of £-structures from the velocity field into the tracer fields from
the OBC.

12.2.2 Sommerfeld radiation condition

Most open boundary conditions are based on the Sommerfeld radiation condition (Sommerfeld,
1949). This kind of boundary condition was originally derived for the theory of electromagnetic
waves to remove incoming waves from the far field solution for an oscillating dipole antenna. The
Sommerfeld radiation condition takes the form:

Mt = —CMx at x = xp. (12.1)

In this equation, n(x,t) is the space-time dependent free surface height, ¢ is the wave phase
speed determined via a method discussed in Section [12.3] x = xg is the spatial position of the
open boundary in question. Finally, we use the shorthand notation

0
nt = ETTt]
o (12.2)
Mx= 5%

to denote partial derivatives. The performance of OBC’s based on the Sommerfeld condition
has been extensively assessed in the literature (see, for example [Chapman, |1985; |Roed
and Cooper, [1987; Tang and Grimshaw, |1996; Palma and Matano, (1998, |2001). Unfortunately,
OBC'’s based on the Sommerfeld condition often exhibit inaccuracies. The key reason is that the
model solution is a superposition of several waves which have different phase speeds and which
are dispersive (in contrast to the linear electromagnetic waves that Sommerfeld was concerned).
However, the Sommerfeld condition is based on just a single wave condition. The OBC behaviour
in practice is thus very sensitive to how the phase speed in equation is determined.

We can classify the boundary conditions as passive, in which case the OBC is determined
solely from information within the computational domain, or active, so that data is prescribed from
an external source. Since the behaviour of the model interior is rarely consistent with data pre-
scribed at the boundary, the model may become prone to errors due to under-specification (not
enough information describing external processes is provided) or over-specification (OBC infor-
mation is incompatible with interior equations). [Marchesiello and Shchepetkin| (2001) provide a
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thorough discussion of the active versus passive boundaries, and over versus under-specification
of data.

To alleviate problems with over-specification, an active boundary condition may be rendered
partially passive by coupling to a radiation condition. This approach was used by Blumberg and
Kanthal (1985). Here, relaxation towards externally prescribed data is performed with an associ-
ated relaxation timescale, so that

Mt = —cnx—(n—"10)/7s. (12.3)

Here, 7, is the prescribed data for the surface height, and 7, is a timescale. Even with this
prescription for the OBC, the behaviour of the simulation can be sensitive to the choice of radiation
condition and relaxation timescale used.

Likewise a fresh water flux may be added, but its influence will most probably disappear behind
the relaxation term.

12.2.3 Clamped boundary conditions

A simple boundary condition is the clamped boundary condition, i.e., sea level or tracers are
kept at a fixed value. For the sea level no physical justification is given for using this condition.
It is motivated solely from the fact that it keeps the numerical scheme stable. For salinity and
temperature it may be a reasonable approximation. The clamped condition requires the user to
supply a single time and space independent value to be imposed on the boundary. This type of
condition corresponds to a zero phase speed, ¢ = 0, in the Sommerfeld radiation condition (12.1).
It creates many reflections at the boundary, which can be undesirable.

In a modified form time and space dependent values for the sea level or tracers may be pre-
scribed. Keeping in mind, that most ocean flow is geostropically balanced, this defines the baro-
clinic and barotropic geostrophic transport through the boundary. This may be desired, but implies
also the possibility of unwanted numerical effects, which may corrupt the numerical solution in the
model domain.

12.2.4 No gradient boundary conditions

This condition imposes a smooth solution near the boundary. The no-gradient OBC assumes that
there does not exist a gradient of a variable across the open boundary. It is sometimes referred
to as a Neumann boundary condition. This condition corresponds to setting the phase speed to
infinity in the Sommerfeld radiation condition (12.1). It is specified by setting the value at the open
boundary equal to the value immediately adjacent to the open boundary in the model interior, so
that

n(t+1,xp) =n(t+1,xp-1). (12.4)

In this equation, ¢t + 1 is the updated time step, xp signifies the spatial position of the open bound-
ary, with (¢ + 1, x) is the surface height at that boundary. As shown in Figure[12.1] x5_; signifies
the spatial position of the nearest point interior from the open boundary, with the sign determined
by the relative position of the open boundary.
For velocity a no gradient boundary condition applies across the boundary, to get a defined
viscosity operator
M(t+1,XB+1) :u(t+1,x3). (125)
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12.2.5 Interior cell no gradient boundary conditions

This condition is similar to the no-gradient boundary condition (12.4). However, instead of using
the value at the nearest interior grid cell, the boundary is set to the value at the next nearest interior
(B —2) cell (i.e., two grid points away from the boundary)

n(t+1,xp) =n(t+1,xp-2). (12.6)

For the tangetial velocity a no gradient boundary condition across the boundary is used to get
a defined viscosity operator
u(t—l—l,xBH) = u(t+1,xB,1). (12.7)

12.2.6 Enhanced friction and diffusion near the boundary

This method increases the dissipation from tracer diffusion and momentum friction in regions near
the open boundary. This approach acts to dissipate spurious reflections at the boundary. It also
may be useful to remove artificial currents near the boundary, which may grow to be large in some
cases. However, this approach has the detrimental effect of slowing cross boundary transport.

12.3 Implementation of sea level radiation conditions

In this section, we discuss various radiation conditions that are used to specify the phase speed.
We also discuss how to specify the tracers across the open boundary.

12.3.1 Sign convention for the phase speed

The phase speed is a vector quantity. Here it is always directed perpendicularly to the model
boundary and notation can simplified considerably by considering the projection of the phase
speed onto the normal vector of the model boundary. The sign of the phase speed is positive for
eastward or northward travelling waves and negative for westward or southward directed waves.
However, the quantity of interest is the projection of the phase speed onto the boundary normal
vector. In all radiation conditions given below, phase speed means this projection, which is positive
for outgoing waves and negative for incoming waves.

12.3.2 Gravity wave radiation condition for the phase speed

This formulation computes a phase speed relevant for a flat bottom barotropic shallow water con-

figuration, so that
c = /gDs, (12.8)

where g is the acceleration from gravity, and Dy is the depth at the boundary (Chapman, 1985)).
Hence, in this approximation it is assumed, that processes near the boundary are always governed
by outgoing waves. The OBC is implemented in an implicit form, so that

n(t,xg) +un(t+1,xp_1)

n(t+1,xB): 1+“

, (12.9)
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where
At

=c—, 12.10
H=c (12.10)
where Ax is the horizontal grid spacing. That is, equation (12.9) is the implicit solution to equation

(12.1) using c as the gravity wave speed.
Note: phase speed is always positive for gravity wave radiation, implying that waves are always
outgoing. This means that outgoing relaxation ,7,,;, is always used when relaxing to data (see

Section[12.3.9.3).

12.3.3 Orlanski radiation condition for the phase speed

We aim to account for the most important part of the wave spectrum. There are various means for
doing so, with the Orlanski radiation condition (Orlanski, [1976) one of the most common. Here,
the the phase speed of disturbances approaching the boundary is diagnosed at every time-step
from the distribution of the interior values of the surface height near the boundary, so that

C=—n¢/Nx. (12.11)

The Orlanski radiation condition theoretically has a zero reflection coefficient. This property is
desired to reduce spurious reflected waves at the open boundary. Unfortunately, in practice reflec-
tions occur due to inaccuracies in the phase speed computation.

The form employed by MOM4p1 is the implicit formulation based on (Chapman, [1985)

1-— t—1, 2 t,xp_
Tl(t+1,xB) — ( I‘L) 77( 13:3—)“4— P‘Tl( xB 1)‘ (12.12)

Here, the dimensionless parameter p is set according to

1 if C>1

u= C if 0<C«1 (12.13)
0 if C<O,

where

_ n(t—1,xg1) —n(t+1,xp 1)
n(t+1,xp-1) +n(t—1,xp-1) —2n(t, xp_2)

(12.14)

12.3.4 Camerlengo and O’Brien radiation condition

Camerlengo and O’Brien| (1980) suggested a modified form of the Orlanski radiation condition,
where only the extreme values of the phase speed, zero or h/t, so that;

T)(t, XB,1) if C>0

n(t+l,x3):{ Nl — L) i C<o, (12.15)

with C given by equation (12.14).
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12.3.5 Radiation condition after Miller & Thorpe

The Orlanski scheme is modified here so that time differences are evaluated using a forward
scheme and space differences with an upwind scheme (see equation 15 in Miller and Thorpe,
1981)

n(t+1,xp) = n(t, xp) — p(n(t, xp) — n(t, xp-1)). (12.16)

In this case, the dimensionless coefficient

U=+ Ho + 3, (12.17)
with

"y = n(t+1,xp-1) — n(t, xp_1) (12.18)

n(t,xg—2) — n(t, xp_1)
T](t, xB) — U(t -1, xB)
= 12.19
BT =1, xp1) — n(t— 1,xp) (12.19)
n(t, xg—1) —n(t —1,xp-1)
= . 12.20
Hs n(t—1,xp_2) —n(t—1,xp_1) ( )

The scheme is implemented in an explicit temporal form.

12.3.6 Raymond and Kuo radiation condition

This radiation condition was introduced by Raymond and Kuo (1984) and used in adaptive form by
Marchesiello et al. (2001). This scheme calculates the phase velocity for multidimensional flows
using a projection of each coordinate direction, i.e. not just the normal component. The scheme
is implemented in implicit form. The Sommerfeld radiation condition takes the form:

Nt = —CxMx—CyTy (12.21)

where x and y are directions normal and tangential to the boundary respectively. The phase
speeds c, and c, are projections given by:

e =~ (12.22)
% + 15
N,y
Cy= -T2 (12.23)
! "Nk,

This is discretised following Marchesiello et al (2001);

1
147,
{ n(t,xg, yp) +ren(t+1,x-1,y8) —ry (n(t, x8, y) — n(t, xp, yp—1)) 1y >0,
n(t, xp,y) +ran(t+1,xp-1,y8) —ry (n(t, x5, yp+1) — n(t, x5, yp)) ry <O0.
(12.24)

n(t+1,xp,yp) =
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where:
re = — AniAny
Ani + Anj
ry = —m (12.25)
Ang =n(t+1,xp-1,y8) — n(t, x-1,YB) (12.26)
Any =n(t+1,xp-1,y8) —n(t+1,x3-2,y5) (12.27)

An, = { n(t,xg—1,ys) — n(t, xp_1,Yp-1) ifD >0,
v n(t, xp—1,yp+1) — n(t, xp—-1, yB) ifD <0

D = Any (n(t, x-1,¥8+1) —n(t+1,xp-1,Y5-1)) (12.28)
The adaptive for relaxation takes on a form similar to Equation (12.3),
Mt = —CxMNx —CyT,y — (n— Tlo)/Tf- (12.29)

where 7y = 7oy if ¢x > 0 and 7y = 7, wWith ¢y = ¢, = 0 if ¢ < 0. The relaxation time scale
Tout > Ti, SUCh that during outward phase propagation a weak relaxation exists to avoid boundary
values drifting excessively but also preventing problems of over-specification, while during inward
phase propagation stronger relaxation is applied that avoids shock issues.

12.3.7 The IOW-radiation condition
As for the gravity wave radiation condition an implicite scheme is used,

n(t,xg) + un(t+1,xp_1)

t+1,xg) = , 12.30
n( B) T+ 5 ( )
where At
=C—. 12.31
u Ax (12.31)
The spatial and time derivative of n are
1,xg_1) — 1,xp_
Are = n(t+1,xp-1) —n(t+1,xp 2), (12.32)
Ax
1) —n(t+1,xp_
Any = s %5-1) AZ( 1 x1) (12.33)

If the predictor-corrector scheme is used, the phase speed is calculated twice. In this case n(t;)
denotes n at the starting time step of this scheme. In the predictor step At is the reduced time
step At = ydt. For the leapfrog scheme t; =t — 1 and At = 2dt.
To ensure a well defined phase speed for small horizontal gradients this case is treated sepa-
rately,
C*(t+1) if An*>a,

Cle+1) = { 0.99C(t) if An*<a, (12:34)

where An* = |n(t+1,x5_1) —n(t+1,x5_5)| and a is a small length, typically 10~8 m. C is the time
smoothed phase speed from the previous time step. The scheme allows to control the minium and
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maximum value of the phase speed. For incoming waves, negative phase speed, positive values
(or zero) are assumed,

Cine if Ct< 0,
Cmin if C+ < Cmin/

C(t+1) = c+ it Cpox > C+ > Cypp, (12.35)
Cmax i C+ > Cmax-
C*(t+1) is calculated from the derivatives of 7,
An
Ctit+1) = =, 12.36
(r+1) = 3V (12.36)
Cuax, Cmin and Cyy, are defined in terms of the gravity wave speed,
Cimax = Cmax /§ DB (12.37)
Cnin = Cmin V gDB (12.38)
Cine = Cine \/gTB (12.39)

The factors ¢y, Cmin @nd c;,c can be modified via the namelist.
Relaxation is done as described in Section

12.3.8 Phase speed smoothing

The diagnosed phase speed may be very noisy with altering sign every time step. A time smoother
C(t+1)=FC(t)+ (1 —F)C(t+1), (12.40)

helps to reduce numerical noise. The default value is F = 0.7. The application of the smoother

requires to save C in a restart file, to ensure reproducibility across model restarts.

12.3.9 Relaxation to data

12.3.9.1 Relaxation towards prescribed profiles

The radiation conditions may be coupled to prescribed data as described by Equation (12.3). This
approach is implemented implicitly as

ﬁ(t+ 1, .XB) + ﬂo%t
A
1+

n(t+1,xp) = , (12.41)

where 71(t + 1, xp) is the solution on the boundary derived from the radiation conditions. 7y is the
time scale for the relaxation process.

The relaxation may occur a given number of cells into the interior, in which case 77(¢ + At, xp)
is the interior solution to the continuity equation.
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12.3.9.2 Relaxation of the sea level average - conservation of geostrophic currents

If the model area is a semi-enclosed sea, which is connected to the ocean by a narrow channel,
the open boundary may be placed within this channel. By prescribing the sea level profile across
the channel, one defines also the geostrophic volume transport through this channel. In this
case the incertitude of the OBC may dominate the volume budget of the model. To overcome
this serious shortcoming, an alternative relaxation scheme may be used, which prescribes only
the average sea level at the boundary. Doing so, the geostropic transport defined by the cross
channel sea level gradient is not affected by the relaxation. Only the ageostropic flow may react
to the prescribed sea level variation, geostrophic adjustment happens through the internal model
dynamics. The scheme works explicitly,

n(t+1,x5) = (4 1,x5) + ff (0 — (Fi(t 4+ 1, x35)) (12.42)

(n(t+1,xp)) is sea level averaged over the boundary.

12.3.9.3 Variable relaxation for incoming and outgoing waves

Likewise, the value of 7, may be different for prevailing incoming or outgoing waves,

Tfl =r b4 (1—r)T ! (12.43)

out in ’

)=~ (12.44)

12.4 OBC for tracers

12.4.1 Reduced tracer equations at open boundaries

The tracer equations in MOM4p1 are strongly linked with the sea level equation and tracers and
sea level are treated consistently. Because the radiation condition for the sea level is a rough
approximation, a similar consistency cannot be achieved for boundary points. Hence, the tracer
equations at the boundaries are simplified.

To avoid double coding, the normal code should be used at boundaries as far as possible.
Tracers are updated as

T(t+1)p(t+ D)h(t +1) = T()p(D)h(t) + Ats(h()p(t)T(t)) (12.45)

The time tendency of the vertically integrated tracer in the grid cell 5(pT) is the combined time
tendency of tracer concentration, density and cell thickness. It consists of an advective and dif-
fusive contribution and eventually of source terms from radiation and special convective schemes
(kpp). We rewrite these terms in such a manner, that for a constant tracer the sea level equation
is retained. Especially for a uniform tracer T = 1, 6(hpT) must be the time tendency of the cell
thickness, 8(hp), i.e. 5(hpl) — &(hp) = 5.

5(hpT)x = —(Vs-hp(uT +F)) — (p(wT + F)))_1 + (p(wT + F®))), + (hpST);
s(hp)k = —(Vs-hou) — (pw)i_1 + (pw)i + (hpS™); (12.46)
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Advection is rewritten to separate the different contributions to the time tendency,

Ado(T)y = —(Vs-hpuT); — (pwT)i—1 + (pwT)i
—(TVS . hpu)k — (pr)k_1 + (pr)k - (hpu : VST)k. (12.47)

Applying approximations for open boundaries, the first three terms have to be kept consistent with
the equation for the level thickness. The level thickness is calculated from approximations only
and it is appropriate to express the convergence of the flow in terms of the level thickness time
tendency. With of

—(Vs-hpu)e = 8(hp)x + (pw)i—1 — (pw)i — (hpSM); (12.48)
this renders to

s(hpT)i = 8(hp)iTi+ (ho(S" — SMT)), + SGS
—(hpu - VsT)x — (pwT)x-1 + (pwT )i + ((pw)i—1 — (pw)i) Tr.  (12.49)

i.e., which ensures consistency between tracers and layer thickness for a uniform tracer. Also
the approximation of zero vertical advection and horizontal advection with an upwind scheme is
consistent with the thickness equation for cells of constant thickness. Diffusion and source terms
apply unchanged and will not be specified here.

For surface cells the vertical advection at the surface is expressed in terms of sea level varia-
tion, fresh water flux and turbulent tracer flux,

s(hpT)1 = (8(hp)1 Ty + putu(Tw — Tr) + (hp(S" — SMT))1 — QF"™ + SGS
—(hpu - ViT)1 + (pwT)1 — (pw)1Ti. (12.50)

With this approximation the tracer concentration remains unchanged, if only the sea surface height
is undulating. If currents are zero, but fresh water flux and diffusion are present, a horizontally
uniform tracer distribution will not be disturbed near an open boundary. The consistency between
sea level equation and tracer equation is not broken, if approximations for the horizontal advection
term are made, or if radiation terms are added. Those terms vanish for horizontally uniform tracers
especially for T = 1 and the sea level time tendency is trivially retained.

Because vertical velocity is not well defined it is left out of consideration. It is replaced by a
radiation term, which accounts for the propagation of wave like undulations of internal interfaces
from baroclinic waves.

s(hpT)i = 8(hp)iTi + (ho(S" — SMT)); + SGS

oT, Tref — T,
—(hpu - VT + cph== + ph——k (12.51)
ox ¢
5(hoT)y =~ (8(hp)1Th + pwGe(Tw — T1) + (hp(ST — SMT)); — Qi 4 SGS
oT Tef — T
—(hpu - VT)1 + cph=— + ph——L. (12.52)
ox T¢

Implementation of the radiation condition and of the relaxation towards prescribed data is docu-
mented below. Diagnostics of the phase speed is based on the tracer concentration, because the
total tracer contend may undulate rapidly from the barotropic mode in the cell thickness variability.
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12.4.2 Upstream advection of tracers near the boundary

For advection across the open boundary, an upstream scheme with
T(xp+1) = T(xp) (12.53)

means that the incoming tracer has the same concentration as the tracer at the boundary point.
This approximation may give poor results for long model runs and can cause model drifts.

After running a passive boundary over a long period, the tracer near the boundary will be deter-
mined completely by processes in the model domain. As an example consider a marginal sea with
a strong fresh water surplus. There will be an estuarine circulation with a more or less permanent
outflow of brackish water in a surface layer and inflow near the bottom. However, the salinity of the
inflowing water will be reduced as well after some time by vertical mixing processes. The model
results will suffer from underestimated stratification. To overcome this problem, information on the
tracer concentration in the adjacent sea must be provided for the model. The simple approximation

T(xp41) = T(x0) (12.54)

where Ty may stem from a database, improves the performance of the diffusion and the advection
operators, which in turn may invoke wave like processes spreading from the boundary into the
model. Using an upstream formulation for the tracer gradient in the advective term, this can
switch on an inflow through the open boundary. However, waves of a small amplitude but with
a high phase speed may disturb this scheme. Thus, the tracer source term St can be used
for a controlled restoring to prescribed boundary values. The upstream advection condition is
discretized as:

T(t + 1,XB) = T(t, XB)

+ Ax [(un — |un|) (T(t,xp—1) — T(t,x8)) + (un + |un|) (T(t, xp) — T(t,x0))] (12.55)

where u,, is the velocity normal to the boundary times density and the cell height, T(x3) is the
tracer on the boundary, T(xz_1) is the tracer one cell into the interior and T(xy) is a tracer value
that must be supplied externally.

12.4.3 Relaxation towards external data
If external data are prescribed boundary values may be relaxed towards there data as

T(t+1,x5) = (To — T(t, xp)) 2. (12.56)

Tf

The relaxation time 7 depends on the flow direction near the boundary. If the sum of advection
velocity and phase speed at the boundary is directed inwards, one has 7y = T}” and 1y = TJ?“t

otherwise. TJ’;” and TJ‘Z'“ can be specified in the namelist for each tracer and boundary separately.
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12.4.4 Flow relaxation scheme of Martinsen and Engedahl

The flow relaxation scheme of Martinsen and Engedahl (1987) has been included to relax bound-
ary data to interior data. This is accomplished over a region NN cells wide (typically NN=10) where
the tracer variables are updated according to:

T = oTp+ (1 —o)Tpai (12.57)

where T is the boundary specified value, Tp; are the interior variable values and «; is a relaxation
parameter given by:

Ty = 1- tanh% i=1,2,.NN (12.58)
Note that the flow relaxation scheme is used in conjunction with another boundary condition and
T may be obtained from the FILEIN or NOGRAD condition; whatever is specified on the boundary
is relaxed to the model integrated values over NN cells. The flow relaxation scheme is only
implemented if UPSTRM is included in the tracer obc. If T is equal to zero (clamped boundary
condition) then this flow relaxation scheme acts as a sponge type condition. An example of the
flow relaxation scheme implementation in the namelist is given below:

obc_flow_relax(:,1)
obc_flow_relax(:,2)

10, 1, 1
10, 1, 1

12.4.5 Radiation conditions

If the velocity field near the boundary is wave like, vertical advection may result in a wave like
tracer motion. Hence, a radiation condition may improve the numerical scheme at the boundary.
The radiation condition for tracers is applied implicitly,

T(t, XB) + },LT(t + 1,XB,1)

) (12.59)

— ( . I !‘

The phase speed C is set to zero for incoming waves and is limited by C,,,x,

0 if C* <O,
H = C>!< if O < C* < Crnax, (12.61)
Cmax 1t C* > Chgx-

C* is calculated either bei the Orlanski scheme,

Ax T(t—l,xB,O—T(t‘i‘l/xBfl)
G — 12.62
C At T(t—i—l,xB,l)—FT(t—l,XBfl) —ZT(t,xsz)’ (1262
or by used in MOM-31 (IOW).
oo DxT(t—1,x54) —T(t+1,x5-1) (12.63)

N At T(t, xB—l) — T(t, XB_Z)
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For the time staggered scheme the index t — 1 points to the same filed as t. The maximum phase
speed, Cyqx, is given by the CFL-criterion,
Ax

Conex = ;- (12.64)

12.4.6 Vertical mixing and viscosity co-efficients

Vertical mixing at boundary points my be enabled or diabled. However, the mixing co-efficients
at these points are used to define viscosity at adjacent velocity points. The namelist parameter
obc mix specifies, how the mixing coefficient at boundary points is defined. Options are NOTHIN,
NOGRAD, INGRAD and CLAMPD, obc_mix=NOGRAD is the default.

12.4.7 Enhanced horizontal mixing and viscosity co-efficients

To damp unwanted numerically generated flow patterns near open boundaries viscosity and diffu-
sivity may be enhanced within a stripe near the boundary.

12.5 The namelist obc_ nml

MOM4p1 requires that two components of velocity be prescribed on each open boundary (normal
and tangential velocities to the boundary) for both the 3D and 2D modes. Surface elevation and
the values of any tracers present are also required. Here are the flags that specify the various
fields:

e Normal velocity: obc_nor

e Tangential velocity: obc_tan
e Sea level elevation: obc_eta
e Tracers: obc_tra(:).

The OBC specification is determined via text strings as listed in Table where the variables
these conditions may be applied to are listed as un = normal velocity, ut = tangential velocity, n
= surface elevation, and T = tracers. The condition specified for velocities is used for both the 2D
and 3D modes. Note that the text identifier strings have have been truncated to the same length
while attempting to describe the OBC condition to accommodate neat alignment in the namelist.

An example of open boundary specification for a domain containing three open boundaries
and two tracers is given below:

nobc = 3

direction =’west’, "south’, ’'north’

is =2, 2, 2

ie = 2, 10, 10

js =2, 2, 20

je =20, 2, 20

obc_nor =’NOGRAD’, "NOGRAD’ , ’NOGRAD’
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CONDITION NAME TEXT IDENTIFIER | APPLICABLE VARIABLES
Relaxation to data FILEIN n, T
Relaxation of mean MEANIN n
Clamped CLAMPD Uy, U, T
No-gradient NOGRAD Uy, U, n, T
Interior-gradient INGRAD Uy, Ut
Linear extrapolation LINEAR Uy, Us
Gravity wave radiation GRAVTY n
Orlanski ORLANS n, T
Camerlengo and O-Brien CAMOBR ]
Miller and Thorpe MILLER n
Raymond and Kuo RAYMND |
Schmidt MARTIN n, T
Upstream advection UPSTRM T

Table 12.1: Namelist settings for the OBC specification.

obc_tan =’INGRAD’, "INGRAD’, >INGRAD’

obc_eta =’GRAVTY’, "FILEIN’, "MEANIN|ORLANS’

obc_tra(:,1) ='UPSTRM|FILEIN’, ’UPSTRM|FILEIN’, UPSTRM|FILEIN’
obc_tra(:,1) =’NOGRAD’, ’'NOGRAD’,’UPSTRM|NOGRAD’

Note that by ‘or-ing’ two conditions together then these two conditions will be invoked sequen-
tially (order is not important). Hence the condition UPSTRM | FILEIN will invoke an upstream advec-
tion condition, using data from file when flow is into the domain. The condition UPSTRM | NOGRAD will
invoke an upstream advection condition, using the value one cell into the domain when flow is into
the domain. A wave-like contribution to the OBC can also be added for tracers, e.g. invoked by
UPSTRM | FILEIN | ORLANS. This wave-like contribution is added implicitly.

If partially passive conditions are to be used for elevation, then the FILEIN or MEANIN condition
is 'or-ed’ with the desired radiation condition, e.g. using the Orlanski partially passive condition
with data prescribed from file use FILEIN|ORLANS. Note that in-going and out-coming relaxation
timescales are also required to be prescribed for these partially passive conditions.

Some compilers do not like the colon (:) syntax in field specifications. In this case each element
must be specified separately.

12.6 Topography generation - Preparation of boundary data

12.6.1 Topography generation with open boundaries

Open boundary conditions require modifications of the topography near the boundary. Gradients
of the depth normal to the boundary should be zero to avoid large vertical velocity in the boundary
area. Because vertical velocity usually is set to zero at boundary points, this approximation is less
serious, if vertical velocity is zero anyway.

The grid and topography generator ocean_grid_generator closes all model boundaries, if the
model is neither cyclic or global. This has to be modified for open boundaries. Hence, open
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boundaries need to be specified in this early stage of model preparation. This ensures, that initial
fields and boundary values, which may use the information in the grid specification file grid_spec.nc,
are fully consistent with the topography used during model run time. For this purpose, the ocean
grid generator ocean_grid_generator is able to read those parts of the namelist obc_nml, which define
the open boundaries geographically. Here is an example:

\&obc_nml

nobc =3

direction = ’north’, ’south’, ’west’,

is = 2, 2, 2,

ie = 39, 63, 2,

js = 74, 2, 2,

je = 74, 2, 74,

name = ’northern’, ’southern’, ’western’

It is not recommended, to define the boundary conditions at outmost model points.

12.6.2 Preparation of input data files

Having the grid_spec.nc file ready, one may proceed with preparing obc input data files. The grid of
input data files should match exactly the size of the open boundary. However, it is also possible,
that the grid of the input files may cover a larger area. In this case, those start and end index of
the model grid, which matches the first and the last index in the input file, must be specified in the
namelist obc_nml (but not for ocean_grid_generator). The default is, that the input data files match the
size of the boundary exactly. In the example below, the input files for sea level and tracers have
the same size as the model itself, 75 x 65. They may be either preprocessed as decribed below,
or used directly with help of namelist specifications:

\&obc_nml

nobc =3

direction = 'north’, ’south’, ’west’,
is = 2, 2, 2,
ie = 39, 63, 2,
js = 74, 2, 2,
je = 74, 2, 74,
name = ’northern’, ’southern’, ’western’
iers = 1, 1, 2,
iere = 65, 65, 2,
jers = 2, 2, 1,
jere = 2, 2, 75,
itrs = 1, 1, 2,
itre = 65, 65, 2,
jtrs = 74, 2, 1,
jtre = 74, 2, 75,

It is supposed, that some data suitable for OBC are ready in netcdf-format. There are many
tools to process such files, here ferret is used. Alternatives may be grads and possibly matlab in
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combination with the netcdf toolbox. Ferret is available fromhttp://ferret.wrc.noaa.gov/Ferret.
It is recommended to use Ferret 6 or a later version, because previous versious do not permit full
access to all netcdf attributes. However, as long as the file are not to large, some fine tuning in the
file structure could also be done with a combination of the programs ncdump, a good editor, which
can handle large files and ncgen. ncdump and ncgen come with the netcdf library. Also the nco-tools
are of great help.

Examples for ferret scripts are given below. For details of the syntax visit
http://ferret.wrc.noaa.gov/Ferret.

The following directory structure is assumed:

preprocessing/grid_spec.nc
preprocessing/OBCDATA
preprocessing/OBCDATA/1999/your_input.dta.nc
preprocessing/OBCDATA/2000/your_input.dta.nc

The working directory is for example
preprocessing/0BC/2000/

Then the following ferret commands should sufficient to generate the input file for the sea level
at a northern boundary at j=74:

SET MEMORY/SIZE=30

use "../../grid_spec.nc"

use "../OBCDATA/2000/your_input.dta.nc"

I the input file has units "cm", mom4 needs "m"
let/units=m/title=eta_t eta_t = eta[d=3,gx=wet[d=1,j=74]1]/100
can axis/modulo ‘eta_t,return=xaxis’

! add a calendar

SET AXIS/CALENDAR=JULIAN ‘eta_t,return=taxis’

save/clobber/file=obc_trop_north.dta.nc/2:39 eta_t

It may happen, that the model landmask differs from the land mask in the input data. In this case
one may have land information from the input file at ocean points in the OBC input file, which would
let the model crash. In this case ferret functions could be used to fill these values with ocean data.
Suitable tools are the @fnr transformation or the new external function fill_xy which is in the latest
Ferret 6 release.

For depth dependent data as temperature and salinity more care is needed to avoid gaps in
the input data near the bottom. Most likely, topography representation in the model differes from
topography representation in the input data. So two things or needed, to organise the input data

- a mask, to define ocean points in your model
- an input data set, which covers all model ocean points with ocean data.

The mask can be derived from the grid_spec.nc file:
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SET MEMORY/SIZE=30

use "../../grid_spec.nc"

let mask_t=if k[gz=zb] le NUM_LEVELS then 1 else (-1)/0
save/clobber/file=tempfile.nc mask_t

For velocity data NUM_LEVELS _C can be used in the same manner.
Extrapolation into the bottom should be mostly sufficient, to extend the input data, so that all
model ocean points are covered with input ocean data later:

use "../OBCDATA/2000/your_input.dta.nc"

let temp_n = temp[k=@fnr:5] 1 5 should sufficient
let salt_n = salinity[k=@fnr:5]

save/append/file=tempfile.nc temp_n, salt_n

The names of variables in the input file may be different. Saving into a temporary file is not needed
in any case, but it helps to avoid problems from ambiguous indecees in variables with different co-
ordinate definitions.

Now use tempfile.nc as new input file:

can data/all

can/var/all

I

SET MEMORY/SIZE=55

use tempfile.nc

let/unit=Celsius/title=temperature temp = temp_n[g=mask_t]*mask_t[j=74]
let/unit=PSU/title=salinity salt = salt_n[g=mask_t]*mask_t[j=74]
save/clobber/file=obc_clin_north.dta.nc/2:39 temp, salt

Multiplying with the mask ensures, that only model ocean points contain tracer information. The
grid information is implicitely in mask_t. Do not specify the range of the grid index for writing
tempfile.nc. This may disturb the horizontal interpolation.

12.6.3 Consistency of input data and model configuration
12.6.3.1 The sea level in external data and the model zero level

The models zero motion sea level is the average of the initial sea level. This value needs to
be consistent with boundary sea level data. If boundary and initial data come from a larger
model, this should be the ftrivially the case. Otherwise some adjustment is needed, because
because even small artificial gradients between boundaries and the model interiour may drive
large currents, which would rapidly corrupt the initial stratification. This requires an initial run, with
advection of tracers switched off. This can be done with the options zero_tracer_advect_horz and
zero_tracer_advect_vert enabled in ocean_tracer_advect_nml. The resulting model sea level should be
a reasonable choice for model initialisation. Eventually the procedure could be repeated.
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12.6.3.2 The sea level and the problem of air pressure

Air pressure gradients are part of geostrophic balance of current systems. If the air pressure gra-
dients vary only slowly, a corresponding negative sea level gradient develops, which may compen-
sate its influence, so that the currents calculated with and without air pressure are approximately
the same. This is the reason, why air pressure is often ommited in circulation models.

The sea level however may differ considerably in both cases. This has to be taken into ac-
count, if sea level data are prescribed at open boundaries. MOM-4 permits the input of sea level
air pressure, which is added to the sea level elevation. Hence, after geostrophic adjustment air
pressure gradients and sea level gradients partially balance each other.
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THIRTEEN

Tidal forcing from the moon and sun

The purpose of this chapter is to describe the formulation of lunar and solar tidal forcing imple-
mented in MOM4. This chapter was written by Harper Simmons (hsimmons@iarc.uaf.edu) with
some additions and edits by Stephen.Griffies@noaa.gov.

13.1 Tidal consituents and tidal forcing

As formulated by Marchuk and Kagan| (1989), tidal forcing appears in the momentum equations as
a depth independent acceleration. Consequently, tide dynamics can be isolated in the vertically
integrated momentum budget. As shown in Section the equation for the vertically integrated
transport U in a Boussinesq version of MOM4p1 takes the form (equation (7.131))

Po (0t + f2N) Z(dz u)= G- (H+n)V (pa+ psur)- (13.1)

In this equation, G is the vertically integrated forcing arising from baroclinic effects, p; is the
pressure associated with undulations of the surface height, p, is the applied pressure from the
atmosphere and sea ice, H is the depth of the ocean, and 1 is the surface height deviation from a
resting state with z = 0. Our goal is to modify this equation to account for gravitational forcing that
give rise to ocean tides.

Tidal forcing arising from the eight primary constituents (M2, S2, N2, K2, K1, O1, P1, Q1) (see
Gilll (1982)) can be added to the forcing for U in MOM4p1. The formulation follows Marchuk and
Kagan (1989), by considering a tide generating potential (¢n.q) with corrections due to both the
earth tide (1 + k — k) and self-attraction and loading («). In this approach, the depth independent
pressure gradient acceleration is modified to the form

Po_l \% (Ps + Pa) - po_l V(ps + Pu) +gV [(1 —o)n—(1+k— h)neq] . (13.2)

The term n,, is known as the equilibrium tide, and it arises from the astronomically derived gravity
producing forces. It is modified by several factors. The Love numbers, k and k, named for the
physicist A.L. Love, account for the reduction of the ocean tide because of the deformation of the
solid earth by tidal forces. The Love numbers are frequency dependent, with 1 + k — h generally
close to 0.7 (Wahr (1998)).

225
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The term « in equation accounts for a modification of the ocean’s tidal response as a re-
sult of self-attraction and loading (SAL) (Hendershott (1972)). Self attraction is the modification of
the tidal potential as a result of the redistribution of the earth and ocean due to the equilibrium tidal
forcing. Loading refers to the depression of the earth’s crust by the mounding of tides. Calculation
of the SAL term requires an extremely cumbersome integration over the earth surface, rendering
equation an integro-differential equation (Ray| (1998)).

Instead of solving the integro-differential form of equation (13.2), MOM4 uses the scalar ap-
proximation to SAL. We feel this is justified since our purpose in introducing tidal forcing is to study
the effects of tides on the general circulation, not the details of the tides themselves. The conjec-
ture is that precise calculation of the SAL term is not needed for to understand tidal effects on the
general circulation. For the scalar approximation, « is usually set between 0.940 — 0.953. MOM4
uses o = 0.948. Limitations of the scalar approximation to SAL are discussed by [Ray| (1998), who
concluded that the scalar approximation introduces phase errors of up to 30° and amplitude errors
of 10% into a global scale tidal simulation.

13.2 Formulation in nonBoussinesq models

The horizontal acceleration from pressure gradients is given by the two terms (see Section|/.7.4]
where we drop here the tilde notation used in that section)

P~ (V= P)without tidal forsing = P~ Vs p + Vs @. (13.3)

In this equation, p is the hydrostatic pressure at a grid point, @ is the geopotential at this point, and
s is the generalized vertical coordinate. The p~! factor is set to p, ! for Boussinesq models, but
remains nontrivial for nonBoussinesq, pressure-based vertical coordinates in MOM4p1. As noted
in Section gravitational forces giving rise to ocean tides can be incorporated into MOM4p1
by adding a depth independent acceleration throughout the water column. Following the approach
used for the Boussinesq case, we add to the nonBoussinesq pressure gradient a modification to
the geopotential due to tidal acceleration

P_l (V. P)with tidal forcing — p_l Vsp+ Vs @ +gV [(1 —a)n—(1+k— h)neq] ’ (13.4)

where the tidal term is taken from equation (13.2). Inserting this modified acceleration into the
vertically integrated momentum equation (7.139) yields

@i+ f20) E(dzpu) = G = F2EEV (po-+ p, @+ 8 pohice) (13.5)
0
where
hige = (1 —a)n — (1 +k — h)neq (13.6)
is shorthand for the tidal term, py, is the pressure at the ocean bottom, and ®, = —g H is the

geopotential at the bottom.

13.3 Implementation in MOM4

The equilibrium tide is written for the n'" diurnal tidal constituent as
Negn = Hysin2¢ cos(w,t + A), (13.7)
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constit name origin w(l/day) 14+k—h a(m)
1 Kq Luni-solar declinational 0.7292117 0.736 0.141565
2 01  Principal lunar declinational  0.6759774 0.695 0.100661
3 P Principal solar declinational ~ 0.7252295 0.706 0.046848
4 Q1 Larger lunar elliptic 0.6495854 0.695 0.019273
5 M, Principal lunar 1.405189 0.693 0.242334
6 Sy Principal solar 1.454441 0.693 0.112743
7 N;  Largerl lunar elliptic 1.378797 0.693 0.046397
8 K> Luni-solar declinational 1.458423 0.693 0.030684

Table 13.1: Frequencies, Love numbers, and amplitude functions for the eight principle con-
stituents of tidal forcing available in MOM4.

and for the n'" semi-diurnal constituent as

Negn = Hu cos® ¢ cos(wnut + 2A), (13.8)

where ¢ is latitude and A is longitude. Recognizing that equations (13.7) and (13.8) require the
evaluation of trigopnometric functions at every grid point and every time-step, tidal forcing is intro-
duced into MOM4 in the following mathematically equivalent form. Making use of the identity

cos(A + B) = cos(A) cos(B) —sin(A) sin(B), (13.9)
we can write the eight tidal forcing constituents as

Meq = Zo_y [ﬁ” a, cos® ¢ [cos(wy, t)cos2A —sin(w, t)sin2A] + (13.10)

Br+adytasin2¢ [cos(wytat) cos2A — sin(wy1at) sin2A] |,

which allows all the trigonometric functions of ¢ and A to be precomputed. Note that we have
written 3, = 1+ k, — h,. The frequencies (w;), amplitudes (a,) and Love numbers are listed in
Table[3.1]
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PART Il
Subgrid scale parameterizations

The purpose of this part of the manual is to describe certain of the subgrid scale (SGS) pa-
rameterizations used in MOM4p1. This discussion is by no means complete.
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CHAPTER
FOURTEEN

Mixing related to tidal energy dissipation

The purpose of this chapter is to summarize the MOM4 implementation of the dianeutral parame-
terization of Simmons et al.| (2004) and|Lee et al. (2006). Both schemes are available in MOM4p1.
These schemes provide a physically based replacement for the vertical tracer diffusivity of Bryan
and Lewis (1979).

Throughout this chapter, we assume that the mixing of interest occurs with a unit Prandtl
numberﬂ, thus enhancing both the dianeutral tracer diffusivity and momentum viscosity by equal
amounts. This issue was not discussed in the work of |Simmons et al.| (2004).

Hyun-Chul Lee and Harper Simmons provided valuable comments and suggestions for this
chapter.

14.1 Formulation

Dianeutral mixing of tracer and momentum arises when energy dissipates at the small scales.
There are two sources of energy dissipation considered here:

e breaking internal gravity waves, where the gravity wave energy source is from barotropic tidal
energy scattered into internal tidal energy occuring when tides interact with rough bottom
topography,

e frictional bottom drag as tides encounter continental shelves (whose depths are generally
500m or less).

To resolve both of these dissipation processes explicitly in a numerical model requires grid reso-
lution no coarser than meters in the vertical (throughout the water column), and 1-10 kilometers
in the horizontal. This very fine resolution is not generally accessible to global climate models, in
which case it is necessary to consider a parameterization.

Bottom drag is typically parameterized as

Dpottom drag = Cp u lul, (14.1)

!The Prandlt number is the ratio of viscosity to diffusivity.
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where Cp is a dimensionless drag coefficient taken as 2.4 x 1073 by |Lee et al. (2006). As dis-
cussed by |[Lee et al.| (2006), the velocity dominating this drag is associated with energy input to
the ocean via the barotropic tides as they encounter continental shelves and other shallow ocean
regions. The energy dissipation (W m~—2) associated with this bottom drag is given by

Epottom drag = Cp po <u2> |u| (14.2)

where the angle bracket symbolizes a time or ensemble average. This energy dissipation rep-
resents energy taken out of the barotropic tide and into small scale dissipation within the ocean
bottom boundary layer. We assume that the dissipated energy due to bottom drag contributes to
enhanced dianeutral mixing locally, with a form for the dianeutral diffusivity described in Section
[14.3]

A wave drag associated with breaking internal gravity waves is written by Jayne and St.Laurent
(2001) as

Dwave drag = (1/2) Ny« h*u, (14.3)

where Nj, is the buoyancy frequency at the ocean bottom, and (k, #) are wavenumber and am-
plitude scales for the topography. The product « 4% has dimensions of length and thus defines a
roughness length

Lrough = K h* (14.4)

to be specified according to statistics of the observed ocean bottom topography.
The energy dissipation (W m~2) associated with breaking internal gravity waves is given by

Ewave drag = (Po/2) Ny Lrough <u2>. (14.5)

In the Jayne and St.Laurent|(2001) paper, they emphasize that «, which sets the roughness length
through Lygygh = k h?, is used as a tuning parameter, with the tide model tuned to give sea level
values agreeing with observations. Then, the energy dissipation can be diagnosed from the tide
model. As with the bottom drag, the wave drag energy dissipation represents energy taken out of
the barotropic tides, with the energy here transferred into the baroclinic tides. Some of the energy
transferred into the baroclinic tides dissipates locally due to local wave breaking, and this then
leads to enhanced dianeutral mixing locally. The remaining baroclinic energy propogates away
(i.e., it is nonlocal). The ratio of local to nonlocal energy is not well known, and is the focus of
research.

14.2 Mixing from internal wave breaking

When mechanical energy is dissipated, it is associated with dianeutral mixing. The relation be-
tween energy dissipation and mixing is not known precisely, though some empirical formulations
have proven useful.
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14.2.1 Simmons etal (2004) scheme

For energy dissipation due to breaking internal gravity waves, we follow |Simmons et al.[ (2004),
who compute a tracer diffusivityf]

G T Evaves (X, ) F(2)

e ) (14.6)

Kwaves = Ko +

where E,..aqq IS the wave energy flux from scattered barotropic to baroclinic waves, given by
equation (14.5). Vertical stratification
pPN* = —gp. (14.7)

acts to suppress vertical mixing, hence its presence in the denominator of equation (14.6). The
energy flux in equation (14.5) is evaluated as follows.

e N, is computed from the model’s evolving buoyancy frequency at the top face of the bottom-
most tracer cell (the frequency at the bottom face of the bottom-most cell is zero, by defini-
tion).

e The effective roughness length L. = kh? requires an algorithm to compute & from the
best of the observed bottom topography, and tide model to tune . However, in practice what
can be done is to take h given some variance of topography within a grid cell, and then tune
Eave arag 10 be roughly 1TW in ocean deeper than 1000m, with « as the tuning paramter.

The dimensionless parameter I" in equation (14.6) measures the efficiency that wave energy
dissipation translates into dianeutral mixing. It is often chosen as

r=0.2 (14.8)
based on Osborn (1980). However, in regions of very weak stratification, the mixing efficiency

tends to zero according to
N2

where

o (27t 271/365.24
o 86400s
o ) (14.10)
= (43082) S
=7.2921 x 10 °s 1.

is the angular rotation rate of the earth about its axis and about the sun. This modified mixing
efficiency reduces the regions where spuriously large values of diffusivity may occur, especially
next to the bottom, where low values of N2 may appear. There is little physical reason to believe
the huge diffusivities diagnosed from regions with N2 < Q2.

2 As stated at the start of this chapter, we assume a unit Prandtl number. This assumption means the vertical viscosity
is enhanced along with the diffusivity when considering internal wave breaking. [Simmons et al.| (2004) do not discuss
vertical viscosity in their study.
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Another dimensionless parameter, g, is used to measure the amount of energy dissipated
locally, and thus contributes to local dianeutral mixing. Simmons et al. (2004) chose

g=1/3 (14.11)

based on the work of |St.Laurent et al.| (2002). The remaining 2/3 of the energy propagates away.
This nonlocal dissipation of internal tidal energy, as well as the dissipation of internal energy from
other sources (e.g., wind energy), are accounted for in an ad hoc manner via the background
diffusivity ko (and viscosity). A value within the range

ko= (0.1 -0.2) x 107*m?s™! (14.12)

is recommended based on the measurements of Ledwell et al.| (1993). Note that this value does
not account for mixing in a planetary boundary layer, such as that discussed by |Large et al. (1994).

Setting ¢ = 1/3 globally is strictly incorrect. The actual value is related to the modal content
of the excited internal tide, which is related to the roughness spectrum of topography. The redder
the mode/roughness spectrum, the lower 4. For example, Hawaii has been modelled as a knife-
edge by (St.Laurent et al.| [2003). This topography excites predominantly low modes, and these
modes are stable, propogate quickly, and have long interaction times. That is, they propagate to
the far field. Klymak et al.| (2005) argue that g = 0.1 for Hawaii from the Hawaiian Ocean Mixing
Experiment (HOME) data. For the mid-Atlantic ridge, the use of 4 = 1/3, as in|Simmons et al.
(2004), may be more suitable.

The bottom intensified vertical profile, or deposition function, F(z) is taken as

ef(th)/C
Z(1—eDF%)
/e (14.13)
CC(ePle—1)
In this expression,
D=H-+n (14.14)

is the time dependent thickness of water between the free surface at z = n and the ocean bottom
atz=—H, and
h=—z+n (14.15)

is the time dependent distance from the free surface to a point within the water columnﬁ The cho-
sen form of the deposition function is motivated by the microstructure measurements of |St.Laurent
et al.[| (2001) in the abyssal Brazil Basin, and the continental slope measurements of [Moum et al.
(2002). This profile respects the observation that mixing from breaking internal gravity waves,
generated by scattered barotropic tidal energy, is exponentially trapped within a distance ¢ from
the bottom. An ad hoc decay scale of

¢ =500m (14.16)

is suggested by Simmons et al. (2004) for use with internal gravity wave breaking in the abyssal
ocean.

3We emphasize that with a free surface, D and & are generally time dependent. Furthermore, with general vertical
coordinates, h is time dependent for all grid cells.
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14.2.2 Some considerations for testing the implementation

We present some comments and details regarding the implementation and testing of the|[Simmons
et al.[|(2004) scheme.

14.2.2.1 Regularization of the diffusivity

The diffusivities resulting from this parameterization can reach levels upwards of the maximum
around 20 x 10~*m?s~! seen in the [Polzin et al. (1997) results. Due to numerical resolution
issues, the scheme can in practice produce values larger as well. We need to consider the physical
relevance of these large values. The following lists some options that the modeller may wish to
exercise.

e We may simply choose to limit the diffusivity to be no larger than a maximum value, defaulted
to 50 x 10~*m?s~! in MOM4p1.

e Based on observations, the mechanical energy input from wave drag (equation (14.5)) should
not exceed roughly 0.1 Wm~2 at a grid point (Bob Hallberg, personal communication 2008).
Depending on details of the bottom roughness and tide velocity amplitude, a typical model
implementation may easily exceed this bound. Hence, it may be necessary to cap the me-
chanical energy input to be no larger than a set bound.

e Use of the stratification dependent mixing efficiency (14.9) provides a physically based
means to regularize the regions where N? can get extremely small.

14.2.2.2 Use of the scheme for all depths

Simmons et al. (2004) do not apply their scheme in waters with ocean bottom shallower than
1000m, whereas ? applies the scheme for all depths. MOM4 maintains a namelist that allows for
setting a cutoff depth. For the continental shelves, the scheme of Lee et al. (2006) described in
Section[14.3/dominates. Hence, in principle, there is nothing wrong with using the [Simmons et al.
(2004) scheme all the way to shallow waters. So one may wish to naively use g4 = 1/3 without
a 1000m depth cutoff. Likewise, ¢ = 500m globally may be a reasonable choice. The structure
function will do the right thing and integrate to unity, whether or not the ocean depth H is greater
or less than (.

14.2.2.3 Energetic balances

One of the main reasons to formulate diffusivites based on energy input is that energy is ex-
changed in a conservative manner. This conservation then leads to self-consistency tests for the
model implementation. In particular, the work done against stratification by dianeutral diffusion is
given by

P = / AV Kgianeura © N2 (14.17)
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Use of equation (14.6) for the diffusivity with a constant mixing efficiency I' = 0.2 yields

P = /dV (Kwavedrag - KO) pNZ

(14.18)

=qT / dx dy Ewave arag (X, Y)
assuming g I" constant. Note that to reach this result, we set [ F(z) dz = 1, which is a constraint
that should be maintained by the model implementation. Equation says that the energy
deposited in the ocean interior that works against stratification originates from that scattered from
the ocean bottom. For the general case of 4" spatially dependent, we have the balance

P = /dv (Kwavedrag - KO) pNz

(14.19)

= /dx dydzqT Esaedag(X, y) F(2),

which again is a statement of energy conservation between wave dissipation and mixing of density.

Although equation is a trivial identity following from the definition of the closure, it is

not trivial to maintain in the ocean model. The main reason is that we work with diffusivities when

integrating the equations of an ocean model, and these diffusivities are often subjected to basic
numerical consistency criteria, such as the following.

o We may wish to have the diffusivities monotonically decay upwards in the column. Given the
N~2 dependence, this behaviour is not necessarily the case. Without a monotonic constraint,
the simulation can be subject to spurious instabilities in which intermediate depths destratify,
then producing larger diffusivities, and further reducing the stratification. ? discovered this
behaviour in his simulations.

¢ The diffusivities should be bounded by a reasonable number, such as 50 — 100 cm? sec™ .

Imposing constraints such as these on the diffusivity corrupts the identity (14.18). In general, they
remove energy from the interior, so that in practice [ dV (Kywedrag — K0) @ N? < [ dxdy dz g T Epave arag (X, ¥)-

14.2.2.4 Further comments
Here are some further points to consider when setting some of the namelists for this scheme.

e One means to ensure that the diffusivities are within a reasonable bound, without capping
them after their computation, is to artificially restrict the stratification used in the calculation
to be no less than a certain number. |Simmons et al. (2004) chose the floor value N> >
10~8s72. There is a great deal of sensitivity to the floor value used. GFDL practice is to
keep the floor value quite low so that N2, < Q2.

e If the maximum diffusivity realized by the scheme is allowed to be very large, say much
greater than as 1000 cm? sec™!, then the near bottom stratification can become very small.
In this case, E,aeaag Can dip below the canonical 1TW value. This process resembles a
negative feedback in some manner, though it has not been explored extensively.
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14.3 Dianeutral diffusivities from bottom drag

The|Lee et al.| (2006) scheme does not consider energetic arguments for determining the diffusivity
associated with barotropic tides dissipated by the bottom boundary layer. Instead, they follow the
ideas of Munk and Anderson (1948), whereby a dianeutral diffusivity is given by

Karag = Kmax (1 + 0 Ri)7F, (14.20)

where the dimensionless parameters o and p have the default values

c=3 (14.21)
p=1/4. (14.22)
The Richardson number is given by
NZ
Ri=——. 14.2
i 9.l (14.23)

Small Richardson numbers give larger vertical diffusivities, with the maximum diffusivity set by
kmax- FOllowing |Lee et al.| (2006), we set the default for the maximum diffusivity arising from
bottom drag dissipation as

Kmax = 5 x 1073 m?s 1. (14.24)

Since we do not generally resolve the bottom boundary layer in global models, we must approxi-
mate the vertical shear to compute the Richardson number, and here we use the form

2 A 2
200, ul? = (D_h ) (14.25)

with the scaled tidal speed A given by
A = Upge V/Cd/Konarman- (14.26)
Here, Cd is the bottom drag coefficient, taken as 2.4 x 102 by|Lee et al.| (2006),
Kyon karman = 0.41 (14.27)

is the von Karman constant, and U, is the tidal speed taken from a barotropic tidal model. These
speeds are largest in the shallow regions.
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CHAPTER
FIFTEEN

Calculation of buoyancy forcing

This chapter documents the conventions used for computing the buoyancy forcing. This forcing is
fundamental to some of the MOM4p1 mixed layer schemes, such as the KPP scheme of Large
et al. (1994) and the scheme of (Chen et al.| (1994). For the KPP scheme, Martin Schmidt noted
that the MOM4.0 code computed the contribution from fresh water with an incorrect sign. Hence,
adding fresh water reduced the buoyancy forcing in the KPP scheme, thus altering the mixing
coefficients produced by the scheme. The effects of this bug are enhanced in the high latitudes,
where fresh water has more of an effect on buoyancy than at lower latitudes.

15.1 Fundamentals

Buoyancy is defined here as
B=—-gp, (15.1)

where g is the gravitational acceleration and p is the in situ density. Buoyancy as defined is minus
the weight per volume of a fluid parcel The minus sign is motivated by noting that as B increases,
a water parcel tends to rise to a higher level in the water column; that is, it is more buoyant.

Forcing at the ocean surface that affects the density of a parcel thus affects the buoyancy. For
example, surface heating increases the buoyancy since it reduces density, as does the introduction
of fresh water. In contrast, cooling increases density and so reduces buoyancy, as does evapo-
ration. If the buoyancy forcing succeeds in making a surface water parcel denser than deeper
parcels, vertical convective motions will occur. Such processes constitute a critical aspect of the
World Ocean’s thermohaline circulation.

As MOM4p1 is a hydrostatic model, the vertical motions associated with convection are filtered
out from the resolved dynamical equations. These motions must therefore be parameterized.
There are two general manners for parameterizing convection. First, there are convective ad-
justment schemes, whereby adiabatic comparisons of vertically adjacent water parcels determine
whether to perform some form of adjustment. This adjustment amounts to a form of mixing be-
tween the two parcels, with full mixing one end of the spectrum, and swapping of water parcels the
other end. The MOM4p1 code defaults its convective adjustment scheme to that from |Rahmstorf
(1993), with the older scheme of |Cox| (1984) an option retained for legacy purposes. The second

n most treatments, buoyancy is defined as —g p/p,, which gives buoyancy the units of acceleration.
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parameterization of vertical convection is handled via a mixed layer scheme, such as|Pacanowski
and Philander| (1981), (Chen et al.| (1994), and [Large et al.| (1994). Here, mixing coefficients are
enhanced in regions of negative buoyancy forcing. Additionally, the KPP scheme establishes a
level of nonlocal penetrative mixing that is a function of the buoyancy forcing.

In order to compute the level of mixing from KPP or Chen due to buoyancy forcing, it is neces-
sary to be precise about what is the buoyancy forcing. For this purpose, focus on the evolution of
temperature and salinity in the top model grid cell, with effects from surface boundary conditions
of focus. The tracer and mass budget for a surface model grid cell was derived in Section|[3.6.7], in
which case we have (again, dropping all terms except those from surface buoyancy forcing)

3t (pdz6) = Qu 6y — Qo/Cp (15.2)
¢ (pdz S) = Quw Sw — Qs (15.3)
3 (pdz) = Qu. (15.4)

In these equations,

e 0 is the potential temperature;

S is the salinity;

Qu is the mass flux (kgm~2sec™!) of water crossing the ocean surface, with Q,, > 0 for
water entering the ocean (as when precipitation exceeds evaporation);

pdz is the mass per horizontal area of seawater in the grid cell;

0, is the temperature of water crossing the ocean surface;

Sw is the salinity of water crossing the ocean surface;

Qs is the turbulent flux of salt (kgm~2sec™!) that leaves the ocean through the ocean sur-
face;

e Qg is the turbulent and radiative heat flux (W m~—2) leaving the ocean (Qy > 0 for heat leaving
the ocean surface as when cooling);

e C, is the seawater heat capacity at constant pressure (J kg~t°Cc™).

e We note that in some formulations, the products Q,, 6, and Q,, S, are specified from com-
ponent models, such as sea ice and land models. For example, if the heat flux with respect
to 0°C (in units of Watts per square metre) of liquid river runoff 79 is given to the ocean from
the land model, then to compute the buoyancy forcing we make use of the identity

H@

QU) gw = %/ (15-5)
p

with C“"™" the heat capacity of the water coming in from the river runoff. Likewise, if the
heat associated with frozen runoff (e.g., calving land ice) is provided by the land model, then

we have
Hseolid runoff
Qw Oy = (Csolid runoff / (15'6)
p
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with C'@rret the heat capacity of the solid runoff. These two heat capacities are typically
provided by the component model (i.e., the land model) used to compute the runoff fields.
Similar considerations hold for transfer of water betwen sea ice models and the ocean.

The turbulent mass flux of salt Qs (kgm~2sec™!) is positive for salt leaving the ocean surface.
There is transport of salt across the ocean surface when sea ice forms and melts, due to the
nonzero salt content in sea ice. Otherwise, the surface salt flux is generally zero for the large scale
ocean. For ocean models, however, it can be nonzero when formulating the surface boundary in
terms of virtual salt fluxes rather than real water fluxes (Huang, [1993; Griffies et al., [2001). This
formulation is not recommended, as it is distinctly unphysical and unnatural when using an explicit
free surface or bottom pressure solver as in MOM4.

The heat flux Qg (Wm—2) is positive for heat leaving the ocean. This flux is comprised of the
following contributions (see page 34 of |Gill, [1982)

Qo = Qlong + LE + Qsens — Qshorts (15.7)

where Qquor¢ is the shortwave radiative heat entering the ocean, Q. is the longwave radiation
leaving the ocean in the form of the o T* Stefan-Boltzmann Law, L is the latent heat of vaporization
of water

L=25x10°Jkg! (15.8)

with E the mass flux (kg m~2 sec™!) of water leaving the ocean due to evaporation, and Qs is the
sensible heat transfer proportional to the difference between atmosphere and ocean temperatures.

When considering time changes in buoyancy (15.1), we are concerned with the constant pres-
sure changes, since buoyancy is used for comparing two water parcels to check for vertical stability.
Hence, the time tendency of buoyancy B = —g p is given by

—g 'Bi=0pg0;:+psS, (15.9)
where
Po = % (15.10)
’ 20 Sp
pg= % (15.11)
! aS 9,p

are the partial derivatives of density with respect to potential temperature and salinity, respectively,
each with pressure held constant. We wish to form an evolution equation for buoyancy at the ocean
surface due to the effects of surface forcing. For this purpose, multiply the temperature equation

(15.2) by pg and add to the surface salinity equation (15.3) multiplied by p s
po(pdz0);+ps(pdzS);=Qu(@pe+Sps)—g 'pdzB, (15.12)

where we used the mass budget (15.4) and introduced the buoyancy tendency according to equa-
tion (15.9). We thus have the expression for the time tendency of the surface ocean buoyancy

g 'pdzB;=Quw(0pe+Sps)—pe(pdz0)—ps(pdzS), (15.13)

=Quw(@po+5Sp;s) —pe(Quwbuw—Qo/Cp) — 0,5 (Qu Sw — Qs) (15.14)
=00Qw(0—00) +p,5Qu(S—Sw)+peQo/Cp+ 0, Qs, (15.15)
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where we used the surface temperature and salt budgets (15.2) and (15.3). Again, the temperature
and salinity appearing on the right hand side are those of the surface ocean cell. We now introduce
the thermal expansion and saline contraction coefficients

a=— <alnp> (15.16)
90 ),
_ (9dlnp
B = <as >9’p (15.17)

with each of these coefficients positive for most applicable ranges of seawater (see Table A3.1 of
Gill, [1982), with the exception of very fresh and cold waters, where « can become negative. The
buoyancy equation thus takes the form

dzB; = —ga [Quw (0 —6y) + Qo/Cp] + 8B [Qu (S — Sw) + Qs]. (15.18)
For future comparison to the Large et al.| (1994) formulation in their Appendix A, we write
dzB; = By (15.19)

where By is the buoyancy forcing of Large et al.| (1994) with units of kgm~!s~3.

We are now in a position to provide physical interpretations of the buoyancy tendency in equa-
tion (15.18). First, as water is added to the ocean (Q,, > 0) with temperature less than that of the
ocean surface temperature (6 — 6,, > 0), the buoyancy is decreased due to the introduction of the
cooler fresh water. In most applications, the water crossing the ocean surface is assumed to be
at the ocean surface temperature, in which case ¢« Q, (6 — 6,) = 0 and so does not contribute
to buoyancy changes. Second, as water is added to the ocean with salinity less than that of the
ocean surface salinity (S — S, > 0), the buoyancy is increased due to the introduction of fresher
water. In most applications, the water crossing the ocean surface is assumed to have zero salinity,
in which case g3 Q. S represents a positive buoyancy forcing when fresh water is added to the
ocean. Third, as heat leaves the ocean (Qy > 0), buoyancy is decreased due to the cooling,
whereas when salt leaves the ocean (Qg > 0), buoyancy is increased due to the freshening.

Equation provides the mathematical basis for determining how buoyancy is affected in
the ocean surface due to water and heat transfers between the ocean and other components of
the climate system. The four processes identified in this equation act on the ocean surface, with
some regions feeling the effects from fresh water more than heat, such as in the high latitudes
where « is small and Arctic rivers and sea ice forcing are nontrivial sources of buoyancy forcing,
whereas other regions are dominated by heat fluxes. The calculation of these buoyancy forces
is an important part of the mixing parameterization of KPP and Chen, as the buoyancy forcing is
used in these schemes to determine details of the mixing coefficients and nonlocal transfer.

15.2 The formulation as in Large et al. (1994)

To help understand the KPP code in MOM4p1, it is useful to revisit the formulation of Appendix
AinLarge et al. (1994). The notation is quite different from the above formulation, so it is useful
to redefine symbols in this section for clarity. Large et al.[(1994) introduce the turbulent buoyancy
flux at the ocean surface (equation (A3b))

—wby, =gpowO+pswS, (15.20)
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where w is positive upwards, and —w b, > 0 implies an increase in buoyancy forcing on the ocean

surface. Now introduce
al = — % (15.21)
20 Sp

L — ap> 15.22
B (as y (15.22)

as shorthand, with both o and B positive numbers (Table A3.1 in (Gill, [1982), and write the
turbulent temperature and salinity fluxes at the ocean surface as (equations (A2c) and (A2d))

— (&

— <p(0) Cp> (15.23)

25 QuS(0)  F(5(0) - Sz)’ (15.24)
Pw Pr

with

e Q; (Wm™2) the turbulent heat flux with Q; > 0 heating the ocean (radiative heating is handled
separately);

Qw (kgm~2s~1) the mass flux of water, with Q,, > 0 for water entering the ocean;

F; (kgm~—2s~1) the mass flux of water due to melting sea ice, with F; > 0 for sea ice melt
water entering the ocean;

S(0) the salinity of the ocean surface grid cell with density p(0);

S; the salinity of the sea ice with density p;;
e o, the density of fresh water.

Inserting these fluxes into the buoyancy flux leads to

B QwS(0) | B"F(S(0)—Si)
.0(0) Cp * Pw * PI ’

—:gocLQt

—whb,

(15.25)

Note that Large et al.| (1994) assume the temperature of water passed across the ocean surface
is the same as the sea surface temperature, thus eliminating the Q,, (6 — 8,,) term appearing in
the buoyancy equation (15.18). They also assume the salinity of water in the evaporation and
precipitation to be zero, yet allow for a nonzero salinity of the sea ice.

15.3 Buoyancy forcing for KPP in MOM

In the KPP scheme of MOM, we compute an array Bo defined by

Bo = g ol wsfc(temp) — g B wsfc(salt) + g frazil/(p, Cp At), (15.26)
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with p, the constant Boussinesq density, At the model time step, frazil the heating of seawater
(in Joules) due to frazil formation, and wsfc kinematic fluxes given by

wsfc(temp) = stf(temp) — pme (T(k = 1) — Tpme) — river (T(k = 1) — Triver) (15.27)
wsfc(salt) = stf(salt) —pme (S(k = 1) — Spme) — river (S(k = 1) — Sriver). (15.28)

In MOM, the flux array stf is positive for tracer entering the ocean. The array Bo thus corresponds
to the buoyancy forcing B defined by equation (15.19). It includes the radiative and turbulent
heating, as well as the forcing from water and salt fluxes.

154 Bugin MOM4.0

Martin Schmidt noted that the signs in front of the water terms in equations (15.27) and (15.28) are
wrong in MOM4.0 (they were mistakenly set to plus rather than minus). The MOM4p1 code has
corrected the error. Users of the MOM4.0 code may wish to test the sensitivity of their simulations,
especially if their domain includes high latitudes with sea ice.




CHAPTER
SIXTEEN

Neutral physics and boundary layers

As noted by Griffies (2004) and Ferrari et al. (2008), the treatment of neutral physics in boundary
regions is traditionally ad hoc and largely determined by numerical considerations. |Griffies| (2004)
summarizes the methods used in MOM4p0, which are perhaps the most physically based of the
methods employed in the IPCC AR4 ocean climate models (e.g., (Griffies et al.| (2005)). Nonethe-
less, ? note that there remain arbitrary choices within the MOM4p0 methods that have nontrivial
influences on the climate in a coupled climate model. Hence, there is motivation to seek a method
that is more physically based and involves less ad hoc parameter inputs. The methods of |[Ferrari
et al. (2008) are promising from this perspective, as are those of 2.

16.1 Notes on implementation as of June 2008

The bulk of these notes were written in 2005, when the |Ferrari et al.| (2008) paper was a preprint.
When released in December 2007, the module that resulted was called

mom4 /ocean param/mixing/ocean nphysics mom4pl mod,

to distinguish the code from the standard neutral physics in MOM4.0. The original MOM4p1 im-
plementation of [Ferrari et al.| (2008) was buggy, and resulted in unphysical simulation features.
Because the bulk of the concerns raised by [Ferrari et al.| (2008) had already been addressed
with the ocean nphysics_mom4p®_mod module (now called ocean nphysicsA mod), there was little
motivation to remedy the bugs in ocean nphysics_mom4p1l mod.

During development of ocean nphysicsC mod in June 2008, we revisited the problems with the
MOM4p1 implementation of [Ferrari et al. (2008) At this point, it was decided that the generality
provided by the transition region (see Section [16.2| and Figure was not critical, nor was it
worth the added code complexity. Hence, the ocean_nphysicsB.mod module represents a stripped-
down version of the Ferrari et al.| (2008) scheme, in which (1) there is no quadratic transition region,
and (2) only the surface boundary layer is considered. As a result, ocean nphysicsB.mod is very
similar to ocean_nphysicsA_mod.

IThe ocean nphysicsCmod module implements the methods of 2. It is a research module whose general use is
strongly discouraged.

245
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Given the simplifications present in ocean nphysicsB mod, we still feel it useful to present a
discussion of the [Ferrari et al. (2008) scheme as it was originally intended to be implemented in
MOM4p1. Such remains the purpose of this chapter.

16.2 Regions affecting neutral physics

Ferrari et al. (2008) identify five distinct regions in the vertical where treatment of the neutral
physics parameterization is distinct. Figure illustrates the three regions in the upper ocean,
with the reflection of this treatment relevant for the bottom. The nphysicB treatment of neutral
physics considers all of these regions. The purpose of this section is to describe these regions
and how they are computed in MOM4p1.

TRANSITION
LAYER

Figure 16.1: Surface region of the ocean as discussed by [Ferrari et al.| (2008) (this figure is taken
from their preprint). Isopycnals are drawn here, along with directions whereby tracer transport
dominates.

We will make much use in the following of the vertical distance from the ocean free surface to
a depth z < 0:

h = thickness of water between free surface and depth z < 0 (16.1)
= —z+ n, )

where z = n is the time dependent free surface height. In particular, the MOM4p1 code denotes
the thickness between the free surface and the bottom of a tracer cell as depth_zwt, and the
distance to the tracer cell point as depth_zt. These arrays are functions of the horizontal grid cell
labelled by i, j and the vertical cell labelled by k, where k increases downward. These thickness
arrays are evaluated for all vertical coordinate choices in MOM4p1 ]

2 As MOM4p1 employes a suite of possible vertical coordinates, it is important that the code carry arrays that are zero
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It is convenient in the following to consider the streamfunction’s vertical dependence as a
dependence on h rather than z. Note, however, that it is important to keep in mind the sign change
in the vertical derivative operator

d; = —dy,. (16.2)

16.2.1 Upper turbulent boundary layer

The near ocean surface is dominated by three dimensional nonhydrostatic turbulent processes.
The distance from the free ocean surface to the base of the turbulent zone is written

heuri = surface turbulent layer thickness, (16.3)
and the thickness region
0 < h < hgy surface turbulent boundary layer (16.4)

defines the surface turbulent boundary layer (see Figure[16.2). The boundary layer thickness g
is determined in a hydrostatic model by a boundary layer parameterization scheme such as KPP
(Large et al.,[1994). The boundary layer scheme parameterizes vertical mixing processes. When
the mixing is strong, such as occurs with intense momentum forcing and/or buoyancy loss, the
upper ocean destabilizes and results in vertical isopycnals as shown in Figure[16.1] The turbulent
boundary layer thickness can be thin (order tens of metres) during daytime warming in the tropics
which stabilizes the ocean, or thick (order a few hundred to few thousand metres) for late winter
deep convection in regions of large buoyancy loss such as the Labrador Sea and Weddell Sea
(Marshall and Schott, 1999).

Mesoscale eddies that penetrate to the ocean surface feel the geometric effect from the sur-
face boundary. [Treguier et al.| (1997)) discussed this point in the context of ocean mesoscale eddy
parameterizations, and |[Held and Schneider (1999) described similar issues for synoptic atmo-
spheric variability. Following suggestions in these papers, [Ferrari et al. (2008) propose that the
lateral diffusive effects from the mesoscale eddies should be parameterized by downgradient hor-
izontal tracer diffusion within the surface turbulent boundary layer, rather than neutral diffusion
considered in the ocean interior. Indeed, neutral diffusion in a region of vertical isopycnals will
compete with, and perhaps dominate over, the turbulent parameterizations from KPP or other di-
abatic schemes. Hence, it is not sensible to continue retaining neutral diffusion in the surface
boundary layer. In a similar manner, subgrid scale advective effects should be parameterized by
an eddy induced velocity that has zero vertical shear within the surface boundary layer. More
vertical structure for the eddy induced velocity is unwarranted in a region of weak or zero verti-
cal stratification. Equivalently, the quasi-Stokes streamfunction (McDougall and Mclntoshl, 2001};
Griffies, 2004) used to compute the eddy induced velocity is linearly tapered to zero as the ocean
surface is approached. Finally, the diffusivity used to parameterize lateral diffusive and advective
processes is taken from the diffusivity computed in the ocean interior.

16.2.2 Transition between surface boundary layer and interior

Beneath the surface turbulent layer lies a transition region of enhanced stratification. Notably, this
transition region is generally not represented in coarse resolution models, and it remains a topic of

at the ocean free surface, rather than at the rigid lid surface defined by z = 0, in order to measure the time dependent
thickness of the water column from the free surface to a grid cell.
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research with nonhydrostatic models to further explore the physics active in this region (R. Ferrari
2005 personal communication), and in particular how to parameterie the thickness of this layer.

Mesoscale eddies sporadically penetrate the transition region and interact with processes in
the turbulent surface layer. Tracer transport from mesoscale eddies is modified by these inter-
actions in manners that remain a topic of research. Even so, because of this modification, we
are motivated to alter the treatment of neutral physics in this region using some basic ideas from
Ferrari et al.| (2008), who were the first to emphasize the importance of the transition region for
mesoscale eddy parameterization schemes.

The thickness of the surface transition region is denoted by

Dsyt = surface transition layer thickness, (16.5)
and the transition region is defined for thickness ranges
heurt < h < hgyt + Dgyre SUrface transition region. (16.6)

Scaling arguments provided by |Large et al.| (1997), |Smith and Vallis| (2002), and |Griffies| (2004)
were used by [Ferrari et al.| (2008) to provide an approximation to the thickness Dg,+. We describe
these arguments now.

If the tracer cell labelled by integer k is beneath the surface turbulent layer, we compute the
absolute value of the neutral slope S; and multiply it by the Rossby radius Rysspy (details of how
MOM4p1 computes the Rossby radius are give in Section [16.7). As discussed by [Large et al.
(1997), |[Smith and Vallis (2002), and |Griffies| (2004), this product is representative of the vertical
excursion of a typical mesoscale eddy. The first ocean model depth, denoted by k = k(*), that is
just deeper than hgy s + Ryossby Si(+) defines the transition layer thickness Dgyf, SO that

Dgyrt = Rrossby Si(+) - (16.7)

Again, mesoscale eddies deeper than hgy¢ + Dgyt are thought, on average, to never reach the
surface turbulent layer, whereas eddies shallower typically do reach this layer and so their transport
effects are modified relative to the interior. In the subsequent discussion, the depth level k(*), and
the quasi-Stokes streamfunction at this depth, play important roles in determining the strength of
the neutral physics fluxes in the region shallower than hgyt + Dgyrs-

16.2.3 QOcean interior

Motivated from the above discussion, the ocean interior is defined for present purposes as regions
where mesoscale eddies do not reach into the surface turbulent layer or to the bottom turbulent
layer. That is, the ocean interior is defined for water column thicknesses satisfying

hsurt + Dsurt < h < Hpott — (hpott + Dpott) - (16.8)

In this expression, Hyy is the total water column thickness from the free surface at z = n to the
ocean bottom topography at z = —H
Hbott =n-+ H. (169)

The bottom transition layer and bottom turbulent boundary layer are discussed in Sections[16.2.4]
and[16.2.5] In the ocean interior, mesoscale eddy parameterizations used in MOM4p1 act without
boundary layer modification. We provide more discussion of these parameterizations in Sections
and
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16.2.4 Transition between the interior and bottom boundary layer

As eddies interact with the bottom boundary layer, their tracer transport effects are modified rela-
tive to their effects in the interior. We note that the local normal at the bottom grid cell in MOM4
is treated as normal to the generalized vertical coordinate. Hence, the treatment of the bottom
transition layer remains analogous kinematically to the surface.

The bottom transition thickness

Dyott = bottom transition layer thickness (16.10)
is used to define the bottom transition layer, whose thickness h satisfies
Hpott — (Moot + Doott) < It < Hpott — Mot (16.11)

where hyey is the bottom boundary layer thickness discussed in Section [16.2.5 We have two
choices in MOM4p1 for determining Dypo: (1) an algorithm analogous to that used to compute
Dsurt, (2) specify Dyott according to a constant namelist value, similar to how oy is presently set
in the absence of a prognostic bottom boundar layer scheme. Modification of the neutral physics
transport from the interior through the bottom transition layer is directly analogous to the surface
transition layer.

16.2.5 Bottom turbulent boundary layer

Topography orients tracer transport near the ocean bottom, and considerations analogous to the

ocean surface turbulent layer arise in this region. That is, lateral diffusive processes are oriented

according to the topography, and eddy-induced velocities have zero vertical shear in this region.
Thickness of the bottom turbulent layer,

hpott = bottom turbulent layer thickness, (16.12)

is sometimes specified via a namelist parameter often taken to be roughly 50m. Alternatively,
using the methods discussed in Chapter we can compute a space-time dependent bottom
boundary layer thickness. In general, this thickness is used to specify a bottom boundary layer
region where the column thickness satisfies

Hpott — hpott < h < Hpot- (16.13)

16.2.6 Comments on the treatment in MOM4p0

The treatment of neutral physics in MOM4p0 is detailed in |Griffies| (2004) and Griffies et al. (2005).
This treatment failed to consider the two transition regions described above. Instead, the depth

Dmom4p0 = max(hsurf, Dy, DZ) (16‘14)

is used to define a surface region over which the neutral diffusive fluxes are tapered to hori-
zontal downgradient fluxes, and the eddy induced velocity has zero vertical shear with strength
determined by that at the base of the boundary layer. Here, D, is defined just according to the
surface transition depth Dy, (equation (16.7))) used in nphysicsB. In contrast, D, is the depth
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below which the neutral slope becomes less than some specified maximum value Smax. That is,
D, is determined by the stratification whereas D; is determined by both the stratification and the
Rossby radius. There is no bottom boundary layer considered for the neutral physics scheme in
nphysicsA, though in practice neutral fluxes were reduced to downgradient horizontal diffusion
next to the bottom and sides, according to the suggestions from Gerdes et al.| (1991).

An unsatisfying element of the nphysicsA method is the introduction of the depth D, since this
depth is determined by an ad hoc maximum slope Smaxﬁ D, is generally larger or smaller than
D, depending on the arbitrary choice of the maximum slope. That is, when S, is small, then D,
tends to be smaller than D,. When S, is large, then D; tends to be larger than D5, in which case
the boundary layer depth approaches that found in the nphysicsB scheme, absent the transition
layer thickness. Sensitivity of a coupled climate model simulation to the value of the maximum
slope parameter is documented in 2.

Without the extra depth D, used to determine Dmomapo, Such as when S, is large enough, then
the nphysicsA method becomes similar to that used in nphysicsB. However, as discussed below,
the |Ferrari et al. (2008) transition region used in nphysicsB ensures that the eddy induced velocity
linearly interpolates from the boundary layer values to the interior values. As nphysicsA does
not consider this transition region, the eddy induced velocity does not possess this interpolation
behaviour, and instead exhibits a jump at the boundary layer base. This jump is non-physical and
can potentially cause unsatisfying numerical and physical effects in the simulation.

16.3 Quasi-Stokes streamfunction

As discussed in (Griffies| (1998), McDougall and Mclntosh| (2001), and |Griffies| (2004), the in-
troduction of a divergence-free eddy induced velocity v* is more conveniently formulated and
numerically implemented in terms of its vector streamfunction ¥, where

V=V AW (16.15)

McDougall and Mclntosh| (2001) motivate the name quasi-Stokes streamfunction for ¥. Following
the discussion in Section 9.2.2 of Griffies| (2004), we identify the skew tracer flux associated with
the quasi-Stokes streamfunction

F=-VCAV. (16.16)

In component form, using the summation convention, this flux can be written

Fm — _emnp C,n Yp

16.17

3Adclitionally, one of the slope tapering schemes proposed by Gerdes et al.| (1991) (a quadratic tapering scheme) or
Danabasoglu and McWilliams| (1995) (an exponential tapering scheme) is used to taper the neutral diffusive fluxes to
horizontal in the depths shallower than Dy ma4p0- Sensitivity of the simulation to the transition from neutral diffusion
to horizontal diffusion has generally been found to be far less than sensitivity to the treatment of the eddy induced
skew transport.
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Figure 16.2: Summary of the regions for treating the neutral physics parameterizations, according
to the notions described in |[Ferrari et al. (2008).

where the skew-symmetric tensor A™" represents a reorganization of the vector streamfunction

Ami’l — emnp 'Y‘p

0 W3 ¥ (16.18)
=| ¥ O Wy p
Y, -y 0

and €™ is the totally antisymmetric Levi-Civita tensor. It is sufficient to work with the vertical

gauge described in Section 9.2.2 of Griffies| (2004), whereby only the horizontal components of W
are non-zero

Yy = 0. (16.19)

In the remainder of this section, we detail the form that the quasi-Stokes streamfunction takes

within the regions identified in Section[16.2] This discussion follows Ferrari et al.|(2008). In Section

16.4], we specialize the results to the quasi-Stokes streamfunction prescribed by the parameteri-
zation of |(Gent and McWilliams| (1990) and |Gent et al.| (1995)

16.3.1 Surface turbulent boundary layer

For the upper surface turbulent boundary layer discussed in Section [16.2.1], we assume the eddy
induced velocity has zero vertical shear, which means that the streamfunction is a linear func-
tion of water column thickness within this region. Because the streamfunction has the kinematic
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interpretation of a horizontal transport between a given depth range set by the mean depths of
isopycnals (see for example Sections 9.3.5 and 9.5.2 of |Griffies| (2004) as well as McDougall and
MclIntosh (2001)), the quasi-Stokes streamfunction vanishes at the ocean surface. Hence, the
linear thickness dependence of W within the surface turbulent region takes the form

h

Yeurt = (h ) Dgui(x, y, t) for0 < h < hgyy. (16.20)
surf

The streamfunction @, is determined by matching conditions across the transition region into

the ocean interior. Note that this form for the streamfunction assumes a nonzero surface boundary

layer thickness.

16.3.2 Surface transition region

To ensure that the eddy induced velocity is smoothly interpolated from the interior into the surface
turbulent boundary layer, it is necessary for the quasi-Stokes streamfunction to satisfy the following
boundary conditions

L 4 h=h
11] g — surf surf 16.21
surttrans { Winterior h= hsurf + Dsurfs ( )
and for its vertical derivative to satisfy
ah Weurf-trans = ah Winterior h= hsurf + Deguyrs- (16-22)

Matching first at the bottom of the surface turbulent boundary layer, where h = hg,+ and where
we insist on continuity of the streamfunction, leads us to take the surface transition region stream-
function in the form

h — heyr 2 h 2
ll’surf—trans = (Dsurf—trans + |l — (Dsurf- (16-23)
Dsurf hsurf
The quadratic depth dependence is chosen to provide a linear interpolation of the eddy induced
velocity from the interior to the surface turbulent boundary layer.
Matching now at the bottom of the surface transition layer, where ki = hg,s + Dgt and we insist
on continuity of the streamfunction and its vertical derivative, leads to

hsurt (+) _ Dsut o y(+)
Dsurt = <hsurf —S'_urDsurf> (q’interior - ;ur ah 11’interior (16'24)
Dsur (+) _ Psut + Dourt o ,(+)
Dgyri-trans = — <h::f> <1llinterior - % I Yiniérior | # (16.25)

where again 9, = —d,, and where
‘lli(l;tLe)rior = Winterior (" = hsurt + Dsurt) (16.26)

is the interior streamfunction at the top of the interior region; i.e., base of the surface transition

layer, and dj, ‘lfi(r:grior is its derivative. As a check on the manipulations, note that as the transition

layer thickness vanishes, the streamfunctions reduce to @, = ll’i(r:grior and @gytrans = 0. In
order for this limit to be well defined for the quasi-Stokes streamfunction ®gt.4rans, We add a
positive number e = 10720 to Dy, in the denominator of the first term on the right side of equation

(16.23).
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16.3.3 Bottom transition region

Just as for the surface transition region, the eddy induced velocity is smoothly interpolated from
the interior into the bottom turbulent boundary layer so long as the quasi-Stokes streamfunction
satisfies

Wiott h = H}
Wy, — bott 16.27
bott-trans { ‘Pinterior h = Hbott - Dbott, ( )
and its vertical derivative satisfies
9 Woott-trans = O Winterior 7 = Hp oy — Dbotts (16.28)
where
Hyort = Hpott — Ibott (16.29)

is a useful shorthand.

Matching first at the top of the bottom turbulent boundary layer, where h = Hy, and where we
insist on continuity of the streamfunction, leads us to take the bottom transition region streamfunc-
tion in the form

H: . —h\? Hpott — '\ 2
‘l’bott—trans = <lgtbttt> (Dbott—trans + ( % > (Dbott- (16-30)
o} 0

As for the surface, the quadratic depth dependence is chosen to provide a linear interpolation of
the eddy induced velocity from the interior to the bottom turbulent boundary layer.

Matching now at the top of the bottom transition region, where h = H} ;; — Dot @and we insist
on continuity of the streamfunction and its vertical derivative, leads to

hpott (=) Dot (-)
Dot = <hbott‘|‘onott> (winterior_‘_ 20 ah 11linterior (16.31)
Dyt - hoott + Dhott (-)
Dpott-trans = — <hb;)tt ) (‘l’i(nte)rior + % I ‘l’interior ’ (16.32)
where
Il’i(n_te)ricr = Yinterior (" = Hpot — Dbott) (16.33)

is the interior streamfunction at the bottom of the interior region (i.e., top of the bottom transition
layer).

16.3.4 Bottom turbulent boundary layer

Just as for the surface, the quasi-Stokes stremfunction vanishes at the ocean bottom, and we
assume it has a linear thickness dependence within the bottom turbulent boundary layer, thus
leading to
Hpott — h
Woott = (%) @pott  for Hoott — hpott < 1 < Hpot- (16.34)
0

The streamfunction @, (equation (16.31)) was determined by matching across the bottom tran-
sition region.
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16.3.5 Summary of the streamfunction algorithm

Based on the previous derivation, the quasi-Stokes streamfunction W can be written in the form

h
Y= Hsurf <hf> q)surf
sur

h— gy \ > ho\?
+Hsurf—trans <surf) q)surf—trans+( ) (Dsurf]

i Dgurt hsurf
+ Hinterior Winterior (16.35)

Hi. —h\?2 Hyort — 11\ 2
+ 7'{bott-trans <k8t;n> (Dbott-trans + ( % ) (Dbott
0 0

Hoott — I
+ Hpott (;tt) Dot
bott

Here, the on-off functions H are unity in the labelled region, and zero outside. The regional
streamfunctions are given by

hsur (+) . Dsut o y(+
q)surf - <hsurf j—urDsurf> <1llinterior + ;Ul' aZ 11li(nt(grior (16'36)
D hsurt + D
Dsurt-trans = — (}ZSUT) <‘l’i(th2rior + H 9z llli(nJ'rre)rior) (16.37)
sur
D _ hpott + D _
Dhott-trans = — <hsotttt> (q’i(nte)rior - M 9z Il’i(nte)rior> (16.38)
0
hpott (-) Dpot (-)
Poon = <hbott +0Dbott> (Tinterior o 20 0z lllinterior ’ (16.39)
where
‘Pi(rjt_e)rior = Winterior (! = hsurt + Dsurt) (16.40)
ll’i(nittgrior = 11’interior(h = Hpott — Mpott — Dbott) (16.41)

are the interior streamfunctions evaluated at the transition region boundaries (see Figure|[16.2).
There are two main subroutines in nphysicsB used to compute this streamfunction.

e neutral blayer: This routine computes properties of the various boundary and transition
regions. It is a tedious calculation due to the multiple regions that must be characterized.

— Thicknesses: hgyt, Dsurts Mootts Doott; €ach are a function of (i, j, triad), where “triad”
refers to the four triads surrounding each grid point.
- Streamfunctions: @ gys, P syri-trans» Phott-trans, aNd Ppoy; €ach are a function of (i, j, triad).

- Quasi-Stokes streamfunction accumulated over the boundary regions. This stream-
function is zero in the interior, and nonzero within the boundary layers. It is a function
of (i, j, k).
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e fz terms, fx _flux, fy_flux, and fz_flux: These routines compute the flux components
for the neutral physics parameterization, including the interior quasi-Stokes streamfunction
Winterior- These fluxes are computed using information from the neutral_blayer routine. As
detailed in Griffies| (2004), the fluxes for each (i, j, k) point are the grid weighted sum of the
four triads surrounding each point.

16.4 Specializing the quasi-Stokes streamfunction

We discuss here some specific forms for the quasi-Stokes streamfunction.

16.4.1 GMOI0 streamfunction

The quasi-Stokes streamfunction for the parameterization of |Gent and McWilliams| (1990) and
Gent et al.| (1995) is given by

ll’interior =z Agm S

o (16.42)
- Agm (_Syx+ Sx y),

which is equivalent to a skew-symmetric tensor (Section 13.5 of |Griffies| (2004))
0 0 _Sx
A=Agm | 0 0 -5, |. (16.43)

In these equations, S = (S, Sy, 0) is the neutral slope vector computed as

o__ <p,s V.s+pg V29> _ (16.44)
PsS,+peb;

The diffusivity Agm can be computed one of many ways, with options described in Section 14.4
of Griffies (2004). In principle, the nphysicsB implementation of the quasi-Stokes streamfunction
(16.42) can be generalized to other streamfunctions motivated by other theoretical arguments.

16.4.2 Streamfunction in completely unstratified regions

For regions that are completely unstratified in the vertical, such as in regions of strong surface
buoyancy forcing and/or in shallow shelf regions, we specify the following quadratic dependence
for the quasi-Stokes streamfunction, with zero values at the top and bottom boundaries

Y(h) = <4h(I§;h)> Winax, (16.45)

where H is the thickness of the fully turbulent column, and
h=n-z (16.46)

is the thickness of the fluid between depth z and the surface at z = n.



256 CHAPTER 16. NEUTRAL PHYSICS AND BOUNDARY LAYERS

Two methods are available to determine the maximum absolute value of the streamfunction
Wax. The first sets Wmax according to a namelist specified maximum slope parameter, with 1/100
a typical value. The problem with this specification is that it will provide a nontrivial streamfunction
in regions where both the vertical and horizontal density stratification are small. In contrast, one
may expect the streamfunction in an eddying model to remain quite small in such regions, due to
the absence of horizontal density gradients. This observation motivates an alternative, whereby
the streamfunction is set according to the vertical average of the diffusivity times the horizontal
density gradient’]

Agm V. P(Z)
[
where p’ is a constant reference vertical density derivative,

ll’ma)( - _2 /\ , (1647)

kbot
() L9 rhodzt Agm V. p
A V. p) = 16.48
gm Vz P Z,Ezof rho_dzt ( )

is the vertically averaged diffusivity times the horizontal density gradient, averaged over the depth
of the vertically unstratified region. So that we are computing the horizontal stratification, rather
than the horizontal gradient of the in situ density, we compute the horizontal density gradient
according to

Vop=pgV.0+psV;S, (16.49)

with 6 the potential or conservative temperature, S the salinity, and py and p s the density ex-
pansion coefficients whose values are determined by the temperature, salinity, and pressure at
a common point for each vertical level. The streamfunction corresponds to the following
anti-symmetric transport tensor

: 0 0 —Agnp
Amn — ( 5 > 0 0 —W(Z) . (16.50)
Mz ( (
Agm P,x\Z) Agm P,ykZ) 0

16.4.3 Local N? dependent diffusivity

Ferreira et al. (2005) and |Ferreira and Marshall (2006) argue for the relevance of a local N2
dependence to the diffusivity used to compute the quasi-Stokes streamfunction. That is,

Agm = Agn (N/N,)? (16.51)

where Aéﬁq can be any two-dimensional diffusivity, N is the buoyancy frequency, and N, is a
reference buoyancy frequency. This choice for the diffusivity greatly simplifies the quasi-Stokes
streamfunction, which now takes the form

V.p (16.52)

7

— 5 2d
= -2 N\ Agm —,
Z

4This streamfunction has a form analogous to that considered with the TEM approach in Section It is also
similar to that employed with the submesoscale parameterization of Chapter
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which corresponds to the anti-symmetric tensor

2d 0 0 —py
mn Agm ’
A = ~ 0 0 —Py . (16.53)
Z

Px Py 0

In these expressions, p’, is a reference vertical density stratification corresponding to the reference
buoyancy frequency N,.

Numerical treatment of vertically unstratified regions becomes trivial with this streamfunc-
tion, since it is only the horizontal stratification which is required and there are no divisions by
small numbers. We have implemented this streamfunction in MOM4p1 using the namelist option
agm_local_n2.

16.5 Discussion of some details

During the development of the algorithm described in this chapter, tests were run with an ideal-
ized sector model forced with temperature restoring at the surface. This forcing produced deep
convection at the poleward end of the domain, thus ensuring a deep mixed layer in this region.
There was no seasonal nor diurnal cycle, and thus no active mixed layer processes other than
deep convection driven by buoyancy forcing. This test problem exposed many sensitivities that
helped to guide the development of neutral physics within the boundary layer. Notably, much of
this sensitivity is removed in realistic simulations possessing an active mixed layer. The purpose
of this section is to summarize some of the issues and methods used to address the issues.

16.5.1 Step-like features in the upper ocean

The presence of a nontrivial quasi-Stokes streamfunction within the upper ocean can lead to step-
like features in the density field. These steps resulted in (or were the result of) large neutral
slopes mixed with small slopes. To overcome this difficulty, it is useful to compute the turbulent
boundary layer depth according to the parameterized mixed layer physics plus any region beneath
this “mixed layer” that has huge neutral slopes. For idealized simulations, an objective specification
of the surface turbulent boundary layer must be based on the neutral slopes.

16.5.2 Handling the triads of slopes

The scheme of |Griffies et al.| (1998) employs four triad slopes for each of the two horizontal di-
rections at each tracer point. One may be motivated to then produce a corresponding set of
streamfunctions and boundary layer regions for each triad. Doing so introduces a tremendous
level of added computation, which is arguably unwarranted. Alternatively, the method chosen in
MOM4p1 is to determine the boundary layer regions based on the maximum absolute slope from
amongst the triad slopes occurring at each tracer point. Additionally, we smoothed the resulting re-
gion thicknesses and corresponding streamfunctions in order to ensure that the scheme produces
parameterized transport that has large spatial scales.
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16.5.3 Ensuring there are no negatively stratified regions

The |Gent and McWilliams| (1990) scheme assumes a stably stratified column. Our aims in this
chapter are to merge their methods into the boundary regions where stratification can be zero or
negative. In an ocean model run with convective adjustment, such as the complete adjustment
scheme of Rahmstorf| (1993), there are no regions of negative stratification. Ensuring nonnegative
stratification has been found to be essential when allowing for a nontrivial Gent and McWilliams
(1990) quasi-Stokes streamfunction in weakly stratified regions of the model. If negative stratifi-
cation is allowed, depending on how the quasi-Stokes streamfunction is computed, it can further
destabilize the profile, with the resulting simulation rapidly degenerating into unphysical noise.

In MOM4p0, we recommended the use of Rahmstorf| (1993) convection as a follow-on to the
use of large vertical diffusivities commonly found in mixed layer parameterizations. This ap-
proach then ensures proper behaviour of the quasi-Stokes streamfunction in boundary regions.
In MOM4p1, we provide an alternative calculation of the vertical stratification so to remove the
need to always use Rahmstorf (1993) convection. Here, for purposes of computing the neutral
slope, we numerically compute the vertical stratification as

ap effective o ap
()™ i [(22) -] 1659

That is, we only employ stable vertical stratification for purposes of computing the neutral slope
vector used in the neutral physics scheme. This trick facilitates the use of neutral physics for
all slopes, without incurring spurious numerical artefacts in those regions of negative stratification.
We enable this approach in the neutral physics modules nphysicsA and nphysicsB (the nphysicsC
module does not compute neutral slopes).

16.6 Lateral diffusive parameterization

The lateral diffusive parameterization is simpler to characterize than the quasi-Stokes streamfunc-
tion, since there is no quadratic transition region. Instead, the diffusive fluxes are linearly tapered
from their internal neutral direction form, through the transition regions into the boundary oriented
form in the turbulent boundary layers. These considerations lead to the following downgradient
lateral diffusive tracer fluxes.

e Surface turbulent boundary layer: 0 < I < hg,. The diffusive flux is oriented parallel to the
surfaces of constant generalized vertical coordinate s, which in MOM4p1 are quasi-horizontal
within the upper ocean. Therefore,

Fout = —A1 Vs C, (16.55)
where Vi is the lateral gradient along surfaces of constant generalized vertical coordinate.

e Surface transition region: hgys < h < hgyt + Dgyr- The diffusive flux linearly tapers from the
interior form to the surface form

h—h heurf + Dsyri — h
Fsurt-trans = <surf> Finterior + < surt D s:rf )Fsurf~ (16.56)
sur
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e Ocean interior: hgyt + Dsurt < h < Hpott — (hpott + Dpott)- Here, the flux is taken from the
small slope neutral diffusion operator (Section [5.2.3)

Finterior = —Ar (V,C+2S-V,C). (16.57)

e Bottom transition region: Hpott — (Mpott + Doott) < & < Hpot — hpott- AS with the surface
transition region, we prescribe a linear tapering from the interior flux to the bottom turbulent
boundary layer flux

h— (H{ . — Dy Hf .. —h
Foott-trans = ( ( g’: . Ott)) Foott + <tgtbtﬂ> Finterior, (16.58)
0 o

where again Hy ,, = Hpott — hpott is the thickness of water above the bottom turbulent bound-
ary layer.

e Bottom turbulent boundary layer: Hyott — hpott < 7 < Hpott- Here, the topography orients the
lateral diffusive flux, and so we take

Fpott = —As Vo C, (16.59)

where 0 = (z — 1) /(H + n) is the topography following o-coordinate, and A is a diffusivity
that may be enhanced when dense water lies above light water within the bottom turbulent
layer, as prescribed by Beckmann and Doscher (1997). Further details on this method are
discussed in Chapter [19]

The diffusive flux in the transition regions can be simplified, and doing so allows for a straight-
forward numerical implementation. For this purpose, write equation (16.56) in the form

h—h heurf + Dgsurs — h
1:surf—trans = < surf> Finterior + ( surt surf > I:surf

Dsurf
h— hsurf
[)suﬁ

(16.60)

= Fsurf + <

Now substitute the tensor form of the interior flux taken from the small-angle neutral diffusion
tensor (see Section 14.1.4 of Griffies| (2004)) to find

B — hyt 0 0 S, Cx
Fsurt-trans = Fsurt — Al ( D = > 0 0 S Cy |- (16.61)
surf Sx S 52 C,Z

Hence, it is only the off-diagonal piece of the flux which is linearly scaled, along with the (3,3)
diagonal term. The diagonal piece in the horizontal remains unscaled. In practice, we implement
the same relation at the bottom, which means that if sigma transport is used (Chapter[19), we will
have both horizontal and sigma oriented diffusion in the bottom turbulent layer.

16.7 Computation of the Rossby radius

The Rossby radius is needed for computing the transition layer thickness using the algorithm
described in Section[16.2.2] We detail here the methods used in MOM4p1 for its computation.
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Outside an equatorial band of roughly +5°, the m!"-mode Rossby radius takes the form

Cm
Ap = =, (16.62)
"

where c,, is the phase speed of the m!"-mode (m > 1) gravity wave in a non-rotating, continuously
stratified flat bottom ocean (Gill, [1982). Within an equatorial band of +5°, the Rossby radius is

given by
e 1/2
Am = <2/3> , (16.63)
where 3 = f, is the meridional derivative of the Coriolis parameter. An approximate gravity wave
phase speed can be obtained by methods described in|Chelton et al.[(1998), and it takes the fornﬂ

1 n
o N —— / Ndz. (16.64)
m7t i

The squared buoyancy frequency is written

N? = —(g/p) (pssz+peb.)

(16.65)
=8 (ﬁ Sz — “9,2)/
where
a=0dg Inp (16.66)
B=0s1Inp (16.67)

are the thermal expansion and saline contraction coefficients, respectively. The Rossby radius
used in MOM4p1 for the transition layer thickness in Section[16.2.2)is taken to be the first baroclinic
wave (m = 1) in equaion (16.64).

In addition to computing the Rossby radius as just described, we follow [Large et al. (1997) by
restricting the computed Rossby radius within the range

Rmin < Rrossby < Rmax, (16-68)

where |Large et al.| (1997) set
Rmin &~ 15km (16.69)
Rmax ~ 100km. (16.70)

16.8 Method for obtaining low pass filtered fields

For determining the upper and lower turbulent boundary layer thicknesses, we take values from
other portions of the model, such as the turbulent mixed layer schemes. These schemes produce

5Even though the gravity wave speed feels the bottom, since the vertical integral in equation (16.64) extends over
the full depth range, the study by Chelton et al.|(1998) showed that the Rossby radius over the bulk of the World Ocean,
outside of shelf regions, is dominated by the inverse Coriolis dependence (see their Figure 6).
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boundary layer thicknesses which have relatively rapid time scales for fluctuations, such as days.
In contrast, for the neutral physics scheme, we are interested in low pass or time filtered varia-
tions in the boundary layers, on the order of weeks to months. Obtaining the low pass filtered
boundary layer information is cumbersome if we aim to save previous time step values and form
the traditional time average.

Instead, we prefer a method suggested by Anand Gnanadesikan (personal communication
2005), whereby the low pass, or slow, variable AS° is obtained by solving the first order equation

(16.71)

aAslow Aslow _ Afast
(),

Tdamp
where At s the rapidly varying boundary layer depth, and Tdamp IS @ damping time on the order
Tdgamp ~ 30 days. (16.72)
Taking a forward time step for this equation leads to the discrete form
ASOW (T 4 AT) = (1 —y) ASPW(1) 4+ APt (16.73)

where
Y = AT/ Tdamp- (16.74)

We use the same algorithm for evolving the diffusivity computed for the neutral physics scheme
based on any of the closure ideas discussed in Section 14.4 of |Griffies (2004). In this way, the
diffusivity fluctuations are damped in time, with major changes occurring only on the slower time
scale set by .

16.9 Regularized slopes

In general, a model such as MOM4p1 can realize any value for the density, which contrasts with
an isopycnal model where densities are quantized. The continuous range of density allows, in
particular, for very fine structure in the vertical. This structure is sometimes the result of numerical
methods and roundoff, and can lead to small step-like features in the vertical. In the presence
of these steps, the vertical derivative of density, needed to compute the neutral slopes and the
buoyancy frequency, can exhibit discontiuous features, with, say, infinite slopes interspersed with
finite slopes. This behaviour creates difficulties with the neutral diffusion and skew diffusion fluxes,
especially with the quasi-Stokes streamfunction.

To regularize the slopes computed in the neutral physics scheme, we provide two optional
forms of smoothing: one in the horizontal (via a Laplacian diffusion) and one in the vertical (via a
1-2-1 filter). The smoothing is performed on the vertical derivative of density prior to computing
the slopes. Formally, this smoothing breaks the integrity of the temperature and salinity triads
described in |Griffies et al.| (1998). However, the payoff is to produce neutral fluxes that are well
behaved, and perform in a manner consistent with that expected from the physics. Experiments
with and without smoothing are encouraged to see if it is needed for a particular simulation.
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CHAPTER
SEVENTEEN

Parameterization of form drag

This chapter is a placeholder for documentation of the form drag parameterizations available in
MOM4p1. At present, MOM4p1 has implemented the schemes proposed by (Greatbatch and
Lamb| (1990), Aiki et al.| (2004), and |Ferreira and Marshalll (2006). The code is available in the
module

mom4 /ocean_param/mixing/ocean_form drag mod.

These schemes are experimental and have not been thoroughly used at GFDL.

17.1 Regarding the TEM approach

We comment here on the relevance of implementing the Gent and McWilliams (1990) scheme via
the tracer equation, as traditionally done in MOM as motivated by Gent et al.| (1995) and Griffies
(1998), versus the alternative, which adds a vertical stress to the horizontal momentum equation,
as recently implemented in a global model by [Ferreira and Marshall (2006). When adding a stress
to the momentum equation, the prognostic velocity variable is interpreted as the residual mean,
or effective velocity, rather than the traditional Eulerian mean velocity. This transformed Eulerian
mean (TEM) interpretation is quite elegant, since it is the residual mean velocity that advects
tracers in a coarsely resolved (i.e., no mesoscale eddies) z-model, not the Eulerian mean velocity.
The elegance is maintained so long as one need not compute the Eulerian mean velocity.

For many purposes, we do not require the Eulerian mean velocity, so the TEM momentum
equation provides all the variables required to run an ocean model. However, the following consid-
erations point to a need for the Eulerian mean velocity in cases of realistic ocean climate modeling.

e In computing the air-sea stress in realistic coupled climate models, it is important for many
purposes to include the velocity of the ocean currents according to the discussion in|Pacanowski
(1987). The relevant currents for this calculation are the Eulerian mean currents, not the
residual mean.

e When computing the Richardson number commonly required for mixed layer parameteriza-
tions, we require the vertical shear of the Eulerian mean velocity, not the vertical shear of the
residual mean velocity.

263
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There are two options that one may consider. First, one may choose to ignore the difference
between the Eulerian mean and the residual mean velocity. Alternatively, one may choose to
diagnose the Eulerian mean from the residual mean. The Eulerian mean velocity is available within
a TEM ocean model, given the prognostic residual mean velocity plus a prescribed mesoscale
eddy closure to compute the eddy induced velocity. Its calculation requires derivatives of the
quasi-Stokes streamfunction to obtain the eddy-induced velocity, and one further derivative to
compute the vertical shear. As discussed by (Griffies (1998), this calculation can produce a rather
noisy eddy induced velocity, especially near boundaries. Furthermore, there is no general principle
guiding us in formulating a particular choice of discretization for the eddy induced velocity from a
streamfunction. A noisy eddy induced velocity produces a noisy diagnosed Eulerian mean velocity,
which then puts noise in the air-sea stress as well as the Richardson number. These numerical
sources of noise are unacceptable for realistic climate modeling, and represent a practical barrier
to making use of the TEM approach.



CHAPTER
EIGHTEEN

Restratification effects by submesoscale eddies

This chapter documents the MOM4p1 implementation of the parameterization by |Fox-Kemper
et al. (2008b), with further details discussed in |Fox-Kemper et al.| (2008a). This scheme parame-
terizes the restratification effects of submesoscale eddies in the ocean mixed layer. These effects
occur on a time scale much shorter than the mesoscale eddies parameterized via the neutral
physics scheme (Chapter [16).

18.1 Basics of the scheme

The parameterization is implemented via a vector streamfunction

2
v ( Coph” g As > 2 A VT (18.1)

poLf \/f2+772

In this equation, we have
e 0.06 < C, <0.08 is a dimensionless number;

e u=[1—(1-2d/h)?|[1+5/21(1—2d/h)?] is a non-negative vertical structure function in
the mixed layer layer, with zero values outside the mixed layer, where d > h and d < 0;

e d = —z + n is the depth of seawater, defined as the vertical distance from the ocean free
surface;

n is the deviation of the ocean free surface from the resting state at z = 0;

g is the gravitational acceleration;

h is the mixed layer thickness;

V7" is the mixed layer averaged horizontal gradient of locally referenced potential density;

f is the Coriolis parameter;

T is a time scale for the submesoscale eddies (order few days);
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e L is alength scale for the width of the submesoscale eddies (order Skm);
e As is the horizontal grid spacing;
e p, is the constant Boussinesq density.

Written in components, the streamfunction is given by

Y=Tu (_T,yzl T,XZ/ 0)/ (18.2)

where )
re Ceh=gAs (18.3)
Po Lf f2 + 172
is shorthand for the non-negative dimensionful scalar contributions, with physical dimensions
m®/(sec kg). The dimensionless function p(z) carries the only vertical dependence of the stream-
function W.
We make the following observations.

e The formulation of [Fox-Kemper et al.| (2008b) is in terms of the mixed layer, rather than the
planetary boundary layer. The reasoning is that the planetary boundary layer can be very
small under stable buoyancy forcing. However, the submesoscale eddies remain even in
these situations, so long as the mixed layer depth is nontrivial. MOM4p1 has an option for
setting h according to either the mixed layer depth, or the planetary boundary layer depth.

o Fox-Kemper et al.| (2008b) pose the parameterization in terms of the horizontal buoyancy
gradient, which is related to the gradient of the locally referenced potential density via

—poVb=gVy (18.4)
=g(veVO+vysVS), (18.5)

where 0 is the potential temperature, S is the salinity, and

Yo =10V/d0 (18.6)
Ys=0Y/dS (18.7)

are the density partial derivatives.

e The front length can either be a constant, or computed according to the first baroclinic
Rossby radius over the mixed layer

Lf= h—NZ 18.8

F= 75 (18.8)

with N~ the buoyancy frequency averaged over the depth of the mixed layer, and # is the

mixed layer thickness. Substitution of the front length into the streamfunction

leads to
= (CE“thAS> ( f ) BAVY . (18.9)

oo N VA+T?

In this way, the streamfunction goes to zero as the equator is approached.
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e The streamfunction can at times become quite large, in which case the model can be prone
to instabilities. MOM4p1 thus provides the following means to limit the value of the stream-
function magnitude

Wimited = Sign(¥) min[umax Az, abs(¥)], (18.10)

where vmax is @ namelist-specified velocity scale on the order of 1m/sec, and Az is the grid
cell thickness.

18.2 Skew tracer flux components

We implement the effects of the streamfunction (18.1) on tracer concentration via a skew diffusion,
as defined by an anti-symmetric stirring tensor

0 0 Y
A=Tul 0 0 77 (18.11)
,)/7,3(2 y—,yz 0

acting on the gradient of the tracer concentration. The components to the skew tracer flux are
given by

F® =T uyy*C, (18.12)
Y =rpu Yy C: (18.13)
F& = _ruvy -vc (18.14)

which can be written in terms of the vector streamfunction

F) — y) C, (18.15)
FW = —y (18.16)
F — _y) Cx +y®) Cy- (18.17)

It is revealing to consider the special case of potential temperature for a linear equation of state
Y =po—ab, (18.18)
with a > 0 constant. The skew temperature flux components are given by

F" = Tuag, Ve (18.19)
F@ =ruave-ve. (18.20)

With a stable stratification where 6, > 0, the horizontal flux is directed opposite to the vertically

averaged horizontal temperature gradient: F* —V 6, and sois downgradient in this sense.
The technology for discretizing the neutral physics operators (e.g., skew diffusion from |Gent

et al| (1995) as discussed in |Griffies| (1998)) is useful for rotated diffusion and skew diffusion.
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We thus make use of this technology for the present purposes of discretizing the submesoscale
closure of |Fox-Kemper et al.[| (2008b). The full tracer transport tensor is thus given by

Aj 0 (A; — &) S&W) — T uy,?
J= ( 0 Ar (A —k)SW —Tuy,? ) (18.21)
(A1 +Kk)SW +Tuy® (Ar+x)SW 4Ty, A;S?
Aj 0 (A; —«) S&) —yw)
= ( 0 Aj (A — &) SW 4y ) (18.22)
(A;+ &) SW 1w (A; +k)SW —y) A 82

where A; is the neutral diffusivity, « is the GM-diffusivity, and S is the neutral slope vector. It
is straightforward to incorporate the submesoscale closure into the neutral physics module. If
doing so, one would then implement the full transport tensor (18.22). However, there are occas-
sions where one does not wish to turn on the neutral physics parameterizations. For example, in
mesoscale eddying simulations, one may choose to remove the neutral physics closure, but retain
the submesoscale closure. We thus prefer to develop a separate module for the submesoscale
closure, taking only what we need from the neutral physics module.

18.3 Eddy induced transport

The streamfunction (18.1) gives rise to an eddy induced velocity

vi=V AVY

(18.23)
= (—a. ¥, 3. p0), 3, ) — 3, )

and an associated volume transport within the mixed layer. There is zero net horizontal volume
transport

n
/ dzu* =0, (18.24)
—H

since the streamfunction vanishes at the ocean surface and at the base of the mixed layer. A zero
net volume transport is also the case for the eddy induced transport from the (Gent et al.| (1995)
scheme, where the GM streamfunction vanishes at the ocean surface and bottom.

For a vertical position z within the mixed layer, the meridional volume transport passing beneath
this depth z, zonally integrated within a basin or over the globe, is computed by the integral

z
TW (y,z,t) = /dx/ dz' o*
—H

:/dx/ dz 9,y
—h (18.25)

= / dxy (x,y,2,1)

= —/dxruﬁz
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since the streamfunction vanishes at z < —h (beneath the mixed layer). Likewise, the zonal
transport within the mixed layer is

TW (x,2,t) = /dy/ dz'u*
~H

= —/dy /Z dz' 9,y
—h (18.26)

= —/dy‘{’(y)(x,y,z, t)
= —/dyFuT,xz.

Since T u is single signed within the mixed layer, the sign of the horizontal transport in the mixed
layer is given by the sign of —V . For example, with denser water towards the north, so that
vy~ > 0, the meridional transport passing beneath a depth z within the mixed layer will be negative,
T(y)(y, z,t) < 0. This property of the transport provides a useful check that the scheme has been
implemented in the model with the proper sign.

It is instructive to compare the volume transport from the submesoscale parameterization to
that induced by (Gent et al. (1995). For Gent et al.|(1995), the horizontal component of the eddy-
induced velocity is

ud" = —9, (xS), (18.27)

with S = —V y/y . the neutral slope vector, and k > 0 a diffusivity. The meridional transport is
given by

ya
7;1(%) :/dx/ dz’ o9m
-H
= / dx <Kw> ,
Y,z
where we set the streamfunction to zero at the ocean bottom. For a stable stratification with

v, < 0, the volume transport is directed opposite to the sign of the meridional density gradient,
which is analogous to the case for the submesoscale transport (18.25).

(18.28)
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CHAPTER
NINETEEN

Overflow schemes

The purpose of this chapter is to detail various methods available in MOM4p1 for enhancing the
transport of dense water downslope. Some of methods are implementations of schemes from the
literature, some are unique to MOM4p1, and some remain incomplete methods which are part of
MOM4p1 only for use by those actively pursuing research into overflow algorithms. We present our
prejudices in Section [19.4] though the user should recognize that much research still is underway
towards finding a suitable overflow scheme for global ocean climate modelling.

There are four methods implemented in MOM4p1 described in this chapter, with the following
modules containing the code:

mom4 /ocean_param/mixing/ocean_sigma_transport mod
mom4 /ocean_param/mixing/ocean mixdownslope mod
mom4 /ocean_param/sources/ocean overflow mod

mom4 /ocean_param/sources/ocean_overexchange mod.

19.1 Motivation for overflow schemes

As described by Winton et al. (1998), coarse resolution z-coordinate models generally have diffi-
culty moving dense water from shallow to deep regions. The key problem is that too much dense
water spuriously entrains with the ambient lighter fluid. Only when the topographic slope is re-
solved so that the grid spacing satisfies

Az
H| <22 .
[VH| <+ (19.1)

does the simulation begin to reach negligible levels of spurious entrainment. Resolving a slope of
1/100 with vertical resolution of Az = 20m thus requires horizontal grid spacing As ~ 2km. This
resolution is one or two orders finer than the typical resolution of the 1-2 degree ocean climate
models commonly used today. Furthermore, refined vertical resolution, desired for representing
vertical physical processes, requires one to further refine the horizontal resolution required to re-
solve the slope. Notably, there is little difference between the representation of steeply sloping
features via either full or partial steps in z-models (Section[6.1.2). Hence, steep “cliff” features re-
main ubiquitous in the typical ocean climate model using vertical coordinates with quasi-horizontal
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isosurfaces. Short of respecting the constraint (19.1), traditional tracer transport schemes (i.e.,
vertical convection; horizontal and vertical diffusion; and horizontal and vertical advection) are
generally unable to transport dense waters into the abyss to the extent observed in Nature. This
problem with spurious entrainment is shared by the quasi-horizontal vertical coordinates such as
those discussed in Chapter g

In an attempt to resolve the spurious entrainment problem, modelers have formulated ways
to embed terrain following transport schemes into geopotential or pressure coordinate models.
These schemes generally assume the bottom ocean region is turbulent, and so well mixed and
not subject to geostrophy. The resulting dynamics act to bring water downslope, eventually being
entrained at a neutral buoyancy depth.

Some approaches aim to modify both the momentum and tracer equations, with [Killworth and
Edwards| (1999) documenting a most promising approach. Unfortunately, when modifying the
momentum equation so that pressure gradients are computed within the bottom boundary layer,
difficulties handling this calculation have resulted in nontrivial problems with spurious transport,
especially near the equator. It is for this reason that no global ocean climate model presently
employs the Killworth and Edwards| (1999), or analogous, scheme. Motivated by this difficulty, we
do not consider any scheme in MOM4p1 that modifies the momentum equation. Instead, we focus
exclusively on methods restricted to the tracer equation.

19.2 The sigma transport scheme

This section documents the scheme available in the module
mom4 /ocean_param/mixing/ocean_sigma_transport mod

The papers by Beckmann and Ddscher| (1997) and IDéscher and Beckmann| (2000) propose
a method to incorporate a rudimentary terrain following turbulent layer in z-models, or more gen-
erally into any model with vertical coordinates having quasi-horizontal isosurfaces (e.g., pressure
based vertical coordinates). They prescribe changes only to the tracer equation, in which there
is advection and diffusion within a bottom turbulent layer. We term these transport mechanisms
sigma diffusion and sigma advection, since the sigma vertical coordinate (Section 6.1.5) is terrain
following.

By enabling a terrain oriented route for tracer transport, in addition to the usual grid oriented
transport, the quasi-horizontal vertical coordinate models are now afforded an extra pathway for
transporting dense water into the abyss.

19.2.1 Sigma diffusion

Diffusion oriented according to the bottom topography is referred to as sigma diffusion in the
following. The diffusive flux between two adjacent cells living at the ocean bottom is given by

Fe = —AV,T, (19.2)

with V, the horizontal gradient operator taken between cells in the sigma layer. Note that this
flux vanishes if the tracer concentration is the same between two adjacent cells within the sigma
layer. We follow the approach of [Doscher and Beckmann| (2000) in which sigma diffusion is strong
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Figure 19.1: Schematic of the along-topography pathway for tracer transport afforded by the
sigma transport scheme in MOM4p1. Darkened regions denote land cells, and lightly hatched
regions are within the bottom turbulent boundary region. This boundary layer generally can fit
within a single bottom cell, as in the left turbulent boundary region; occupy a full cell, as in the
middle region; or require more than one of the bottom cells, as in the right region. Tracers commu-
nicate with their grid aligned horizontal and vertical neighbors via the usual advection, diffusion,
and convective processes. Tracers in the bottom turbulent layer can additionally communicate
with their neighbors within the turbulent region via sigma diffusion and sigma advection.

when densities of the participating cells favors downslope motion. That is, the following diffusivity
is used

(19.3)

A o Amax |f Vg-p ‘ VH < 0
B Amin if Vep-VH >0,

where z = —H(x, y) is the bottom depth. Note that in practice, this constraint is applied separately
in the two horizontal directions. That is, the zonal diffusivity is large if p » H x < 0 and the meridional
diffusivity is large if p, H, < 0. A ratio of the two diffusivities Amax/Amin i @ namelist parameter
in MOM4p1, with ~ 10° the default value as suggested by Déscher and Beckmann| (2000).

An additional velocity dependent diffusion was also found by [Déscher and Beckmann (2000)
to be of use. In this case, an added sigma-diffusive flux in the zonal direction is computed using
the diffusivity

A:{ ulAx if pyHyx <0 and uHx>0 (19.4)

Amin Otherwise.

In this expression, |u| is the magnitude of the model’s resolved zonal velocity component within
the sigma layer, and Ax is the zonal grid spacing. An analogous meridional flux is computed as
well.

Sigma diffusion can be specified to occur over an arbitrary layer thickness, even if this layer
encompasses a non-integer number of bottom cells. If sigma diffusion is enabled without sigma
advection, then this bottom layer is time independent.



274 CHAPTER 19. OVERFLOW SCHEMES

19.2.2 Sigma advection

In addition to sigma diffusion, MOM4p1 allows for an advective contribution to the bottom boundary
layer flow. This portion of the algorithm is experimental, and so it is not recommended for general
use. We present the discussion here only to expose some initial thoughts on a possible new
method, but recognize that the method as discussed here is incomplete. Note that the sigma
advection scheme discussed here is distinct from the method proposed by [Beckmann and Doscher
(1997). Instead, the (Campin and Goosse| (1999) scheme discussed in Section employs an
analogous advective transport method which has been implemented in MOM4p1.

In the sigma advection scheme in MOM4p1, there are two ways to determine the advective
velocity components acting on tracers within the sigma layer. In both cases, if the deeper parcel
within the sigma layer is denser than the shallower parcel, then the sigma advective transport is
set to zero. Otherwise, it is active and thus contributes to the downslope tracer transport. This
criteria translates into the constraint

Vep-VH <0 fordensity driven downslope flow, (19.5)

where p is the density within the bottom sigma layer. This constraint is the same as used to
determine the value for the diffusivity discussed in Section|19.2.1

19.2.2.1 Sigma velocity derived from resolved velocity

Beckmann and Doscher (1997) and Doscher and Beckmann| (2000) determine the advective ve-
locity components acting in the sigma layer from the model’s resolved velocity components. In
MOM4p1, these velocity components are found by integrating the model’s resolved horizontal ad-
vective velocity components within the bottom turbulent sigma layer.

19.2.2.2 Sigma velocity from a parameterization

Campin and Goosse| (1999) suggest an additional approach to enhance the horizontal velocity
available for downslope flow. In MOM4p1, we add this velocity to the resolved velocity within the
sigma layer determine as above.

Following |Campin and Goosse| (1999), assume the dense shallow parcel has a subgrid scale
momentum associated with its downslope motion. The zonal momentum is assumed to be pro-
portional to the topographic slope, H ., the acceleration from gravity, g, the amount of fluid within
the cell participating in the downslope flow,

0<6<1, (19.6)
and the density difference
_ax (2P
Ap = dx <ax>a (19.7)

as measured in the zonal direction within the sigma layer. The momentum is retarded by fric-
tional dissipation, i (with units of inverse time). These considerations then lead to the momentum
balance

pV® pystore — o5V ApH . sign(H ) (19.8)
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where
V) = dxt * dyt * dzt® (19.9)

is the volume of the dense parcel within the sigma layer, we assume Ap H , < 0, as required for
density favorable downslope flow (equation (19.5)), and sign(H ) sets the sign for the downslope
velocity. Equation is also used to determine a meridionally directed downslope transport,
with the meridional topographic slope H,, replacing H ., and Ap = dy p,, the density difference
between meridionally adjacent parcels.

Solving equation for the velocity component 15'°P¢ yields

p dzt? uSoPe — — <g5> H, Ap dzt® sign(H.,). (19.10)
u

With the depth H refering to the depth of a tracer cell, the slope H , is defined at the zonal face of
the tracer cell. Hence, the velocity component 15'°P¢ is likewise positioned at the zonal face. This
is the desired position for the zonal advective tracer transport velocity component.

Campin and Goosse| (1999) suggest the values for frictional drag

p=10"*sec’! (19.11)
and fraction of a cell participating in the transport
5=1/3. (19.12)

These parameters are namelists in MOM4. Using these numbers, with an absolute topographic
slope of |H | ~ 102 and density difference Ap ~ 1kgm~3, leads to

uSP® ~ 03m sec™! (19.13)
and the associated volume transport
SloPe — 48IoPe o thickness_sigma X dyt, (19.14)

where thickness_sigma is the thickness of the sigma layer. With u5'°°® ~ .03ms~! corresponding
to the speed of fluid within a sigma layer that is one-degree in width and 50m in thickness, we have
a volume transport US°P® ~ 0.2Sv. Larger values are realized for steeper slopes, larger density
differences, larger grid cells, and thicker sigma layers.

19.2.2.3 Maintaining mass conservation

Introducing horizontal advection within the sigma layer necessitates the consideration of mass
conservation within this layer. Our focus here is just on the additional mass conservation issues
arising from sigma advective transport.

The balance of mass within an arbitrary layer is detailed in Section Assuming there is no
transport through the bottom of the sigma layer into rock, we are led to the mass budget for the

sigma layer (equation (7.102))

0=0;(dz p) —dz pSM 4 v,. (dz pu) + (p w(a))top of sigma layer- (19.15)
Again, each term in this equation is associated just with the sigma transport process. Hence,
the horizontal velocity u as that obtained from the considerations given earlier in this section.

However, the remaining terms have not been specified yet, and so must be set according to
physical arguments and/or convenience.
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19.2.2.4 Dia-sigma transport

First, consider the case of zero mass source arising from sigma transport, and a zero time ten-
dency term d; (dz p) (such as occurs in the Boussinesq case assuming a constant sigma layer
thickness). The mass budget within the sigma layer is thus closed by a dia-sigma transport

(p w(g))top of sigma layer = — Vo * (dz pu). (19.16)

This transport measures the amount of water that crosses the sigma layer from the surrounding
fluid. This choice was taken by Beckmann and Déscher (1997) and [Doscher and Beckmann
(2000), and it was also employed by Campin and Goosse|(1999).

Furthermore, Beckmann and Doscher| (1997) suggest that to reduce the spurious entrainment
associated with tracer advection aligned with the model’s grid, it is appropriate to reduce, or re-
move, this advective transport within the sigma layer in favour of the sigma advection transport.
Tang and Roberts| (2005) also take this approach. Nonetheless, we do not follow this suggestion
for the following reasons. First, it complicates the treatment of the advection operator by intro-
ducing an ad hoc parameter that partitions between sigma advection and grid aligned advection.
Second, and primarily, we take the perspective that the sigma advection process is subgrid scale.
Hence, it should act only in those cases where the resolved, grid aligned, velocity is unable to
provide a sufficient downslope transport. We should thus not remove the grid aligned advective
transport using an ad hoc specification. That is, we do not aim to remedy spurious entrainment
arising from grid aligned advective transport by removing this transport altogether.

Given these objections, we do not pursue this approach further in MOM4p1.

19.2.2.5 Mass sources

Next, consider the case where all mass is advected downslope within the sigma layer, with a zero
time tendency term d; (dz p) and zero dia-sigma transportE] This assumption then leads to the
sigma layer mass budget

dz pSM =V, . (dz pu). (19.17)

That is, the divergent horizontal advective transport within the sigma layer is balanced by a nonzero
mass source. The horizontal integral of the mass source over the sigma layer vanishes, since the
sigma advection velocity satisfies either the no-normal boundary condition at land/sea interfaces,
or periodicity. Hence, the introduction of the nonzero mass source does not corrupt global mass
conservation. It does, however, come at the cost of also requiring nonzero tracer sources; the
introduction of new fluid locally requires also the introduction of nonzero tracer locally, since the
fluid has some tracer content (e.g., a temperature). These tracer sources do not necessarily lead
to a zero global net introduction of tracer. This approach is thus unacceptable.

19.2.2.6 Undulating sigma layer thickness

The time tendency d; (dz p) represents changes in the density weighted sigma layer thickness. It
vanishes for a Boussinesq case if the sigma layer has constant thickness. However, if the sigma

1Grid aligned advection generally leads to transport across the sigma layer.
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layer can inflate or deflate, this term remains nonzero. That is, without mass sources or without
dia-sigma transport, the mass budget within the sigma layer takes the form

dt (dz p) = =V - (dz pu). (19.18)

Hence, the sigma layer undulates according to the convergence or divergence of mass advected
within the layer. Its undulations are of just the magnitude needed to keep a zero dia-sigma trans-
port. So the picture is of a blob of heavy fluid moving downslope, causing the sigma layer to
undulate in order to accomodate the fluid motion. See Figure for an illustration of this fluid
motion. This approach is available only for models such as MOM4p1 that allow an arbitrary time
dependent thickness for the sigma layer.

During some initial research, we have favoured this approach in MOM4p1 as it avoids objec-
tions raised about the previous alternatives. We do make some simplifications, and note that the
approach has only recently (as of 2006) been tested, with some unfortunate problems discussed
below. Here are some things to note.

e For the nonBoussinesq case, we replace the in situ density appearing in the time tendency
with the constant Boussinesq density p,. Given uncertainties in many of the scheme’s pa-
rameters, this replacement is justified.

e The sigma layer thickness is bounded from above and below by user specified values. Allow-
ing the thickness to vary too far can lead to noisy behaviour. Settings bounds amounts to an
implicit specification of detrainment whenever the thickness gets too large, and entrainment
when it gets to small.

e It has proven useful to smooth the sigma layer thickness. An option is available to smooth
the layer thickness with a Laplacian diffusion operator.

19.2.2.7 Problems with the MOM4p1 sigma advection scheme

The most fundamental problem with the MOM4p1 sigma advection scheme, as implemented ac-
cording to equation (19.18)), is that as mass converges to a region to thus expand the sigma layer,
there is no corresponding dynamical mechanism to carry this perturbation away, and thus allow
for an adjustment process. Instead, by only considering the mass conservation equation, with no
dynamical equations, the sigma layer will generally grow without bound in regions where mass
converges, or disapper in regions of divergence. This situation is not encountered in an isopycnal
model, since these models have dynamical processes to adjust the fluctuating thicknesses.

Absent a dynamical mechanism for the adjustment, the sigma advection scheme must employ
artificial limits on the layer thickness. These limiters impose, in effect, a detrainment or entrain-
ment process to keep the layer thickness within the specified bounds. Such processes, however,
have not yet been implemented in MOM4p1, so the present scheme is incomplete. Without the
entrainment and detrainment processes, the artificial limits, when imposed, allow for the tracer to
realize extrema, since its time tendency is artificially altered. This is unacceptable, and so the
scheme as presently implemented is unusable.
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19.2.3 Implementation of sigma transport

Consistent with | Beckmann and Ddscher| (1997), the turbulent bottom layer momentum equations
remain the same as interior k-level cells. We now just allow tracers in the bottom turbulent layer
to be affected by transport with their “sigma-neighbors” in addition to their horizontal and vertical
neighbors. Figure provides a schematic of the extra pathway available with sigma tracer
transport.

The bottom turbulent sigma layer in MOM3 was appended to the very bottom of the model,
and so effectively lived beneath the deepest rock. This approach is inconvenient for the following
reasons.

e It makes for awkward analyses.

e It precludes direct comparison between models run with and without sigma-physics since
the grid used by the two models is different.

o |t makes it difficult to consider convergence when refining the grid mesh.

For these reasons, the bottom turbulent layer in MOM4 is included within the regular model do-
main. This is the approach used by Beckmann and Doscher| (1997) (e.g., see their Figures 1 and
2).

The disadvantage of the MOM4p0 approach is that the bottom turbulent layer thickness thickness_sigma
has a generally non-constant thickness and is determined by the thickness of the grid cell next to
topography. In particular, with partial bottom steps, the effective turbulent layer thickness could be
very thin, in which case thin cells act as a bottle-neck bo bottom transport. This implementation is
inconvenient.

In MOM4p1, we allow for an arbitrarily thick bottom turbulent layer. We do so by incorporat-
ing the required grid cells into the bottom turbulent sigma layer. This approach requires some
added accounting, but it is straightforward. In particular, the tracer concentration within the bottom
turbulent layer is computed by
Zsigma pdztT

Zsigma pdzt ’

where the sum extends over the cells, including cell fractions, contained in the bottom turbulent
layer. A time tendency is computed for sigma transport of Tgigma Within the bottom turbulent sigma
layer. The relative fraction of a grid cell participating in the bottom turbulent layer determines the
magnitude of the tracer time tendency added to this cell.

Tsigma = (19.19)

19.3 The Campin and Goosse (1999) scheme

This section documents the scheme available in the module
mom4 /ocean_param/sources/ocean_overflow mod.

Consider a heavy water parcel sitting on top of a shelf/cliff that is horizontally adjacent to
a lighter parcel sitting over a deeper water column. We may expect that the dense parcel will
move off the shelf, down the slope, and into the deep. Along the way, entrainment will occur,
with many important processes determining the details of the final water mass. This is indeed a
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cartoon of an important oceanic process forming much of the deep and intermediate waters in the
ocean. Unfortunately, without some extra “engineering” help, Winton et al.| (1998) show that coarse
resolution z-models are incapable of providing the proper dynamical pathways for this transfer of
dense shelf water into the deep. Beckmann and Déscher (1997) suggest one means to enhance
the representation of this process, and we discussed this scheme in Section [19.2] [Campin and
propose yet another, which we detail in this section. Both schemes only affect the
tracer equation.

shallow ocean(so) deep ocean(do)

1
S —
P@Up,kurn)
2
S&UP) A plupkup) > [g&up)
I ;
ﬁj@dw—J) E&up,kdw—l) > p(l(:dw—
A
do ‘
p(kdw) ) do
plupkaw) > pkdw)
>
so d
pd@dwﬂ) pliup kaw+1) < Pkaws

Figure 19.2: Schematic of the [Campin and Goosse| (1999) overflow method in the horizontal-
vertical plane. The darkly filled region represents bottom topography using MOM4’s full cells.
The lightly filled region represents topography filled by a partial cell. Generally, the thickness of
a cell sitting on top of a topographic feature, as the k = 2 cell in the “so” column, is thinner than
the corresponding cell in the deep-ocean column (the k = 2 cell in the “do” column). Shown are
tracer cells, with arrows representing the sense of the scheme’s upstream advective transport. This
figure is based on Figure 1 of(Campin and Goosse/|(1999).

19.3.1 Finding the depth of neutral buoyancy

Figure [19.2] illustrates a typical situation in a horizontal-vertical plane. Here, we see a heavy
parcel of in situ density p*°(k = kup) sitting horizontally adjacent to a lighter parcel of in situ
density p®(k = kup). The superscript “so” refers to water in the “shallow ocean” column, whereas
“do” refers to water in the “deep ocean” column.

If the heavy parcel is allowed to adiabatically move off the shelf and then vertically within the
deep column, it will equilibrate at its depth of neutral buoyancy. To compute the depth of neutral



280 CHAPTER 19. OVERFLOW SCHEMES

buoyancy, we evaluate the in situ density for the parcel taken at the local value for the in situ
pressure of the environment where it may potentially equilibrate. For the example shown in Figure
19.2} with (i, j) setting the horizontal position of the shelf parcel and (i + 1, j) setting the horizontal
position of the deep column, we have

p* (kup, kup) = p(si jkup, 0i,jkups Pijkup) (19.20)
p* (kup, kdw — 1) = p(8; j kup, 0i,j kup Pi+1,j kdw—1) (19.21)
p* (kup, kdw) = p(8i  kup, 6i,j kups Pi+1,jkdw) (19.22)
p* (kup, kdw +1) = p(Sl jkups 1]kupr Pi+1,j, kdw+1)- (19.23)

That is, we compute the density at the salinity and potential temperature of the shallow ocean
parcel, (si,j,ku,,,ei,jlku,,), but at the in situ pressure for the respective grid cell in the deep column.
The density is then compared to the density of the parcel at the in situ salinity, temperature, and
pressure of the cells in the deep ocean column.

19.3.2 Prescribing the downslope flow

Following|Campin and Goosse (1999), we assume that the dense parcel has a downslope momen-
tum imparted to it. This momentum is proportional to the topographic slope, H ., the acceleration
from gravity,g, the amount of fluid within the cell participating in the downslope flow,

0<6<1, (19.24)
and the positive density difference
Ap = p* (kup, kup) — p (kup) > 0. (19.25)

The momentum is retarded by frictional dissipation, p (in units of inverse time). These considera-
tions then lead to the momentum balance

po VI puslore — ¢ 5 v Ap |H | (19.26)

where
V) = dxt * dyt * dzt (19.27)

is the volume of the dense parcel’s tracer cell. Equation is also used to determine a
meridionally directed downslope transport, with the meridional topographic slope d,H replacing
dH, and Ap the density difference between meridionally adjacent parcels.

Solving equation for the speed u*/°/¢ yields

uslore — (i‘;) 19.H| Ap. (19.28)

If the depth H refers to the depth of a tracer cell, then the absolute slope |9, H| is naturally defined
at the zonal face of the tracer cell. Hence, the speed, u°?¢, is likewise positioned at the zonal
face. This is the desired position for an advective tracer transport velocity.



19.3. THE CAMPIN AND GOOSSE (1999) SCHEME 281

Campin and Goosse (1999) suggest the values u = 10~*sec™! and & = 1/3. These parame-
ters are set as namelists in MOM4. Using these numbers, with an absolute topographic slope of
|H | ~ 1073 and density difference Ap ~ 1kgm~3, leads to the speed

uslore ~ 03 msec . (19.29)
Associated with this downslope speed is a volume transport of fluid leaving the cell
uslore = yslore gz, dyt. (19.30)

In this equation, dzt,,;, is the minimum thickness of the shelf cell and the adjacent cell. This
minimum operation is necessary when considering MOM4’s bottom partial cells, whereby the
bottom-most cell in a column can have arbitrary thickness (Figure [19.2). With usP¢ ~ .03ms~!
corresponding to the speed of fluid leaving a grid cell that is one-degree in width and 50 m in depth,
we have a volume transport UP¢ ~ 0.2Sv. Larger values are easily realized for steeper slopes,
larger density differences, and larger grid cells.

19.3.3 Mass conservation and tracer transport

To conserve mass throughout the system, the mass flux exiting the shelf cell and entering the
deep cell must itself be returned from the adjacent cell. This situation then sets up a mass flux
throughout the participating cells, where there is zero convergence of the flux and so zero net
increase or decrease in mass. For the Boussinesq fluid, mass conservation is replaced by volume
conservation. This redirected plumbing is shown in Figure[19.2]

The convergence-free seawater mass flux carries with it tracer mass. If there are differences in
the tracer content of the cells, then the tracer flux will have a nonzero convergence, and so it moves
tracer throughout the system. We use first-order upstream advective transport as a discretization
of this process. First-order upstream advection is the simplest form of advection. Its large level
of numerical diffusion is consistent with our belief that the bottom layer flows in the real ocean
near steep topography are quite turbulent. Hence, although inappropriate for interior flows, we are
satisfied with the use of upstream advection for the overflow scheme.

19.3.4 Implementation in MOM4

This section details the implementation of the Campin and Goosse| (1999) scheme in MOM4.

19.3.4.1 Start of the integration

At the start of the model integration, it is necessary to determine those grid points where it is
possible to have a downslope flow. For this purpose, we introduce the array topog_step(i,j,m),
with m = 1,2, 3,4 specifying in a counter-clockwise direction the four surrounding columns whose
depths are to be compared to that at the central (i, j) point. Figure illustrates this nota-
tion. If the adjacent column is deeper than the central point, thus representing a possible direc-
tion for downslope flow, then topog_step(i,j,m) for this value of m is set to unity. Otherwise,
topog_step(i, j,m) for this m is zero. Note that with partial bottom cells, it is possible for an adja-
cent column to be deeper yet for the number of vertical cells to be the same in both columns. To
initiate the downslope scheme of Campin and Goosse| (1999), we insist that there be at least one
more grid cell in the adjacent column.
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Figure 19.3: Plan view (x-y plane) of a tracer grid cell at (i, j) and its horizontally adjacent tracer
cells. We label the adjacent cells (i+1,j),(i,j+1),(i—1,j),(i,j—1)asm = 1,2,3,4. Notice that
we do not consider downslope flow along a diagonal direction.

19.3.4.2 During a time step

During each time step, we locate where downslope flow is favorable for points sitting on the ocean
bottom at (i, j, kmt(i, j)). For each of the four directions (m = 1,2, 3,4) where topog_step(i, j,m)=1,
we check the density difference between the central point and the adjacent point. If the density of
the central point is larger, then the (Campin and Goosse| (1999) scheme is used to initiate downs-
lope transport. For these directions, we locate the depth of neutral buoyancy for the central point
according to the discussion in Section [19.3.1], and so specify the number of vertical cells, kdw,
participating in the transport. Note that we allow for downslope transport to occur in more than
one direction, as occurs in those cases for a fixed (i, j) where topog_step(i, j,m) has more than

a single nonzero element.

Our prescription is mindful of the possibility for the shallow-cell to be a partially filled cell sitting
on the topography. For this reason, the convergence-free volume transport associated with the
downslope flow is weighted by the minimum vertical thickness of the two cells (equation (19.30)).
Otherwise, it would be possible to flood a thin partial cell with a huge amount of tracer (e.g., heat).

We incorporate effects from the (Campin and Goosse| (1999) overflow scheme into MOM4’s
tracer time tendency array. To derive the tendency, we proceed as for the river-mixing and cross-
land mixing formulations discussed in |Griffies et al.| (2004) by focusing on the time evolution due
to just the overflow process. For the particular zonal-vertical case illustrated in Figure we
prescribe

U (VW p )y = PUP (CH iy — Cf ) (19.31)

9 (V¥ pc)erl]kup = pUr (cf 1+1]kdw 1 Czdil,j,kup) (19.32)
9 (V1 pc)i+1,j,kdw—1 = puor (Y, Jjkdw C;'i+1,j,kdw—1) (19.33)
o (VW p OV ki = P U (CF oy — C1 ) (19.34)
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where
pUIP¢ = 117 rho_dzt,y dyt, (19.35)

with
rho_dzt ,,,) = min(rho_dzt; jxyp, tho dzt; 1, xup) (19.36)

the minimum density weighted thickness of the two cells at k = kup. For the Boussinesq case,
p factors are set to the constant reference density p,. Setting the tracer concentration to the
same uniform value leads to vanishing time tendencies in each cell, thus reflecting volume/mass
conservation. Additionally, summing these four equations leads to a vanishing right hand side,
thus reflecting conservation of total tracer in the system. Since the downslope mixing has the form
of an upstream advection, we discretize temporally by evaluating the tracer and density on the
right hand side at the lagged time 7 — 1.

19.4 Neutral depth over extended horizontal columns

Both |Campin and Goosse| (1999) and Beckmann and Doscher| (1997) provide quasi-physical ap-
proaches to the problem of simulating deep water formation near topography. Each provides
plumbing routes beyond the local horizontal-vertical routes available in geopotential or pressure
models. In this way, these methods afford a new means for representing the flows. Questions such
as parameterizing the rates of entrainment, volume flux, etc. (e.g., Killworth and Edwards (1999))
are not directly addressed by these schemes, although the present schemes can be extended a
bit to include such details.

Climate modelers generally gauge the utility of overflow schemes on the overall results. Namely,
do the schemes provide a route for deep water formation near topographic gradients in a manner
expected from observations? Details of the transport are often not the first priority. This situation
is unsatisfying from a process physics perspective. It may, nonetheless, be the best available for
many coarse resolution models.

In this section, we discuss our prejudices with MOM4p1 development. To start, consider the
density structure in Figure This figure illustrates a case where the sigma transport scheme
of Section [19.2/does not prescribe enhanced downslope transport. The reason is that the sigma
transport scheme only works with density within the bottom “sigma layer”. For this example, den-
sity at the bottom of the deeper column is greater than that on the shelf, and so there is no
enhanced transport prescribed. In contrast, the Campin and Goosse| (1999) scheme prescribes a
downslope transport, with the dense shelf water moving to its neutral buoyancy depth. It is for this
reason that we favour, in MOM4p1, downslope schemes where the depth of neutral buoyancy is
determined, with this depth possibly above the ocean bottom.

Even within this example, however, there remain limitations of the (Campin and Goosse (1999)
scheme. The limitation is that their scheme only reaches out one grid box in the horizontal. That s,
although the scheme is non-local in the vertical, it remains local in the horizontal. What can happen
is the dense parcel will find itself denser than any parcel in the adjacent column, and so its resting
place, with the (Campin and Goosse| (1999) algorithm, is at the bottom of the adjacent column,
rather than at a neutral buoyancy depth. If given the opportunity to exchange with columns further
removed from the central column, the parcel is afforded the opportunity to find a more suitable
neutral buoyancy layer. This general result motivates us to consider two experimental schemes,
whereby the notions of a neutral buoyancy level motivated from |(Campin and Goosse| (1999) are
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extended to columns removed from the central column. As the parcel finds a more suitable resting
place, it is assumed to exchange properties with the intermediate parcels, in a manner meant to
represent entrainment as it moves downslope. The rates of transport remain a function of the
topographic slope and the difference in density, just like the Campin and Goosse| (1999) scheme.
There are two methods available in MOM4p1 for realizing these ideas. The first is implemented
in the module
mom4 /ocean _param/sources/ocean overexchange mod.

In this scheme, a dense shallow parcel is allowed to be transported horizontally over more than
a single column, so long as it continues to remain on the bottom of the adjacent columns, thus
affording it more opportunity to find its neutral buoyancy level. The exchange results in no net
mass exchange between parcels, and so there is no need for an advective replumbing to be
implemented, in contrast to the|Campin and Goosse|(1999) scheme. Here, the resolved dynamics
adjust based on mixing of the water masses and the associated changes in density structure.
This process then becomes directly analogous to the cross-land mixing formulation discussed in
Criffies et al.| (2004) and in Chapter[20] That is, we remove the intermediate cells from the process
described in Section and just focus on the single shallow and deep cell, thus leading to

o (V(t) p C)zs',oj,kup =P USZOPE (C;iil,j,kdw - Cis,(},kup) (1937)
A (VW 0OV ko = P UV (CF iy — CiF1 ) (19.38)

This parameterization is simpler to implement than the Campin and Goosse| (1999) scheme, since
we omit the intermediate cells from the process. This approach also does not rely on assumptions
of a flow that may be set up in response to the exchange of fluid.

The second method is implemented in the module

mom4 /ocean param/mixing/ocean mixdownslope mod.

In this scheme, exchange of tracer occurs as a partial convective mixing process. We assume that
a part of the shallow dense cell is transported downslope, and this then mixes with the interme-
diate cells with an efficiency proportional to the topographic slope and the density difference. In
equations, we compute a combined mass of the mixed water according to

Msum = M(s) + M(d), (19.39)

where
M(s) = yrho_dzt(s) dat(s) (19.40)

is the mass of water in the shallow dense cell participating in the exchange, and
M(d) = érho_dzt(d) dat(d) (19.41)

is the mass of deep cell participating. In these equations, dat is the horizontal area of the cells, y
is the fraction of the shallow dense cell that is assumed to take part in the downslope transport,
and ¢ is proportional to the topographic slope and the density difference between the shallow and
deep parcel. If assumed to mix completely over a time step, then the resulting tracer concentration
Chmix would be given by

Msum Cmix = v rho_dzt(s) dat(s) C(s) + 6 rho_dzt(d) dat(d) C(d). (19.42)
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Instead of mixing completely, which would require an adjustment process as in convection, we use
the tracer concentration Cp,ix to deduce the following time tendencies which drive the cells toward
the mixed concentration

dat(s) tend(s) = (M(ASZ V) (Conix — C()) (19.43)
dat (d) tend(d) — (M(Adt) 5) (Coix — C(d)). (19.44)

Given the mixed tracer concentration (19.42), we have
dat(s)tend(s) + dat(d)tend(d) =0, (19.45)

which reflects the conservation of tracer.

p=1035
1 p=1033

p=1034

p=1035

p=1036
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Figure 19.4: Schematic of a situation where a dense parcel sits on a shelf next to a column whose
upper portion is light, but whose deeper portion is denser than the shelf. For this case, the/Campin|
land Goosse| (1999) scheme prescribes a transport between the shelf water at level 1 and the deeper
water at level 3, with water bubbling upward to conserve mass as shown in Figure In con-
trast, the sigma transport scheme will not prescribe any enhanced transport, since here the bottom
of the deep column is denser than the shelf.

19.5 Sigma friction

The previous schemes introduce a new transport pathway for tracers. Nothing is done to the
momentum equation. Another idea is to consider an enhancement of the vertical friction acting
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near to the bottom, with the friction introduced via a vertical viscosity. The effects of vertical friction
are related, through geostrophy, to those from |(Gent et al.| (1995), whereby density slopes are
reduced without mixing of density classes (Greatbatch and Lamb, [1990). Alternatively, enhancing
the vertical viscosity next to the bottom increases the Ekman layer thickness next to the bottom,
and this breaks geostrophy, thus allowing for an easier downslope transit of the fluid. The scheme
described in this section is not available in MOM4p1. We mention it, nonetheless, as it may prove
to be of use for some applications.

Following the scaling from |Campin and Goosse| (1999) discussed in Section [19.3.2] we define
a vertical viscosity according to equation

k% = dzt® uslope

5 . 19.46
=— (g) H . Ap dzt® sign(H ). ( )
pp
Using the parameters from Section [19.3.2]leads to a vertical visosity of
k° =0.15ms2, (19.47)

with larger values for steeper topographic slopes and stronger density contrasts. We propose to
introduce this viscosity throughout the sigma layer, and exponentially decrease it above the layer,
with a relatively short decay scale

Kecay = 10M. (19.48)

We suggest computing this viscosity separately for the two horizontal directions, and take the
maximum of the two for the parameterization.



CHAPTER
TWENTY

Cross-land mixing

The purpose of this chapter is to present the method used in MOM4 for mixing tracers and
mass/volume across land separated points, such as across an unresolved Strait of Gibraltar. The
material here is taken from the MOM4 Technical Guide of Griffies et al.| (2004), with slight modifi-
cations to account for generalized vertical coordinates used in mom4p1.

20.1 Introduction

In climate modeling, it is often necessary to allow water masses that are separated by land to
exchange properties. This situation arises in models when the grid mesh is too coarse to resolve
narrow passageways that in reality provide crucial connections between water masses. For ex-
ample, coarse grid spacing typically closes off the Mediterranean from the Atlantic at the Straits
of Gibraltar. In this case, it is important for climate models to include the effects of salty water
entering the Atlantic from the Mediterranean. Likewise, it is important for the Mediterranean to
replenish its supply of water from the Atlantic to balance the net evaporation occurring over the
Mediterranean region.

We describe here a method used in MOM4 to establish communication between bodies of
water separated by land. The communication consists of mixing tracers and mass/volume between
non-adjacent water columns. Momentum is not mixed. The scheme conserves total tracer content,
total mass or volume (depending on whether using the non-Boussinesq or Boussinesq versions
of MOM4), and maintains compatibility between the tracer and mass/volume budgets. It’s only
restriction is that no mixing occur between cells if their time independent thicknesses differ. This
constraint is of little practical consequence.

20.2 Tracer and mass/volume compatibility

Consider two boxes with fluid masses M(1) = p(M) V(1) and M2 = p(2) V(2) and tracer concentra-
tions (tracer mass per mass of fluid) T and T(?) (for a Boussinesq fluid, the density is set to the
constant Boussinesq density p,). A mixing process that conserves total tracer mass and total fluid

287
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mass must satisfy

(T pM V() 4 7@ @ (@)
2

0 (20.1)
2 (oW V) 4 p@ @) — g,

(20.2)

Notably, mass conservation can be considered a special case of total tracer conservation when the
tracer concentration is uniform and constant: T = 1. This result provides an important compatibility
constraint between the discrete tracer and mass/volume budgets. For constant volume boxes
with a Boussinesq fluid, such as considered in rigid lid models, compatibility is trivial. For boxes
which change in time, such as the top cells in MOM4p0 free surface or any box in mom4p1, then
compatibility provides an important constraint on the methods used to discretize the budgets for
mass/volume and tracer. The remainder of this chapter incorporates these ideas into the proposed
cross-land mixing scheme.

20.3 Tracer mixing in a Boussinesq fluid with fixed boxes

To start in our formulation of cross-land mixing, let us consider mixing of two volumes of Boussi-
nesq fluid, where the separate volumes remain constant in time

o,V = 9,v® = . (20.3)

An example is the mixing between two constant volume grid cells. If the mixing takes place instan-
taneously and between the full contents of both boxes, as in convective adjustment, then the final
tracer concentration in both boxes is given by

T v L 7(2) y(2)

T VO (20.4)

Tfina =

It is assumed in convective mixing that the volumes of the two boxes remains unchanged. The
picture is of an equal volume of water rapidly mixing from one box to the other, without any net
transport between the boxes.

Instead of instantaneous and complete convective mixing, consider mixing of the two boxes
at a volume rate U. That is, U represents an equal volume per time of water mixing between the
boxes, with no net transport. As shown in Figure[20.1] U is chosen based on the observed amount
of water exchanged through the passageway. Just as for convective adjustment, the volumes of
the two boxes remains fixed. But the tracer concentrations now have a time tendency. One form
for this tendency relevant for constant volume cells is given by

at<v(2> T(Z)) - u (T(l) _ T(Z)). (20.6)

Since the volumes are constant, we can write these budgets in the form

9T = =0 (T(Z) _ T(l)) (20.7)
u
o, T?® = = (T(l) _ T(2)), (20.8)
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This is the form of cross-land tracer mixing used in the rigid lid full cell MOM1.

In the real world, transport is often comprised of stacked flows where deep water flows one
way and shallow water oppositely (e.g., see Figure [20.1). Hence, a more refined form of cross-
land mixing may consist of upwind advective fluxes acting between non-local points in the model,
where the advective velocity is specified based on observations. Such sophistication, however, is
not implemented in MOM4. Indeed, it is arguable that one may not wish to have more details than
provided by the simpler form above, since more details also further constrain the solution.

ktop — ktop
u2
- _

Figure 20.1: Schematic of cross-land mixing. The model’s grid mesh is assumed too coarse to
explicitly represent the lateral exchange of water masses. For this schematic, we consider an ob-
served sub-grid scale transport U; moving in one direction, and U, in another. To represent the
mixing effects on tracers by these transports, we suggest taking the exchange rate U in MOM4's
cross-land mixing to be the average of the transports U = (U + Uy) /2. Cross-land mixing occurs
between the user-specified depth levels k = ki, and k = k. If ktop = 1, then cross-land mixing
of volume in the top cell must be considered, in addition to tracer transport, in order to maintain
compatibility between volume and tracer budgets.

20.4 Mixing of mass/volume

In a model with a coarse mesh, the Mediterranean is typically land-locked. Hence, the net evap-
oration experienced over the Mediterranean region will cause the simulated ocean volume in this
region to decrease without bound. In a model resolving the Straits of Gibraltar, there is a transfer
of mass across the Strait from the Atlantic. This mass transfer creates a change in the height of
the free surface.

Our goal is to have a parameterized mass transfer associated just with a difference in the free
surface height. That is, if the densities are different yet the free surface heights are equal, then
there is no mixing. By transferring masses of water, we must also recognize that the water contains
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tracer. Hence, mass and tracer mixing must maintain the compatibility mentioned in Section [20.2]
In this section, however, we only introduce a basic form for mass transfer. Full compatibility with
tracer transfer is achieved in Section

20.4.1 Instantaneous and complete mixing

To start by considering what form for mixing is appropriate, consider a convective analog whereby

a complete mixing of masses p() AM (M) and p(2) A2 1(2) |eaves the final mass per area in both

cells given by

pW AW M) 4 p(2) AQ) p2)
A + A2)

where A() and A are the temporally constant horizontal areas of the two grid cells and #(!) and
h2 are their generally time dependent thicknesses.

There are two problems with this mixing. First, it is too rapid and too complete. We prefer a
method that allows for some control in the rate of mixing. Second, it changes the mass within a
grid cell in cases where the initial masses per area are equal yet the constant horizontal areas of
the cells differ.

(oh) finar = , (20.9)

20.4.2 A finite time incomplete mixing

A finite time and incomplete mixing is analogous to that taken for the tracers in Section Here,
we consider the time tendencies for the mass per area within a cell
3t (P hWYy = 1) (p2) 1) — p(1) 1)y (20.10)
3:(p® h?)) =y () (1) — () (), (20.11)
where ¥ and ¥ are inverse damping times. This proposed mixing results in a transfer of mass

only when the mass per area within the two boxes differs. The total mass of the two-box system is
conserved if the following constraint is satisfied

at[(phA)(l) + (phA)(z)] — (A(l) 1) — A@) y(Z)) (p® h® — pM My = 0. (20.12)
This relation places a constraint on the inverse damping times y(!) and y(2)
AW 5 (1) = A2)(2) (20.13)

which is easily satisfied.

The problem with the mixing prescribed by equations (20.10) and (20.17) is that mixing will
ensue in the following two undesirable cases. First, if the densities of the two cells are initially the
same p!V) = p(@) = p, yet the cells have different thicknesses, then density change is driven solely
by the difference in cell thicknesses

9, M) = oy (2 — () (20.14)
h? 9,0 = py @ (K — ), (20.15)

Such is acceptable in our scheme only for the surface ocean grid cell.



20.5. TRACER AND MASS MIXING 291

Another problem with the mixing prescribed by equations (20.10) and (20.11) is seen by consid-
ering the situation whereby two top model grid cells have initially equal thicknesses h(1) = h(2) =
yet different densities. The model grid cell thickness will evolve because of the difference in den-
sities

pM 9 hM) = 1y (p2) — (1) (20.16)
p2 9, h? =y (0(1) _ p(2)>‘ (20.17)
However, as stated at the beginning of this section, we aim to prescribe a mixing process that

occurs only when the tracer concentration and/or free surface heights differ. Therefore, we must
consider an alternative to equations (20.10) and (20.11)

20.4.3 A finite time incomplete mixing for surface cells

We consider the following prescription for the surface grid cells, in which mixing occurs only when
the surface heights differ

at(p(l) h(l)) — ,)/(1) D (h(2) _ h(l)) (20.18)
at(p(Z) h(Z)) _ ,)/(2) 9 (h(l) — h(2)). (20.19)

When considered over interior model grid cells, then we prescribe no mass transfer. The density
factor p can be given by anything convenient, such as

1) (2)
p= w, (20.20)
2
or the even simpler prescription
0 = Po. (20.21)

20.5 Tracer and mass mixing
The general case of mixing tracers and mass is now considered. The following are the aims of the
formulation.

o Total fluid mass in the two boxes is conserved.

e Total tracer mass in the two boxes is conserved.

¢ In the rigid lid Boussinesq full cell case, the tracer tendency reduces to equations (20.7) and
(20.8) used in MOM1.

e Mass is exchanged only between top grid cells, in which case if the tracer concentration in
the two boxes is the same yet the mass differs, then mixing of mass will leave the tracer
concentrations unchanged.

e The time tendency for the mass exchange in the top cells is proportional to the difference in
surface height eta_t between the cells, rather than the generally smaller difference between
the cell thickness dzt.
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Mixing that satisfies these constraints is given by the following for the surface grid cells with k = 1

2(p) hD Ty = (A(l) (;(U)Pjr - ><h<z>T<z>_h<1>T<1>) (20.22)
2(p® H® T®)Y = <A(2 ZUPO > §@ 7)) (20.23)
% (pW rVY = <A(1 ZUPO > (20.24)
2P n?) = <A(2 ZUPO ) (20.25)

Likewise, for interior cells with k > 1, we prescribe

2 Urho_dzt
(1) () 7)Y — @ _ ()
3t (oM M Ty = (A<2>(H<>+H<>)>(T M) (20.26)
2Urho _dzt 1 2
dt(p? (A (2))> (T — 7)) (20.27)
3t (pM M) =0 (20.28)
o (p <>h< >) =0. (20.29)

In these equations, H is the depth of a column with a resting ocean surface. For the k > 1
equations, rho_dzt is the averaged thickness weighted density for the two cells. For the k = 1
equations,

h(k =1) = Grd%dztx—; + eta_t (20.30)

is the thickness of the top cell for the case of a geopotential vertical coordinate. The general
Thickness%dzt; j x—1 thickness varies much less rapidly in the horizontal when employing zstar or
pstar as the vertical coordinate. In order to employ similar mixing rates for the geopotential model
as for the general vertical coordinate models, we prefer the more restricted definition of
thickness based on the geopotential model. The mass per area equations and
result from the tracer equations and upon setting the tracer concentrations to a
constant, as required for compatible budgets.

20.6 Formulation with multiple depths

We now consider the case where there are multiple boxes in the vertical. We restrict attention to
situations where mixing occurs between boxes at the same vertical level, as shown in Figure[20.1]

20.6.1 MOMI1 formulation of cross-land tracer mixing

In MOMT1, the vertical cells all have time independent thicknesses (i.e., rigid lid geopotential coor-
dinate model), and the fluid is Boussinesq. It is useful to start with this case prior to considering
the more general case.
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In the full cell rigid lid case, we follow the approach given by equations (20.7) and (20.8), where
the relevant volume now becomes that for the respective column. The volumes for the two columns
Ix = 1,2 are given by

ktop
VI = A Y dzey = A g0, (20.31)
k=Kkbot
where
A(lx) — dth_,j (Ix) dyti,j (Ix) (2032)

are the generally different horizontal cross-sectional areas of the tracer cells in the two columns,
and HY) = H® is the vertical thickness of the two columns. The top and bottom k-levels for the
columns are set by k = ktop and k = kbot. As mentioned earlier, the formulation here allows for
mixing only between boxes that live on the same k-level, so k = ktop and k = kbot are the same
for both columns [x =1, 2.

Use of these volumes in equations and leads to the tracer time tendencies for a
particular k-level

o1V = BY(TY -1) (20.33)
T = B (T —T?), (20.34)

where U
B — 0 (20.35)

represents the rate (B(*) has units of inverse time) at which the two columns participate in the
mixing. Conservation of total tracer is maintained between two horizontally adjacent boxes within
the two columns. We see such conservation via multiplying the above tendencies by the respective
time independent volumes of the two cells, and adding

(VN TV 4 v Ty — (1T — (V) (A0 B (1) — 4@ B2 )y — g, (20.36)
where
AW g h}gl) —U (h,gl)/H(l))
— u(h?/H®) (20.37)
= A@ @)
was used.

20.6.2 Generalizing to free surface and non-Boussinesq

We now generalize to the case of time varying grid cells with generalized vertical coordinates.
Based on the considerations of Section [20.5|and the form used in MOM1, we write for the general
case for a surface grid cell with k = 1

1) ,.(1) (1 2Up, 2) (2 1) (1
(ot nD T — <A<1> to iH@))) (HO T _ D T (20.38)

2Up, (1) (1)
( A® (HD + H<z>)> " T

(o n? Ty = P T, (20.39)
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where again H() and H?) are the generally different static resting depths of the two columns, and
h(k =1) = Grd%dztx_; + eta_t (20.40)

according to our prescription given by equation (20.30). Setting the tracers to uniform constants
leads to the transfer of mass per area between two surface cells

(1) 4,(1)y _ 2Up, 2 ()
Hloc ) = <A(1) (HO + H(Z))> (™ =H) (2041

2) @)y _ 2Up, 1 _ @
d(p h) = (A(2> (H(1>+H(2))> (hy’ —h), (20.42)
For interior cells with k > 1, we prescribe
(1) (1) (1) _ 2 Urho dzty @ _ )
or(py ' hy ' T)) = <A(1) (HO T D) (T,” —T.") (20.43)
(2) () (2)y _ 2 Urho dzty (1) _ (2
oo Y T) = <A(2) (HD T HO) (T,” —T.7), (20.44)
where @ @)
m}( _ rho_dzt, —;—rho,dztk (20.45)
is the average thickness weighted density of the adjacent cells, and
h = Thickness%dzt; jx (20.46)

is the general thickness of the tracer cell. By inspection, for each k-level this formulation conserves
total tracer mass and total fluid mass (recall Section[20.4). Setting the tracers to uniform constants
leads to a zero transfer of mass per area between two interior cells.

These budgets can be written in a form familiar from other damping processes, in which for
k =1 we have

at(p(l) L T(l)) =W p, (h(Z) 7 _ M) T(l)) (20.47)

9(p? h® 7@y = 2 p, (KW T — 2 T(2)) (20.48)

3r(p By = ¥V py () — V) (20.49)

9 (p® 1) =y p, (W) — n) (20.50)

where the depth label k was omitted for brevity, and
2U
1) —
Y= AW (HD + HO) (2051)
Y2 = 2U (20.52)

AR (HM) 4+ H2))

defines the damping coefficients. For interior cells, only tracer concentration is mixed, in which
case

3t (oM hW Ty = (M) tho_dzt (T — 7)) (20.53)
3t (p? h? T®)) = v rho_dzt (T — T?)), (20.54)
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with ¥(1) and v as for the surface cell.

The damping coefficients (20.51) and (20.52) are generally time dependent for cases with
mixing in the top cell and where the free surface height is included when computing the column
thicknesses H(Y) and H?). One may alternatively be motivated to keep the damping coefficients
constant in time by setting H) and H® to be the time independent depth of the respective
columns. This choice is appropriate when using cross-land mixing between columns in shallow
regions where the free surface height is some nontrivial fraction of the full column depth. MOM4
generally sets the thicknesses to their time independent depths.

To get a sense for the strength of the mixing, consider the case of a one-degree horizontal
grid mesh where the upper thousand meters of the water column is mixed across Gibraltar with
U =1.75 x 10°m3s~1, which is a reasonable value. With HV) = H(?) ~ 1000m we have

V)~ v? x~1.2x10%md, (20.55)
and to the damping coefficient
YU x5 = % ~15x%x107s™! ~ 77 days™ . (20.56)

Just as for any other form of mixing, if the damping coefficients are too large, then it is possible
for there to be numerical instabilities. MOM4 provides a check so that no more than one-half of a
particular grid cell is mixed per model time step.

20.7 Suppression of B-grid null mode

When mixing the free surface height across an unresolved strait, it has been found essential to mix
between two pairs of adjacent columns in order to suppress the checkerboard null mode present
on the B-grid (see Chapter 26 of (Griffies et al.|(2004)). For the Mediterranean example, this means
choosing any two adjacent points on each side of Gibraltar and setting the volume transport for
each columnto U = (1/2)1.75 x 10°m3s~1.
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CHAPTER
TWENTYONE

Implicit treatment of vertical mixing

The purpose of this chapter is to detail the method used to implicitly time step vertical SGS pro-
cesses. The material here is based on Section 9.5 of the MOM4.0 Guide (Griffies et al., [2004).
There are some novel features discussed here arising from the possibility of including bottom drag
implicitly in MOM4p1, which is useful when employing large bottom drags.

When the MOM4 namelist aidif is set to unity, vertical mixing of momentum and tracers is
time stepped implicitly. When aidif = 0.0, vertical mixing is time stepped explicitly. Intermediate
values give a semi-implicit treatment, although at present MOM4 does not support semi-implicit
treatments. An implicit treatment of vertical mixing allows unrestrained values of the vertical mixing
coefficients. An explicit treatment, especially with fine vertical grid resolution, places an unreason-
able limitation on the size of the time step. The use of fine vertical resolution with sophisticated
mixed layer and/or neutral physics schemes has prompted the near universal implicit treatment of
vertical mixing in ocean climate models.

21.1 General form of discrete vertical diffusion

We can write the vertical diffusion equation in the discrete form

o (pdz ) = —(Ji1 — J§), (21.1)

where J? is the vertical SGS flux entering cell k through the bottom face of the cell, and J7_, is the
vertical SGS flux leaving cell k through its top face. The field ¢ can be either a tracer concentration
or a horizontal velocity component. For an implicit treatment of either vertical diffusion (for tracers)
or vertical friction (for velocity), we have time stepped ¢ using all time explicit pieces, and thus
produced a field ¢*(7 + 1), which is the updated field sans the time implicit contributions. So for
the purpose of formulating the implicit time stepping portion of the vertical physics, we write the
time discrete vertical diffusion equation

(pdz)i(r +1) = (pdz p)j (7 +1) — ATaidif (i, — Jf), (212)

where we assumed the preferred MOM4p1 forward time stepping schem and exposed the
dimensionless time-implicit factor aidif. Again, for implicit time stepping, aidif = 1.0, which

1For the leap-frog scheme, the At factor goes to 2 At.

297



298 CHAPTER 21. IMPLICIT TREATMENT OF VERTICAL MIXING

is the general case for a simulation with nontrivial vertical physics. The mass per area of a grid
cell is updated prior to the tracer concentration or velocity components, thus allowing us to divide
equation (21.2) by pdz at time T + 1, yielding

Gr(t+1) =dp(t+1) =T (Ji1 — Ji), (21.3)
with
aidif At

k= (pdlz)(—fr—i—l) (21.4)

21.2 Discretization of vertical fluxes
The vertical flux 7 is located at the bottom of the k' tracer or velocity cell. A positive value for J

leads to an increase in ¢ (7 + 1). Away from surface and bottom boundaries, we assume that this
flux takes the downgradient form

(21.5)

- (¢k(T+1) —¢k+1(T+1)) ‘

dzwty

The factors of ¢ are evaluated at time 7 + 1 because of the implicit treatement. The vertical mixing
coefficient k; has a general space-time dependence set by a vertical mixing scheme. As for the flux
itself, the diffusivity i is situated at the bottom of the tracer or velocity cell, depending on whether
¢ is a tracer field or velocity component. The factor of p, is needed for dimensional consistency,
and by our assumption that « is a kinematic viscosity or diffusivity. The array dzwt; represents the
vertical distance between tracer points at time 7. For vertical mixing of velocity, dzwt becomes the
distance between velocity points dzwu.
At the ocean surface, the vertical flux is given by the surface boundary condition sflux placed
on the velocity or tracer. For a tracer,
Ji_o = —stf, (21.6)

with st£ MOM4’s surface tracer flux array with units of velocity times density times tracer concen-
tration. The minus sign arises from the MOM4 convention that associates a positive stf with an
increase in tracer within the k = 1 cell. In contrast, the present discussion assumes a convention
for the flux J* whereby a positive J;_,, is associated with a decrease in tracer within the k = 1 cell.
For velocity,

Jiep = —snf, (21.7)

with smf the surface momentum flux with units of density times squared velocity. At the ocean
bottom, a similar condition leads to
Jiie = —btf (21.8)

for bottom tracer fluxes, and
iy = —bmf (21.9)

for bottom momentum fluxes. The minus signs again represent a difference in convention between
MOM4 and the present discussion. In MOM4, a negative btf represents the passage of tracer
from solid rock into the ocean domain, as in geothermal heating. For velocity, a positive bmf
represents a drag on the ocean momentum field due to SGS interactions with the solid earth.
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21.3 A generic form: Part A
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To develop the solution algorithm, it is necessary to put the vertical diffusion equation into a generic
form. For this purpose, let us consider in sequence the equation for surface cells k = 1, interior

cells with k > 1, and bottom cells with k = kmt.

21.3.1 Surface cells

For surface cells with k = 1 we have

Gr(t+1) = dp(t+1) + Ti(T) Ty — i)
= ¢r(t+1) = Ti(7) (stf+J§)

= ¢r(T+1) = Ti(7) stf + Ti(T) po ki (

Gr(T+1) — (T + 1)) ’

dzwty

which leads to

N o ) o
G (T+1) + Te(7) st = y(T+1) <1+W> — dpar(T+1) (W).

For velocity mixing, stf becomes smf, and dzwt becomes dzwu.

21.3.2 Interior cells

For interior cells,
Pe(T+1) = (T +1) +Tie(7) g — J5)
= (T +1) = Ti(T) po ki1 <¢k1(7+ D) = dlr+ 1)>

dzwty_q

Gr(T+1) — P (T+ 1))

dzwt

+ Tk (T) po Kk (

which leads to

Pe(T+1) = (T +1) (1 o () po ki1 Tie(T) o Kk>

dzwty_q dzwty
[ (T) Po Ki— [%(T) po K
~ (T +1) <kfiz)wt°k : 1) ~ (T +1) (ksz)wt”k k>-

21.3.3 Bottom cells

Bottom cells with k = kmt (i, j) have

Ge(t+1) =dp(t+1) + Ti(T) Uy — J§)
= (T +1) + Ti(1) (JE_1 +btf)

= qf)k(’l' + 1) —+ rk(T) btf — rk(T) Po Kg—1 <

Gr1(T+1) — Pr(T+ 1)> /

dzwty_q

(21.10)

(1.11)

(21.12)

(21.13)

(21.14)
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which leads to

* h) o Ki— ) o Ki—
G (T+1) — Te(7) bt = (T +1) <1+’m> (T +1) (’m) (21.15)

21.3.4 Form appropriate for Numerical Recipes

Introducing the notation

| =Tx(7) po Kx—1/dzwty_q ifk>1
Ay = { . M (21.16)
[ —Tk(7) po ki /dzwty if k < kmt
G = { 0 if k = kmt (21.17)
Bi=1—A,—C (21.18)
O (T+1)+Ti(r)stf ifk=1
0; ={ ¢i(r+1) if 1 < k < kmt (21.19)
¢r(T+1) — Te(1)btf if k = kmt

renders
Op = A dr—1(T+1) + Be (T + 1) + Cr rga (T4 1). (21.20)

The solution is arrived at by performing a decomposition and forward substitution. The details
are taken from pages 42 and 43 of Press et al.| (1992).

214 A generic form with implicit bottom drag

We deviate from the previous approach to present here the formulation assuming the bottom
boundary fluxes are computed implicitly. Such is important for the case of a bottom drag

Jicia = —P0 Cau \/1127+112 (21.21)

where a large bottom drag coefficient C;, or large residual velocity u,.s require a time implicit
solution method. For the global one-degree class of models typically run at GFDL, C; > 0.002
generally requires an implicit treatment of bottom drag. Implicit bottom drag is enabled in MOM4p1
by setting the appropriate namelist logical inside ocean_bbc_nml.

To time step bottom drag implicitly requires a nonlinear solver. Rather than take that route,
we take the simpler approximate approach, also employed when the diffusivity or viscosity is a
nonlinear function of the flow. That is, we time discretize the bottom drag as

Jiciam = —Po Cau(t + 1) {/u, + u?(7). (21.22)

Hence, for the purpose of formulating the time implicit algorithm, we write the bottom drag

Jickw = —vu(t+1), (21.23)
where
Y =poCq u%es + uz(T) (21.24)

is a nonlinear function of velocity at time 7. We can now modify the steps detailed in Section|[21.3]
using the nonlinear bottom drag (21.23). As this situation arises in practice for the momentum
equation, we employ velocity cell labels where appropriate.
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21.4.1 Surface cells

For surface cells with k = 1 we have

Pe(t+1) = (T +1) + Ti(T) Ty — i)
= ¢(T+1) = Ti(7) (smf + )

= ¢p(T + 1) — Ty (1) smf + Tk (T) po ki (

Gr(T+1) — (T + 1)) ’

(21.25)
dzwuy

which leads to

M o } 0
¢ (T+1) + Ti(7) smf = (T +1) (1+"E;ik’<"> — (T +1) (W). (21.26)

21.4.2 Interior cells

For interior cells,

d)z(’f%— 1) = ¢p(t+1) 4+ Ti(71) (]lf—l B ]l?)
= ¢r(t+1) — Ti(T) po K1 <¢k1(’r+ 1) — ¢p(T+ 1))

dzwuy_q

Gr(T+1) — (T + 1))

dzwuy

+ rk(T) Po Kk < (2127)

which leads to

x Te(T) po Ki—1 |, Ti(T) po Kk
1) = 1 1
Bi(r+1) = gur 1) (14 B2 B2

— (T 1) <W”K“> — (T 1) (W”K") . (21.28)

dzwuy_ dzwu
k—1 k

21.4.3 Bottom cells
Bottom cells with k = kmu(i, j) have
Pe(t+1) = dp(t+1) + Ti(1) Uy — i)
= ¢r(T+1) + Ti(T) (JF_; + bmf)

= Ge(T+ 1) + Ti(0) ¥ (T + 1) — (1) Po k1 <‘Pk—1<’f +1) — de(t+1)

dzwuy_1q

> , (21.29)
which leads to

r 0 — r 0 —
OE(t+1) = (T +1) (1 +yT(7) + ’m> — (T +1) (W) . (21.30)
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21.4.4 Form appropriate for Numerical Recipes

Introducing the notation

— T) Po Ki—1/dzwuy_q ifk > 1
N { 0 ifk=1 (21.31)

- T) po K /dzwuy  if k < kmu
N { 0 if k = kmu (21.32)

_ 1_Ak_ck if k < kmu

B { 1+ yT(t) — Ay — Cr if k = kmu (21.33)

£ _ ¢>7Q(T+1) + () smf ifk=1
= { bp(t+1) if 1 < k < kmu (21.34)

renders

Of = A pr_1(T+1) + Br (1 + 1) + C pa (T + 1). (21.35)

The solution is arrived at by performing a decomposition and forward substitution. The details
are taken from pages 42 and 43 of |Press et al.| (1992).



PART IV
Diagnostic capabilities

The purpose of this part of the manual is to describe some of the diagnostic capabilities in
MOM4p1.
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CHAPTER
TWENTYTWO

Streamfunctions

The purpose of this chapter is to present the mathematical formulation of streamfunctions com-
monly used to summarize the overturning circulation as well as the vertically integrated circulation.
This chapter is updated from that presented in the MOM4.0 manual of |Griffies et al.| (2004).

22.1 Brief on notation

In this chapter, we employ generalized orthogonal coordinates, in which the horizontal grid incre-
ments are given by

dx = by dé&t (22.1)
dy = hy d&%. (22.2)

The stretching functions h; and hy are generally dependent on the horizontal position on the
sphere, but independent of vertical position and independent of time. In spherical coordinates,

dx =R cos¢pdA (22.3)
dy = Rd¢, (22.4)

with R the earth’s radius, A the longitude, and ¢ the latitude.

22.2 Meridional-overturning streamfunction

The meridional overturning streamfunction is commonly used to diagnose features of the thermo-
haline circulation. The purpose of this section is to formulate an expression for this streamfunction,
and in turn to highlight its limitations.

22.2.1 Summary of mas conservation for a finite region

In Section we developed the conservation equations for scalar fields over a finite size region,
such as a model grid cell. In particular, the mass budget for a grid cell (equation (3.166)) is written

dt(dzp) =dzpSM — V- (dzpu) — (pw"))ses, |, + (pw!)s—s,. (22.5)
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In the following, we neglect mass sources SM) for brevity, but they may be easily reintroduced if
present as part of a model’s subgrid scale parameterization As noted by equation (3.167), the
divergence operator acting on the flux of mass per unit horizontal area takes the form

1 9 1 0
Vs-(dzpu) = dy 9% (dydzpu) + dx 3y (dxdzpwo), (22.6)

which leads to the expanded form of mass conservation

0 0
d¢(dxdyd =—dx-— (dydzpu) —dy =— (dxdzpo
t(dxdy dzp) 5x (dydzpu) —dy 5 (dxdzpo) 227)

— (dxdyp w(s))szskf1 + (dxdyp w(s))szsk.

This result follows by assuming the horizontal area dx dy of a grid cell is independent of time and
depth.

22.2.2 Zonally integrated mass transport
We now consider the integrated mass transports

&

V= /dx (vpdz) (22.8)
&
&

W = /dx (wpdy), (22.9)
&l

which provide the meridional and vertical transport of mass (kg/sec) integrated along a line of
constant generalized zonal coordinate &'. Integration endpoints £} and &} are assumed to be at
land-sea boundaries, where u vanishes, or over a periodic domain. As in the spherical coordinate
case, we refer to V as the generalized meridional transport, though the generalized coordinates
need not be aligned with the geographical latitude/longitude coordinates.

Now consider the meridional derivative of the meridional transport

&
d
dy V= 3y [dx(vpdz)

a

&

1
= 22.1
7y 922 /dx (vpdz) (22.10)
&
&
1 d
= hz/agz(dxvpdz).
¢

IThe cross land scheme of Chapterintroduces mass source and sink terms.
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In the last step, we alllowed for the partial derivative operator d/9£? to commute with integration
over paths with constant generalized zonal coordinate &'. This result follows since the generalized
horizontal coordinates (&1, £2) are independent. Correspondingly, we may introduce the increment
dé&? inside and outside of the integral to render

&
1 J
d, V= dy/dy @(dxvpdz). (22.11)
3

1
a

We now use the mass conservation equation (22.7) to find

&)
V= dly / (—Eh(dx dydzp) — (dxdy pw(s))s:sk_1 + (dxdy pw(s))s_sk> , (22.12)
&l

where we cancelled the zonal transport term u p dy dz, since it either vanishes at the zonal bound-
aries (£}, .), or exhibits periodicity. Introducing the vertical transport (22.9) yields

&
dyd, V + oW = — / 3:(dxdy dz p) (22.13)
&
with
SW = W1 — Wk (22.14)

the vertical finite increment of the vertical transport.

Equation is a direct result of the mass conservation equation applied to a zonal
integral. It says that the divergence of the zonally integrated meridional and vertical transport
equals to the zonally integrated tendency of mass. This result is the basis for our next step, which
is to define a streamfunction.

22.2.3 Mass transport streamfunction

A streamfunction can be defined for any non-divergent transport. For the zonally integrated mass
transport, equation says there is zero divergence if the zonal integral of the time tendency
of mass vanishes. Zero time tendency arises if the top and bottom grid cell boundaries are set
according to constant hydrostatic pressure surfaces, so that pdz = —¢~!dp. In this case, the
mass within a cell is constant in time. Analogously, there is also a zero divergence of the volume
transport for a Boussinesq fluid using geopotential vertical coordinates, in which case the volume
of fluid in a cell is constant. In more general cases, however, there is no guarantee that the mass
within a cell is constant. Additionally, in the presence of water crossing the ocean boundaries,
mass will change, again leading to a nonzero divergence. Even with these caveats, the stream-
function defined below provides a very useful measure of the zonally integrated mass transport,
thus motivating its near ubiquitous use as a model diagnostic.
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In the case of a non-divergent zonally integrated mass transport, a mass transport streamfunc-
tion ¥ can be introduced according to the following specifications?]

V=—5Y (22.15)
W=y, (22.16)

The streamfunction has dimensions mass/time, just as the meridional and vertical transports V
and W. The typical oceanographic dimension for these transports is Sverdrup, where 1Sv =
10%°kg sec™ 1.

To derive a diagnostic expression for the streamfunction, we may start from either of the ex-
pressions (22.15) or (22.16). Integration and the use of boundary conditions then leads to ex-
pressions for ¥, with the two expressions equivalent if the zonally integrated mass transport is
non-divergent. In many simulations, the meridional transport V is more easily computed than the
vertical transport VW, making the specification V = —§; ¥ the most common starting point. From a
finite volume perspective, the relation V = —§, ¥ says that the discretized streamfunction should
be computed at the top and bottom interfaces of grid cells, so that its vertical difference across the
cells then leads to the meridional transport through the cell’s vertical side walls (see Figure [22.1).
Correspondingly, the streamfunction is horizontally co-located with the meridional transport

The relation V = —§, ¥ remains valid if we modify ¥ by any function of horizontal position,
since the vertical difference eliminates the arbitrary functionﬂ We choose to exploit this ambiguity
by specifying the arbitrary function so that the streamfunction has a zero value at the ocean bottom.
We are motivated to take this choice since for most oceanographic purposes, there is no mass
transport considered between the liquid ocean and solid earth. Consequently, the solid earh
boundary condition is time independent, and for convenience we specify that it vanishes.

Let us now develop the streamfunction, starting from the ocean bottom using the definition
Y = =4, V. For the top surface of the bottom-most cell with k = kmt, we have

\ykmt—l =0— Vkmt/ (22-17)

where 0 = ¥,,,; is inserted as a place-holder for the next iteration, and V,,; is the meridonal
transport leaving the vertical side walls within the bottom-most cell. For the next cell up in the
column, we have

\ykmt—2 = \ykmt—l - Vkmt—l

(22.18)
- _Vkmt - Vkmt—l-
Induction leads to the result
kmt
Ye=— Y W
k=K+1
o [ (22.19)
=— ) /dx(vpdz) ,
k=K+1 \ ;. L

2This definition of ¥ has an associated sign convention, with the opposite convention just as valid mathematically,
but chosen less frequently in practice.

3We are led to an alternative grid placement for ¥ if starting from the relation W = Wy

4This ambiguity represents a gauge symmetry, which can be exploited in whatever manner is most convenient.



22.2. MERIDIONAL-OVERTURNING STREAMFUNCTION 309

with a continuous expression given by

z

Xp
Y(y,z,t) = —/dx /vpdz’. (22.20)
X

In the continuous expression, it is important to perform the vertical integral first, since the bottom
topography z = —H(x, y) is a function of the horizontal position.

—oV
——Viz1

Ea— TR

T (Vkmt

W, =0

Figure 22.1: This figure illustrates the relation between the meridional-overturning streamfunction
Y and the meridional transport V, for the particular case of kmt = 4 vertical grid cells. The
streamfunction is evaluated on the interfaces between the vertical cells, whereas the transport
measures the mass leaving the cell in the meridional direction. Note the relatively think bottom
cell can arise from the use of bottom partial step representation of topography as used in MOM4.

22.2.4 Transport beneath an arbitrary surface

As shown in Section 40.9 of |Pacanowski and Giriffies| (1999), we can extend the above consid-
erations to the case of generalized vertical coordinates. In this case, we are concerned with the
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meridional transport of fluid beneath some generalized vertical coordinate surface. It is a straight-
forward matter to extend the definition of the overturning streamfunction to this case, where

Xp s(z)
Y(y,s,t) = —/dx / vpdZ, (22.21)
Xa S(*H)

with s = s(x, y, z, t) the generalized vertical coordinate (see |Griffies| (2004) for details). Surfaces
that are physically of interest include various potential density surfaces, which are especially rel-
evant when the flow is adiabatic. See Section 40.9 of Pacanowski and Griffies| (1999) for more
discussion.

22.2.5 Transport from GM90

The parameterization of Gent et al.| (1995) provides a volume transport in addition to the resolved
scale Eulerian mean transport. The total meridional-overturning streamfunction takes the form

ot (y, 7, t) /dx /dz p (v +v8™M). (22.22)
We consider now special cases for the eddy-induced velocity v8™.

22.2.5.1 Boussinesq geopotential coordinates

In the Boussinesq case with geopotential vertical coordinates, the meridional eddy-induced veloc-
ity is given by

with S, = —d,p/9dp the neutral slope in the y-direction and « > 0 a kinematic diffusivity. Perform-
ing the vertical integral on the GM90 piece leads to

y(tot) (y,z,t) =Y(y,zt) +¥3"(y,z,t) (22.24)

where
WM (y,z,t) = po /dx (kSy) (22.25)
with S, = 0 at z = —H, and py the reference density for the Boussinesq fluid. Hence, the |Gent

et al.| (1995) parameterization adds a contribution that scales linearly with basin size, isopyncal
slope, and diffusivity

WM oo L Sk. (22.26)

As an example, let k = 103m?s~!, S = 1073, and L = 10”7 m, which yields 7 ~ 10Sv. Such
transport can represent a nontrivial addition to that from the resolved scale velocity field.
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22.2.,5.2 Non-Boussinesq pressure coordinates

In the hydrostatic non-Boussinesq case with pressure vertical coordinates, the meridional eddy-
induced velocity is given by
8" =9, (§pKSy) (22.27)

with S, = —d,p/d.p the neutral slope in the y-direction relative to constant pressure surfaces.
Performing the vertical integral for the GM90 streamfunction leads to

Xp
WM (y,z,t) = /dx(pK Sy). (22.28)
Xa

22.2.6 Diagnosing the streamfunction in Ferret from MOM4 output

In MOMA4, there are two key diagnostics computed on-line that should be saved in order to deter-
mine an accurate expression for the streamfunction:

ty_trans = dx (v pdz) (22.29)
ty_trans_gm = dx (o« Sy) (22.30)
Computing the Eulerian streamfunction (22.20) requires the following operations

zZ

Xp
Y(y,z,t) = —/dx /vpdz'

.  -H

oo oo (22.31)
:—/dx /vpdz’+/dx/vpdz’

Xa —-H Xa z

= —ty_trans[i=@sum,k=@sum] + ty_trans[i=@sum, k=@rsum].

We must compute the streamfunction in this manner since Ferret’s relative sum k=@rsum starts
from an assumed zero value at the surface and integrates downward, whereas the streamfunc-
tion has a zero boundary condition on the ocean bottom. Hence, without subtracting the term
ty_trans[i=@sum,k=@sum], the diagnosed streamfunction will incorrectly have nonzero values at
the bottom. A nonzero value for ty_trans[i=@sum,k=@sum] arises from net vertically integrated
mass transport through a section. For a rigid lid model, this net transport vanishes.

The GM-streamfunction is simpler to compute, whereby

WM (y 7z, t) = ty_trans_gm[i=@sum]. (22.32)

There is no vertical sum required, since the vertical integral has already been performed analyti-
cally (equations (22.25) and (22.28)).

22.3 Vertically integrated transport

The purpose of this section is to discuss the streamfunction used to summarize the vertically inte-
grated transport. Only when vertically integrated flow is non-divergent, such as for the Boussinesq
rigid lid case, will a streamfunction be sufficient. In general, the streamfunction defined in the
following only approximates the flow. However, for many cases it is quite useful.
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22.3.1 Summary of the rigid lid

With the rigid lid method of |Bryan| (1969), it is assumed that the vertically integrated velocity in
a Boussinesq fluid is non-divergent V - U = 0. Hence, it can be described via a scalar stream-
function U = 2 A V1. In this case, the vertically integrated advective mass transport between two
points is given by

b 0
Tap = po / dl fi - / dz u =t — Py, (22.33)
a —H

where dI is the line element along any path connecting the points a and b, and 1 is a unit vector
pointing perpendicular to the path in a rightward direction when facing the direction of integration.
As written, T,;, has units of mass per time, and so it represents a mass transport (Bryan, [1969).
Therefore, the difference between the streamfunction at two points represents the vertically in-
tegrated mass transport between the two points. It is for this reason that the streamfunction is
sometimes called the mass transport streamfunction.

22.3.2 General case of divergent flow in non-Boussinesq fluids

The vertically integrated horizontal mass transport
n

Ur = / - (22.34)
-H

generally has a non-zero divergence due to fluctuations of mass within the vertical column, as
seen by the column integrated mass balance (equation (3.21))

n n
oy (/ dz p) +V-UP=gupw+ [ dzpS™M), (22.35)
H —H
As for the overturning transport, we ignore mass sources in the following, thus considering
n
V- -UP = —0; / dzp | + qwpw. (22.36)
—H

In either case, the presence of a nonzero divergence requires the introduction of a streamfunction
1y and a velocity potential
UP=2AVY+ Vy. (22.37)

Only for a Boussinesq rigid-lid model with zero fresh water flux will x vanish. Hence, to compute
the precise vertically integrated mass transport passing between two points, a direct evaluation of
the integral

b
T, — / dl - UP (22.38)
a

is given. Although accurate and complete, this integral does not readily provide a horizontal map
of transport, and so it looses much of the appeal associated with the transport streamfunction
used with a rigid lid.
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However, for many practical situations, maps of the function

Y
Y(x,y,t)=— | dy' UP(x, Y1) (22.39)
Yo

are quite useful, where the lower limit y, is taken at the southern boundary of the domain, generally
given by a solid wall for ocean climate models. By its definition, the meridional derivative of 1 yields
the zonal mass transport

P, = U (22.40)

The zonal derivative, however, does not yield the meridional mass transport due to the divergent
nature of the vertically integrated flow. It is for this reason that we denote 1 a quasi-streamfunction.
Notably, for many cases, especially with long time averages, the divergence is small, thus allowing
1 to present a good indication of the path and intensity of the vertically integrated mass transport.

By construction, 1 reduces to the transport streamfunction in the case of a rigid lid where
V - U = 0. However, this is not a unique choice and alternatives do exist. For example,

Y (x,y,t) = P(x0,y,t) + /xx dx' VP(x',y,t), (22.41)

gives
Ve =19 (22.42)

1" has the advantage that zonal derivatives give the exact meridional transport, yet the meridional
derivative in general deviates from the zonal transport. Comparing maps of y» and y* reveals the
degree to which the vertically integrated mass transport is non-divergent. For most purposes of
climate modeling at GFDL, we map the streamfunction ¢ = — fyyo dy’ UP, as deviations from 1*
are modest for most applications.
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CHAPTER
TWENTYTHREE

Effective dianeutral diffusivity

The purpose of this chapter is to detail a method to quantify water mass mixing in MOM without
detailed knowledge of the numerical transport scheme. The method is restricted to experiments
configured with the following:

e Boussinesq fluid;

linear free surface, so that the thickness of a grid cell remains constant in time; alternatively,
to the use of z* vertical coordinate, where each cell has a time independent spacing in z*-
space;

flat bottom ocean;

linear equation of state;

each grid cell has the same volume in x — y — s space, with s the general vertical coordinate;

e zero buoyancy forcing.

Relaxing some of these assumptions is possible, yet not implemented. Momentum forcing via
winds is allowed. Much of the fundamentals in this chapter are guided by the work of [Winters et al.
(1995) and Winters and D’Asaro| (1995). |Griffies et al.| (2000b) applied these methods to various
idealized model configurations in a rigid lid version of MOMB3.

We assume the linear equation of state for an incompressible fluid is written in the form

p=po(1—ab), (23.1)

where 6 is potential temperature, p, is a constant density associated with the Boussinesq approx-
imation, and « is a constant thermal expansion coefficient. The system is open to momentum
fluxes yet closed to buoyancy fluxes.

23.1 Potential energy and APE in Boussinesq fluids

The purpose of this section is to introduce the notion of a sorted density profile in the context of
potential energy and available potential energy (APE). This profile is of particular relevance when
considering the effective mixing occuring throughout a column of sorted fluid in Section [23.2]
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Potential energy of the ocean is given by
E, = / dv pP, (23.2)

where
P=gz (23.3)

is the potential energy per mass of a fluid parcel, g is the acceleration of gravity, z is the vertical
position of a fluid parcel, and pdV = pdx dy dz is the parcel mass.

Available potential energy (APE) is the difference between the potential energy of the fluid in
its natural state, and the potential energy of a corresponding stably stratified reference state. The
reference state is reached by adiabatically rearranging the fluid to a state of minimum potential
energy, which is a state that contains zero horizontal gradients. This rearrangement, or sorting,
provides a non-local mapping between the unsorted fluid density and the sorted density

p(x,t) = p(z*(x,t),1). (23.4)

The sorting map determines a vertical position field z*(x, t) which is the vertical height in the sorted
state occupied by a parcel at (x,t) in the unsorted state. Due to the monotonic arrangement of
density in the sorted state, z*(x, t) is a monotonic function of density p(x, f).

It is convenient to set the origin of the vertical coordinate at the ocean bottom so to keep
potential energy of the unsorted state non-negative. This convention also allows for z*(x, t) to be
defined as a monotonically decreasing function of density. That is,

p(xl,t) < p(Xz, t) = Z*(Xl,t) > Z*<X2, t). (23.5)

Conservation of volume in a flat bottom ocean implies that the sorted fluid state has the same
vertical extent as the unsorted fluid, which renders

0<zz*<H, (23.6)

where H is the ocean depth.
In the following, it proves convenient to denote the density profile in the sorted reference state
using the symbols
P(z",t) = pref(z = 27, t). (23.7)

Given this notation, the non-local sorting map between the unsorted and sorted fluid states pro-
vides the equivalence

p(x,t) = p(z"(x,t),t) = prefs(z = 2", t). (23.8)

In turn, potential energy for the sorted fluid state can be written in two equivalent manners
Enf = 8 / dV 2 pyer(2, 1) (23.9)
— g / AV 2*(x, 1) p(x, b). (23.10)

Equation (23.9) represents an integral over the sorted fluid state, in which the density of this state is
a function only of the depth. The horizontal area integral is thus trivial to perform. Equation (23.10)
represents an integral over the unsorted fluid state, where the density p(x, t) of an unsorted parcel
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is weighted by the vertical position z*(x, t) that the parcel occupies in the sorted state. It follows
that the APE can be written in two equivalent ways

Eare = g [ dVzlp(x,t) = pus(z,1)] (23.11)

— ¢ / AV p(x,t) [z — 25 (x, £)]. (23.12)

23.2 Effective dianeutral mixing

In this section we formulate a method to empirically quantify the effects on water masses arising
from various simulated tracer transport processes. A similar application was advocated by Win-
ters et al.| (1995) and Winters and D’Asaro (1995) for the purpose of diagnosing mixing in direct
numerical simulations of unstable fluid flows. Their focus was on physically motivated mixing such
as that occuring with breaking waves. The main focus here is on spurious mixing due to numerical
errors. The procedure is identical, however, in that for each case, one considers the evolution of
the reference density profile, pref(z, t), in a fluid system closed to buoyancy fluxes

at pref = az* (Keff az* pref)- (2313)

Again, in this equation z* is the vertical position in the sorted fluid state. Therefore, constant
z* surfaces represent constant density surfaces in the unsorted state. As such, the effective
diffusivity ;s summarizes the total amount of mixing across constant density surfaces. If the
simulation does not change the water mass distribution, then Dp/Dt = 0, the sorted reference
density is static d; p,.f = 0, and the effective diffusivity is zero. In turn, any temporal change in
the reference density represents changes in the water mass distribution. These changes are the
result of dianeutral mixing, and so have an associated non-zero k,s¢(z*,t). This is the basic idea
that is pursued in the following sections.

23.2.1 Global effective dianeutral diffusivity

In addition to the diffusivity Keff(z*, t), which is local in density space, it is useful to garner a sum-
mary of the overall dianeutral mixing occuring in an ocean model. A vertical integral of k,¢¢(z*, t)
would provide such information. A quicker computation of a global effective dianeutral diffusivity
can be obtained by inverting the variance equation for the sorted density

9 / dV g% = —2 / AV kefs (920re)" (23.14)

This result, derived for a closed fluid system, suggests the introduction of a global effective diffu-

sivity
(1) = o [dV Pfef
Kglobﬂl - Zde (azprgf)z
This diffusivity provides one number that can be used to represent the total amount of dianeutral

diffusion acting over the full model domain. It vanishes when the simulation is adiabatic, as does
the effective diffusivity «.r¢(z*,t). However it is generally different from the vertical average of

Keff(Z*/ t).

(23.15)



318 CHAPTER 23. EFFECTIVE DIANEUTRAL DIFFUSIVITY

23.2.2 Finite difference approximation

In the following, assume that the discrete sorted density is equally spaced in the vertical with a
separation Az*, and let the vertical coordinate increase upwards from zero at the flat bottom ocean
floor. Note that in general, Az* << Az, where Az is the ocean model’s grid spacing. The reason
is that all the N, x N, x N, grid points in the ocean model are sorted into the reference vertical
profile, which has a vertical range over the same extent as the ocean model: 0 < z,z* < H. As a
consequence, the vertical resolution of the sorted profile is N, x N, times finer than the N, points
resolving the profile at a particular horizontal position in the unsorted state.
On the discrete lattice, the vertical diffusive flux of the sorted density

F= (2%, 1) = —Keff (2%, 1) Oz pref(z*, 1) (23.16)

is naturally defined at the top face of the density cell whose center is at z*. As such, the diffusion
operator at the lattice point z*, which is constructed as the convergence of the diffusive flux across
a density grid cell, takes the discrete form

. FZ(z*,t — At) — F¥ (2" — Az*, t — At
(0 F) (1) _< ( . )).

The time lag is necessary to provide for a stable discretization of the diffusion equation. The
discretization of the flux is given by

F? (z%,t) = —Keff(2%, ) Oz Pref(2z", 1)

ARz ) — *
~ —Kepp(25 1) (pref(z ZAZI Pref (2 )).

Since the flux is located at the top face of the density grid cell whose center is at the position z*, the
effective diffusivity is located at this face as well. Each of these difference operators is consistent
with those used in MOM when discretizing the diffusion equation for the unsorted fluid.
As with the unsorted tendency, the time derivative in the effective diffusion equation can be
approximated using a leap-frog differencing:
_ Pref(2*,t + At) — prof(z*,t — At)

Piecing these results together yields the expression for the vertical flux at the top of the density
cell z* + Az*

(23.17)

(23.18)

. . Az*
F¥' (2%t — At) = F¥' (2" — Az*, t — At) — th [Oref (25, £+ AE) — prop(z,t — AB)]. (2320
This flux can be determined starting from the ocean bottom, where is vanishes, and working up-
wards. Without surface buoyancy fluxes, it also vanishes at the top of the water column, resulting
in conservation of | dz* p,.¢(z*,t). After diagnosing the flux from the tendency, the effective diffu-
sivity can be diagnosed from

* Az*
* _ Tz *
Keff(z ’ t) =—F (Z ’ t) <,Oref(Z* T Az, t) — ,Oref(Z*, f)) . (2321)

The issues of what to do when the density gradient becomes small, as in weakly stratified regions,
is discussed in Sections and
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23.2.3 Relevant vertical stratification range

In the stratified portions of the upper ocean, periods 27t/ N for buoyancy oscillations are roughly
10-30 minutes, smaller in the pycnocline, and in the deep ocean periods are roughly 5-6 hours
(see pages 55-56 of |Pickard and Emery| (1990)). The squared buoyancy frequency for the sorted
reference state is given by

N2 — 8 dpref
o po dz*

g 0y
= - 23.22
1000p, dz*’ (23:22)

where o, = 1000 (p,.s — 1) is the sigma value for the sorted density p,ef(g/cm3). Working with
oyef IS desirable for accuracy reasons. The observed range in buoyancy periods provides a range
over the sorted vertical profile’s stratification for which a calculation of the model’s effective diffu-
sivity will be performed:
dpref  1.035g/cm® 4m?
dz* ~ 980cm/sec? T2’

(23.23)

where T(sec) is the period. With 1 x 60secs < T < 6 x 60 x 60secs defining the period range, the
corresponding vertical density gradient range is

dpref

107 Y¢/cm* < ‘dz <107 °g/cm*, (23.24)

and the corresponding range for the sigma gradient is

d re
10’7g/cm4 < 'Zf

| < 1072g /cm®. (23.25)

23.2.4 A useful test case

When coding the effective diffusivity algorithm, it has been found useful to compare results with
those from a different approach. Here, we horizontally average (i.e., homogenize) the density field
along a particular depth surface. In a model with stable stratification, rigid lid, flat bottom, no-flux
boundary, potential density evolution takes the form

31 (p)™ = —3.(w Y™ + 3. (K pz) (23.26)

where « is a vertical diffusivity and the angled-brackets indicate horizontally averaged quantities.
With zero advection, evolution occurs solely via vertical diffusion. Hence, backing out an effec-
tive diffusivity for this horizontally homogenized system yields «, regardless the horizontal/vertical
stratification. It turns out that this algorithm is far simpler to implement numerically, since it does
not require sorting nor interpolation to a prespecified sorted coordinate z*. Its results are in turn
more robust. Yet, importantly, they are relevant only for the case of no-advection, which is not so
interesting in general yet serves as a good check for specific cases.
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23.2.5 Computational precision

Models run with pure horizontal and/or vertical diffusion theoretically show «,sr > 0 (see Winters
and D’Asaro| (1995) and |Griffies et al.| (2000b)). However, if the stratification range given by equa-
tions (23.24) or (23.25) is violated by more than roughly an order of magnitude, then spurious
values of «,¢r tend to arise. These spurious values include unreasonably large values for «.s in
regions of very low stratification, and negative values in regions of very large stratification. How-
ever, within the range given by equations (23.24) or (23.25), the computation yields reasonable
values. For stratification outside this range, . is arbitrarily set to zero.

Another point to consider is that the stratification of p,.; shows much fine-scale step-liked
structure. Computing an effective diffusivity based on such a profile will in turn show lots of noise.
Averaging over the fine scales is therefore necessary to garner robust answers. That is, the
spurious mixing diagnostic is smoother when having coarser vertical resolution. An objective
means of averaging is to average p,.s vertically onto the same vertical grid used by the forward
model in computing the unsorted density state. If this vertical stratification is itself very fine, then
spurious values of «.¢s may still result, again due to not enough points of p,.r averaged into a
single layer.

23.2.6 Negative K,sf

Those advection schemes which contain dispersion, such as centered differenced advection, have
leading order error terms that are not second order, but rather third order differential operators.
Hence, the diagnosis of k.¢; for these schemes will likely to contain a fair amount of negative
values. In turn, negative x.r may be interpreted as a sign of dispersion errors, which can create
or destroy water masses. Upon introducing convection into the model, much of these undershoots
and overshoots created by dispersion are rapidly mixed. In turn, the resulting s should become
positive upon introducing convection.

Another source of negative s apparently can arise simply due to the finite sampling time and
discrete grid, even in the case of pure diffusion. For example, if there is a mixing event, and if this
event is under-sampled in time, it is possible that the sorted state may have density appear in a
non-local manner. Such mixing events will lead to negative ;. The ability to realize such values
for k.rf motivates a sampling time At equal to time step used to evolve the unsorted density.

23.2.7 A comment on convection

Although the relaxation experiments allow for a focus on adiabatic physics, in a z-coordinate model
there is no guarantee that an experiment will remain vertically stable, especially if running with a
nonzero wind stress. If convective adjustment is then allowed, water mass mixing will occur.
Hence, the experiments which focus on advection must remove convective adjustment. In turn,
the presence of convection is actually quite an important element in determining the effective
amount of spurious water mass mixing occuring in the model. The reason is that certain advection
schemes, through dispersion errors, introduce unstable water which is then mixed-out through
convection. After determining the effective diffusivity from the pure advection experiments, it is
appropriate to then allow convection to occur and to compare the amount of convection appearing
with the various advection discretizations.
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23.2.8 The experimental design

The framework developed in this section applies most readily to an ocean model with a linear
equation of state run without any buoyancy forcing. Since the model is to be run with zero buoy-
ancy forcing, it is necessary to spin-up to some interesting state and perform various relaxation
experiments. An interesting alternative is to run with zero buoyancy forcing but nonzero wind
forcing, such as in a wind driven gyre.

As a test of the implementation for the algorithm to compute ./, it is useful to run a set of
tests with pure horizontal and vertical diffusion; no advection or convection. These experiments
are necessary to establish a baseline for later comparison. After being satisfied, a set of relaxation
experiments should be run with advection and/or other transport processes enabled.

23.3 Modifications for time dependent cell thicknesses

There is presently no formulation of this diagnostic for the general case of a time dependent cell
thickness. The problem is that the one-dimensional effective diffusion equation, written as

U (A2 pre) = i — Fryy (23.27)

to account for time dependent thicknesses, no longer satisfies the compatibility condition of (Griffies
et al. (2001). That is, for cases with all fluxes vanishing in the unsorted state, there is no guarantee
that fluxes likewise vanish in the sorted state, since the evolution of Az* is no longer tied properly
to its neighbor.

23.4 An example with vertical density gradients

It is useful to present some examples which can be readily worked through by hand. These ex-
amples highlight many of the points raised in the previous discussion, and provide guidance for
interpreting the three-dimensional MOM results. Each of these examples considers the dynamics
of the unsorted and sorted density fields when the unsorted field is affected by vertical and hori-
zontal diffusion. For simplicity, we assume the thickness of all grid cells remains time independent.
Extensions to the more general case were discussed in Section We also assume a leap frog
time stepping, though the analysis follows trivially for a forward time step, with T — At converted
to T, and 2 At converted to Ar.

The first example considers the initial density field shown in Figure There are a total of
N = NyNyN, = (4 x 1) x 3 grid cells in this two-dimensional example. The density field has
zero baroclinicity. So the question is: How does this state, and the corresponding sorted density
state, evolve under the effects of vertical diffusion? Note the grid dimensions for the two states are
related through

Az =4AzZ, (23.28)

where z is the vertical coordinate for the unsorted state, and z* is the vertical coordinate for the
sorted state. For the following, it is convenient to define this state as that at time (t — At). The
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potential energies of the unsorted and sorted states are easily computed to be

E,(t—At) = 56p,8AzV (23.29)
E.f(t—At) = 56p,8AzV (23.30)
Eapp(t—At) = 0 (23.31)

where V is the volume of the grid cells, and p, is the density scale. The zero APE is due to the
absence of horizontal density gradients.

2 2 2 2 4
4|l 4| 4] 4 30z 4 12Az* = 3Az
6 6 6 6 4

Figure 23.1: The initial density field for the first example. The number in each box represents
the density, given in units of p,. The left panel shows the density p(x, z, t — At) in the unsorted
fluid state, and the right panel shows the density p.¢(z*,t — At) in the sorted state. Note that the
vertical scale Az* = Az/4 for the sorted state has been expanded for purposes of display.

23.4.1 Evolution of the unsorted state

Evolution of the unsorted density is given by the discrete equation

p(x,z,t+ At) = p(x,z,t — At) — <2AA;) [F*(x,z,t — At) — F*(x,z — Az, t — At)], (23.32)

where the vertical diffusive flux is given by
F*(x,z,t) = —k 6,p(x, 2, 1)

~ (p(x,z + Az, t) —p(x,z, t)) (23.33)
T Az '

F*(x, z,t) is defined at the top face of the density grid cell whose center has position (x, z). In the
following, it is useful to introduce the dimensionless quantity

8wy = 2K At/(Az)*. (23.34)
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This number arises from the chosen discretization of the diffusion equation. For linear stability of
the discretization, 6.,y < 1 must be maintained.

The top panel of Figure shows the vertical diffusive flux through the cell faces at time
t — At, and the bottom panel shows the resulting density p(z, z, t + At). Density in the middle row
does not change, whereas the upper row density increases and the lower row density decreases.
The potential energy of this state is

Ep(t+At) = p, g AzV (56 +8(y))- (23.35)

This increase in potential energy is a result of the raised center of mass arising from the vertical
diffusive fluxes.

N N N

N I S O I

! ! ! N 37z

S

S I S D O I

N N N N
2+0 2+3 2+0 2+ 0

4 4 4 4 3AZ
6- 8 6- 5 6- 0 6- 5

Figure 23.2: Top panel: The vertical diffusive flux F*(x,z,t — At), in units of p, k/Az, pass-
ing through the faces of the unsorted density grid cells. Bottom panel: The unsorted density
field p(x,z,t + At), in units of p,, where the dimensionless increment ¢ is given by 6 = 25, =
4k At/(Az)?. This density field results from the vertical convergence of the flux F?(x, z, t — At).

23.4.2 Evolution of the sorted state
Corresponding to the evolution of the unsorted density, there is an evolution of the sorted density

2 At x .
Pref(Z, t + At) = prop(2, t — At) — <Az*> [F* (z*,t — At) — F* (2" — Az", t — At)]. (23.36)
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The dianeutral diffusive flux is

FZ' (2%, 8) = —Kepp (27, 1) 80 prep (27, 1)

* pre (Z* + AZ*/ t) - pre (Z*/ t) (23.37)
~ _Keff(z ,t) < f AZ* f >’

where p,((z*,t) is the sorted state’s density. F# (z*,t) is defined at the top face of the sorted
density grid cell whose center has height z*. Given the time tendency for the sorted state, the flux
is diagnosed through

z* (% z* (% * Az* * *
F* (2", t — At) = F* (2" — Az", t — At) — <2At> [Pref (2", t + At) — prop (2", t — At)]. (23.38)
The left panel of Figure shows the sorted density field p,.r(z*, t + At), and the second panel
shows the diagnosed vertical diffusive flux F?' (z*,t — At). The third panel shows the vertical den-
sity gradient [py.r(z" + Az*,t — At) — pf(2z*,t — At)]/Az*. The fourth panel shows the effective
diffusivity Keff(Z*,t — At), which is diagnosed from the relation

* Az*
*t— At) = —F* (2%,t — At . 23.39
Kegf (2 ) (z ) (pref(z* + Az*, t — At) — ppof(z%,t — At)) ( )

The units for k¢¢ (2", t — At) are (Az*)?/At. Hence, a value for k.s¢(z", t — At) of 2 in Figure[23.3
indicates a dimensional value of

(a2
At
4AL (Az)? (23.40)
(Az)2 At
= k/4.

Keff(Z*, t— At) =20

=K

This example illustrates a problem with unstratified parts of the sorted profile. As evident from
Figures and the 12 sorted boxes are actually three larger homogeneous boxes, and so
the calculation should compute fluxes and diffusivities for these three boxes rather than for the 12
boxes. Figure [23.4] shows such a combined system, where there are three boxes each of height
Az comprising the sorted state. Repeating the previous calculation for this configuration recovers
the expected «.rr = « on the two interior interfaces. Note that there is no ad hoc setting to zero
certain values of «.¢s associated with unstratified portions of the profile.

As a final note, the potential energy of the sorted state at time t + At is

Erof(t+ At) = po g AzV (56 +16 8, (23.41)

which is higher than the initial potential energy as a result of the raised center of mass. The APE
remains unchanged

EApE(t + At) =0, (23.42)

as it should since there remains zero baroclinicity in the final state.
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Figure 23.3: First panel (left): The sorted density field py.f(z*, t + At), in units of p,. Second panel:
The vertical diffusive flux F? (z*,t — At), in units of p, Az*/(2 At), passing through the faces of
the sorted density grid cells. Third panel: The vertical density gradient [p,r(z* + Az*,t — At) —
Pref(z*,t — At)]/Az* in units of p,/Az*. Fourth panel: The effective diffusivity k.¢(z*,t — At) in
units of (Az*)?/At.
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Figure 23.4: First panel (far left): The initial density field p,.f(z",t — At), consisting of the
combination of the three groups of four homogeneous cells. The values are given in units of
Po. In this recombined arrangement, Az* = Az. Second panel: The vertical density gradi-
ent [ppr(z* + Az*, t — At) — ppf(z*,t — At)]/Az*, in units of p,/Az*. Third panel: The density
Pref(z*,t + At) in units of p,. Fourth panel: The diffusive flux F# (z*,t — At). Fifth panel (far
right): The effective diffusivity k. ¢r(z*, t — At).
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23.4.3 Caveat about weakly stratified regions

Note that in this example, the same set of boxes are perfectly homogenized at each time step.
As such, it is straightforward to combine the boxes in order to derive their effective diffusivities. In
general, this simple situation will not be true, and so the effective height of the combined boxes will
differ. Furthermore, most cases of homogenization are approximate (Sections [23.2.3]and[23.2.5),
which introduces even more time dependence to the interfaces between effectively homogeneous
boxes. In order to compute an effective diffusivity, however, our algorithm needs to evaluate all
quantities at the same depth level z*. Time dependent z* is problematical.

The current example suggestes that one possibile way to account for homogenization is to
count the number of nearly homogeneous boxes occuring in a particular section of the sorted
column. When the first interface is reached that has a nontrivial stratification, then the effective
diffusivity computed for this interface is multiplied by the number of trailing boxes which are homo-
geneous. This trick works for the example just considered (k/4 x 4 = k). However, in the example
considered in Section it leads to an effective diffusivity which can be larger than the hor-
izontal diffusivity. Such is not possible, and so one is led to reject the proposed patch. A clean
way to proceed is to try to resolve as best as possible the stratification within the sorted fluid state.
For those regions which are simply too weakly stratified, it must be recognized that the computed
effective diffusivity might be smaller than a more refined computation.

An alternative approach is to average the sorted density field onto the discrete levels realized
in the unsorted state. Indeed, this resolution of the sorted state is arguably that which is relevant
for diagnosing the effective diffusivity. This is the approach taken with the MOM experiments
documented in Griffies et al.| (2000b).

23.5 An example with vertical and horizontal gradients

This example considers the initial unsorted density configuration is shown in Figure There
are three rows of four boxes stacked on top of one another, and there are both vertical and hor-
izontal density gradients. Also shown is the corresponding sorted state. As with the example in
Section the grid dimensions for the two states are related through Az = 4 Az*, where z is
the vertical coordinate for the unsorted state, and z* is the vertical coordinate for the sorted state.
The potential energies are

Ey(t—At) = 110p,gAzV (23.43)
Epf(t—At) = 98p,gAzV (23.44)
Eapp(t—At) = 12p,gAzV, (23.45)

where V is the volume of the boxes and p, is the density scale.

23.5.1 Vertical diffusion

Consider first just vertical diffusion acting on the unsorted state. The vertical diffusivity < acting on
the unsorted state is assumed to be uniform and constant.
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Figure 23.5: The initial density field for the horizontal and vertical diffusion examples. The num-
ber in each box represents the density, given in units of p,. The left panel shows the density
p(x,z,t — At) in the unsorted fluid state, and the right panel shows the density p,.f(z*,t — At) in
the sorted state. Note that the vertical scale Az* = Az/4 for the sorted state has been expanded
for purposes of display.

23.5.1.1 Evolution of the unsorted state
Evolution of the unsorted density is given by the discrete equation

2 At

p(x,z,t+ At) = p(x,z,t — At) — < A

) [F*(x,z,t — At) — F*(x,z — Az, t — At)], (23.46)

where the vertical diffusive flux is given by

F*(x,z,t) = —k 8;p(x, 2, 1)

~ g (p(x,z + Az, t) — p(x, z, t)) (23.47)
a Az '

F*(x,z,t) is defined at the top face of the density grid cell whose center has height z. The top
panel of Figure shows the vertical diffusive flux through these faces at time t — At, and the
bottom panel shows the resulting density field p(x, z, t + At). Density in the middle row does not
change, whereas the upper row density increases and the lower row density decreases. The
potential energy of this state is

Ep(t+ At) = p,g Az V (110 + 16 5)), (23.48)

which is higher than the initial potential energy as a result of the raised center of mass.
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Figure 23.6: Top panel: The vertical diffusive flux F*(x,z,t — At), in units of p, k/Az, passing
through the faces of the unsorted density grid cells. Bottom panel: The unsorted density field
p(x,z,t 4+ At), in units of p,, where § = 2 Oy = 4K At /(Az)?. This is the density field resulting
from the vertical convergence of the flux F*(x,z,t — At). The potential energy of this field is
Ep(t+At) = p, g AzV (110 + 165 y) ).
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23.5.1.2 Evolution of the sorted state

Corresponding to the evolution of the unsorted density, there is an evolution of the sorted density
which is given by

2 At
Az*

Pref (2, t+ At) = prop(2*,t — AL) — ( ) [F¥ (z%,t — At) — F* (2" — Az, t — At)].  (23.49)

The dianeutral diffusive flux is given by

F? (z%,t) = —Kef (2%, ) Oz pref (2", 1)

* pre (ZyF + AZ*I t) - prg (Z*, t) (23-50)
~ _Keff(z ,t) ( f A f >’

where p,.r(z*,t) is the sorted state’s density. I (z*,t) is defined at the top face of the sorted
density grid cell whose center has height z*. Given the time tendency for the sorted state, the flux
is diagnosed through

A A * Az* * *
F* (z",t — At) = F* (2" — Az, t — At) — <2At> [Pref (27, t + At) — pref (2%, t — At)]. (23.51)
The left panel of Figure shows the sorted density field p,.f(z*, t + At), and the second panel
shows the diagnosed vertical diffusive flux F?' (z*,t — At). The third panel shows the vertical den-
sity gradient [p.¢(z* + Az, t — At) — prf(z*,t — At)]/Az*. Note the regions of zero stratification.
The fourth panel shows the effective diffusivity Kgff(Z*, t — At), which is diagnosed from the relation

. Az*
t—At) = —F* (z",t — At . 23.52
KEff(Z ) (= ) (pref(Z* + Az*, t — At) — pref(z*/t - At)) ( )

The units for k.f¢(z*, t — At) are (Az*)?/At. In addition, consistent with the discussion in Section
23.4.2| the effective diffusivity for the interfaces on top of unstratified water are multiplied by the

number of unstratified boxes. A value for k.¢(z*, t — At) of 5 in Figure indicates a dimensional
value of

*)2
Keff(Z*,t—At) = 5(Azt)
_ AAr (A
(Az)? At
= «/4. (23.53)

As a final note, the potential energy of the sorted state at time ¢t + At is
Evep(t+At) = po g AzV (98 +78(y)), (23.54)

which is higher than the initial potential energy as a result of the raised center of mass. The APE
is therefore given by

Eape(t+ At) = p,g Az V (124116 ,)), (23.55)

which is larger than E 4pg(t — At) given in equation (23.45).
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Figure 23.7: Left panel: The sorted density field p,.f(z*, t + At), in units of p,. Second panel: The
vertical diffusive flux F? (z*,t — At), in units of p, Az* / At, passing through the faces of the sorted
density grid cells. Third panel: The vertical density gradient [p¢(z* + Az*,t — At) — ppf(z*,t —
At)]/Az* in units of p,/Az*. Fourth panel: The effective diffusivity k.f¢(z*,t — At) in units of
(Az*)?/At. The four k¢ values which are on top of unstratified portions of the py.f(z*, t — At)
profile have been multiplied by the number of unstratified boxes which lie directly beneath it.
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23.5.2 Horizontal diffusion

Consider now just horizontal diffusion acting on the unsorted state. The horizontal diffusivity A
acting on the unsorted state is assumed to be uniform and constant.

23.5.2.1 Evolution of the unsorted state

Evolution of the unsorted density is given by the discrete equation

2 At
o(x,z,t+ At) = p(x,z,t — At) — <Ax> [F¥*(x,z,t — At) — F*(x — Ax, z,t — At)], (23.56)

where the horizontal diffusive flux is given by

F¥(x,z,t) = —A 6xp(x,z,t)
. (p(x +Ax,z,t) — p(x, z,t)> (23.57)

Ax

F*(x,z,t) is defined at the east face of the density grid cell whose center has position (x,z). The
top panel of Figure [23.8| shows the horizontal diffusive flux through these faces at time t — At, and
the bottom panel shows the resulting density field p(x, z, t + At). The potential energy of this state
is the same as the initial potential energy, since the horizontal fluxes are parallel to the geopotential

E,(t+ At) = Ep(t — At) = 110 p, g Az V. (23.58)

23.5.2.2 Evolution of the sorted state

Corresponding to the evolution of the unsorted density, there is an evolution of the sorted density
which is given by

2 At
Az*

Pref(Z°,t+ At) = prop (2", t — At) — ( ) [F'(z*,t — At) — F7 (2" — Az, t — At)].  (23.59)

The dianeutral diffusive flux is given by

FZ* (Z*, t) = —Keff(Z*, t) 5Z*pr€f(2*, t)

* pre (Z* + AZ*/ t) - pre (Z*/ t) (23.60)
~ _Keff(z ,t) < f AZ* f )/

where p,.¢(z*, t) is the sorted state’s density. I (z*,t) is defined at the top face of the sorted
density grid cell whose center has height z*. Given the time tendency for the sorted state, the flux
is diagnosed through

*

* * A
FZ (2"t — At) = F¥' (2" — Az*, t — At) — (2;) [Oref (2, 4+ AE) — prop(2, £ — AB)]. (23.61)

The left panel of Figure [23.5.2.2 shows the sorted density field p,.r(z*, t + At), and the second
panel shows the diagnosed vertical diffusive flux F? (z*,t — At). The third panel shows the vertical
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Figure 23.8: Top panel: The horizontal diffusive flux F*(x, z, t — At), in units of p, A/Ax, passing
through the faces of the unsorted density grid cells. Bottom panel: The unsorted density field
p(x,z,t + At), in units of p,, where § = 26,) = 4 A At/(Ax)?. This is the density field resulting
from the vertical convergence of the flux F¥(x,z,t — At). The potential energy of this field is
E,(t+At) =110p, 8 Az V.
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density gradient [p,.r(z* + Az, t — At) — prs(z*,t — At)]/Az*. Note the regions of zero stratifica-
tion. The fourth panel shows the effective diffusivity Keff(Z*,t — At), which is diagnosed from the
relation

" Az*
Kerr(2*, t — At) = —F* (2%, — At < ) . 23.62
eff( ) ( ) Pref(z* + Az*, t — At) — prof(z%, 1 — At) ( )
The units for k.¢(z*, t — At) are (Az*)?/At. For example, a value for k.¢(z*,t — At) of 35/2 in
Figure|23.5.2.2|indicates a dimensional value of
' (Az")?
Keff(z ,t—At) = (3 5/2) Al
At (Az¥)?
(Ax)2 At

Az*\?

—oa (82Y.
For the special case of Ax = Az = 4Az*, the effective diffusivity is 3A/8. Note that if the patch
proposed in Section [23.4.3|is used, then the 35/2 diffusivity would become 95/2, leading to the

possibility for an effective diffusivity of 9 A/8, which is impossible.
As a final note, the potential energy of the sorted state at time t + At is

=6A

(23.63)

Eof(t+At) = pog Az V (98 +196(;/2), (23.64)

which is higher than the initial potential energy as a result of the raised center of mass. The APE
is given by
Eape(t+At) = pog AzV (12 =196,y /2), (23.65)

which is smaller than E opg(t — At) given in equation (23.45).



23.5. AN EXAMPLE WITH VERTICAL AND HORIZONTAL GRADIENTS 335

Ao Ao AO
2+3 | | |
A3 A-2 \3I2
. \ \ \
A3 AO AO
4+3 | | |
A25 A-2 AS
. \ \ \
e e
6
/Pzes A‘\o /‘mo
6+3 )33 A-2 ASE/Z
6 5 \ \ \
e e
® A25 AO Ao
. \ \ \
A 25 A2 AS
o \ \ \
2 o o
10
X h-2 A&12
- s \ \ \
/PO A‘\o /‘ho

Figure 23.9: First panel (far left): The sorted density field pref(z*, t + At) in units of p,. Second
panel: The vertical diffusive flux F? (z*,t — At), in units of p, Az* /At, passing through the faces
of the sorted density grid cells. Third panel: The vertical density gradient [p,.f(z* + Az*, t — At) —
Pref(2*,t — At)]/Az* in units of p,/Az*. Fourth panel: The effective diffusivity .s¢(z*,t — At) in
units of (Az*)?/At. The four . ¢ values which are on top of unstratified portions of the py.¢(z*, t —
At) profile have been multiplied by the number of unstratified boxes which lie directly beneath it.
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CHAPTER
TWENTYFOUR

Spurious dissipation from numerical advection

The purpose of this chapter is to detail a method to locally quantify the level of dissipation (ei-
ther positive or negative) associated with discretization errors in numerical tracer advection. This
method was introduced by Burchard and Rennau| (2008), and it provides a valuable complement
to the effective dianeutral diffusivity diagnostic detailed in Chapter [23] In particular, the Burchard
and Rennau| (2008) method can provide a local quantification of the dissipation for any three di-
mensional model simulation. It cannot, however, generally translate that mixing into a dianeutral
diffusivity, since there is no knowledge of neutral directions built into the diagnostic.

24.1 Formulation of the method for Boussinesq fluid

Consider a continuous Boussinesq fluid in the absence of mixing, subgrid-scale fluxes, or sources,
in which case the tracer concentration is affected only by advection

% C=-V-(vC). (24.1)

Likewise, the squared tracer concentration (indeed, the tracer concentration raised to any power)
satisfies the same equation
0;C? = -V - (v(C?). (24.2)

Now consider a space-time discretization of the tracer concentration equation (24.1)
cl = C" - D(C) (24.3)

where we assume an explicit two-time level update of the tracer concentration onto discrete time
levels 7, = 1, + n At. This is the preferred time stepping method in MOM4p1 (see Chapter [g).
The discrete operator

D(C)=ATV-(vC) (24.4)

symbolizes one of the many possible methods used to discretize tracer advection. For later pur-
poses, it is useful to define the right hand side of equation (24.3) as the operator .A(C), so that

A(C) = C" — D(C). (24.5)
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Given the discrete expression (24.3), we can form the square of the updated tracer concentra-
tion
[(C"1)?] () = [A(C)

(C™)? +[D(C)]* - 2C" D(C). (24.6)

Additionally, another means for computing the updated squared tracer concentration is to dis-
cretize the continuous equation for C2, given by equation (24.2), in which the updated squared
tracer concentration is given by

[(C™ )y = (C")? = D(C?). (24.7)
Following the definition of the operator A(C) in equation (24.5), we have
[(C")?) ) = A(C?). (24.8)

The fundamental question that this diagnostic asks is how well the two approximations for
(C"*+1)2 agree. To answer this question, we simply take the difference

(€ )]y = (")) = [A(C)]? = A(C?)

(24.9)
= [D(C)]* —2C"D(C) + D(C?).
A nonzero value for this difference results from nonzero spurious mixing or unmixing due to trun-
cation errors in the advection scheme. Computing this difference requires an evaluation of the
advection operator on both the tracer concentration and the squared tracer concentration.

To associate mixing with a particular sign of the difference (24.9), we consider the special case
of one-dimensional advection with a constant advection velocity u > 0, discretized with first order
upstream spatial differences on a uniform grid with spacing Ax. In this case

[(C"H)Z](a) - A(C)2 (24.10)
= (1=p)*(C?+*(Cl ) +2y(1—y)CI Cl,
and
n+1\2 _ 2
(€1 = ACY) a1

= 1=y () +v(C1)%

where v = u At /Ax is the Courant number, and the discrete advection equation is stable so long
as 0 <y < 1. With this chosen discretization, the difference (24.9) takes the form

[A(C)] — A(C?) _(Y(1—7)> (cr—cn )2

= i i1

AT AT
n_ cn 2
- (2= (Ax)? ) (Ci Af”> 011
—Keff (02 C)?

IN R

0,
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where we identified (C; — C;_1)/Ax as a discrete approximation to d, C, and defined an effective

diffusivity
1—7) (Ax)?
Keft = <7( Ayi( ¥) ) (24.13)

Hence, the difference between the two approximations to the updated squared tracer concentra-
tion takes the form of a discrete dissipation of tracer variance, thus exemplefying the well known
dissipative property of first order upwind advection. The effective diffusivity that sets the scale of
this dissipation vanishes when the Courant number is either zero, which is the trivial case of no
advective transport, or unity, in which case the full contents of cell i — 1 are transported into cell i
over a single time step.

Burchard and Rennau| (2008) take the previous result as motivation to define a numerically
induced dissipation rate for any advection scheme. We follow their definition, yet introduce a
division by (AT)~2 rather than their use of At

A(C?) — [A(C)]?
(AT)?
_ 2C"D(C) = [D(O))? - D(C?)
- (AT)? '

r

(24.14)

The extra At factor is motivated by dimensional arguments given in the discussion following the
more general result given by equation (24.29). Again motivated by the one-dimensional upwind
advection case, Burchard and Rennau| (2008) propose the following identifications

¥ > 0 = positive dissipation through mixing (24.15)
¥ < 0 = negative dissipation through unmixing (24.16)
Y = 0 = zero dissipation. (24.17)

Regardless whether these identifications are rigorous, they are suggestive and allow one to stratify
different advection schemes according to their values of X. In general, a key goal of an advection
scheme is to have L from advection much smaller than the corresponding physically induced
dissipation from subgrid scale mixing.

24.2 Formulation for MOM4p1

The previous formulation was based on finite differences applied to a Boussinesq fluid. MOM4p1
is based on a finite volume formulation of the non-Boussinesq fluid. In this section, we generalize
the previous considerations to that appropriate for MOM4p1.

For a non-Boussinesq fluid, mass conservation takes the form

orp=—V-(pv). (24.18)
Likewise, tracer conservation in the absence of subgrid scale fluxes is given by

9 (pC) =—-V-(pvC(), (24.19)
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and the corresponding budget for squared tracer concentration is
0 (pC?) = =V - (pv(C?). (24.20)

MOM4p1 time steps a finite volume tracer budget for a non-Boussinesq fluid using generalized
level coordinates, in which case the budget for tracer mass per horizontal area is time stepped.
As detailed in Section this approach leads to the following tracer advection equation for an
interior grid cell

9t(Cpdz) = —Vs-(uCpdz) — (p w® Cls=s, , +(p w'®) C)s=s,, (24.21)

with w'®) the dia-surface velocity component. Following the notation from Section , we dis-
cretize this budget as

(Cpdz)"™ = (Cpdz)" — £(C)

24.22
= B(C), ( )
where the discrete advection operator is written
E(C)/AT =~ V- (uCpdz) + (pw® C)ss,_, — (P C)ses,. (24.23)
Likewise, the discretized budget for the mass weighted squared tracer concentration is
C?pdz)" = (C? pdz)" — £(C?
(Cpdz)"*! = (C*pdz)" —£(C) 2420

= B(C?),

where B(C?) has dimensions of squared tracer concentration times mass per area.

We follow the steps considered in Section [24.]to derive an operator that identifies the dissi-
pation due to truncation errors with tracer advection. For this purpose, we consider the square of
equation as one approximation to the updated squared mass per area of a tracer

[(Cpdz)" 5, = [B(O))?

(24.25)
=[(Cpdz)"? +[E(C)]> —2&(C) (Cpdz)".
An alternative approximation is obtained from equation (24.24), in which
(Cpd2)" 1T = (pdz)"*! B(C?) 026
= (pdz)""! (pdz)"(C")* — (pdz)" "1 £(C?).
The difference between these two approximations is given by
[B(O)]? = (pdz)""! B(C?) = (C* pdz)" [(pd2)" — (pdz)""]
+[E(C)]? —=2(Cpdz)"E(C) + (pdz)" T £(C?). (24.27)
The first term arises from time tendencies in the mass per area of a grid cell
(pd2)" — (pd2)"™ 5 (pda), (24.28)

AT

and this term has nothing to do with errors in the advection scheme. Notably, it vanishes in two
special cases:
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e Boussinesq fluid with z-coordinates, in which case the cell thickness dz is time independent.
The only exception is the top level, where the thickness changes due to time tendencies in
the free surface height.

¢ Non-Boussinesq fluid with pressure coordinates, in which case the cell mass per area pdz is
time independent. The only exception is the bottom cell, where the mass per area changes
due to time tendencies in the bottom pressure.

To remove these effects from temporal changes in mass per area of a grid cell, we define the
generalized advection dissipation operator

2(Cpdz)" £(C) — [E(C)]? = (pdz)" 1 E(C?)

L general = (A7)? (24.29)

This definition corresponds to the operator £ defined by equation (24.14). Even though we have
ignored the 9; (p dz) term, the operator can still be nonzero even if the advection operators
are perfect, as occurs when pdz has horizontal spatial variations or time variations. Hence, this
operator provides insight towards the advection truncation errors only for the special cases listed
in the above two bullet points. Indeed, if the mass per area is the same temporal constant on a
k-level (as for geopotential coordinates below the surface cell, and pressure coordinates above
the bottom cell), we have

where the dissipation operator X is defined by equation (24.14).

The extra At factor in the denominator of (24.29), relative to [Burchard and Rennau| (2008),
provides sensible units for the tracer dissipation. In particular, for tracer C = C, 0 being the heat
capacity times potential temperature, Zgenera has dimensions of (Watt/m?)2. For C = 1000 S the
mass of salt per mass of seawater, general has dimensions of (kgm=—2s71)2.

24.3 Comparing to physical mixing

As a means to gauge the levels of Zgenera, We may compare it to tracer dissipation arising from
physically motivated subgrid scale mixing processes. For this purpose, we introduce a subgrid
scale flux J, so that the tracer concentration and squared tracer concentration satisfy the following
equations

9t (pC)+V-(pvC)=-V-]J (24.31)
9 (pC*)+V-(pvC?)=—-CV]. (24.32)
For the squared tracer, write the right hand side in the following manner

U (pC*) +V - (pvC?) =—-CV-]

= -V (C))+VC-]. (24.39)

Considering a tensor formulation for the subgrid scale tracer flux

J=-pK-VC (24.34)
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leads to
0 (pC*)+V-(pvC?)=~-V-(C])-pVC-K-VC. (24.35)

For a symmetric diffusion tensor,
pVC-K-VC>0, (24.36)

in which case the mass weighted squared tracer concentration is dissipated by the sink —pV C -
K - V C. For the special case of vertical diffusion with diffusivity « > 0,

pVC-K-VC=pk(d,C)> (24.37)

A finite volume formulation of the squared tracer equation, focusing just on the dissipation from
vertical diffusion, leads to

(C?pdz)" = (C*pdz)" — At [pdzk (9, C)?]", (24.38)
which leads to
[(Cpdz)" ™2 = (pdz)" ™ (C? pdz)" — AT (pdz)" ! [pdzk (9, C)?]". (24.39)
We are thus led to identify the dissipation operator for vertical diffusion

< @-CP)"

Zvertdit = (pdz)""! (pdz) AT

(24.40)
The dissipation operator Ze.qiff has the same dimensions as Zgenera defined for advection in
equation (24.29). Importantly, Zgenerai accounts for dissipation from the three dimensional ad-
vection operator, whereas X¢t.gitf accounts for dissipation just from vertical diffusion. That is, the
operator Zgeneral IS Unable to generally isolate advection induced dissipation associated any partic-
ular direction, with the most physically relevant direction being the dianeutral. Furthermore, many
of the more promising advection operators are three dimensional, and so we cannot isolate any
one of the directions to ascribe a particular effective diffusivity.

Nonetheless, the following are two notable cases where the dissipation operators from advec-
tion and diffusion can be directly compared.

¢ One-dimensional advection-diffusion, which is a rather trivial case, but very useful for proto-
type development;

e A three-dimensional simulation with just advection and vertical diffusion, using a linear equa-
tion of state with density directly proportional to temperature; in this case, the dissipation
operators Lgeneral and Zyer.giff fOr temperature are directly comparable.
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Diagnosing the dianeutral velocity component

The purpose of this chapter is to detail the diagnostic method used in MOM4p1 to compute the
dianeutral velocity component. This diagnostic provides a direct measure of the water being trans-
ported across neutral directions, and thus can be used to quantify rates of water mass transfor-
mation.

25.1 Dianeutral velocity component

The dia-surface velocity component w(®) is generally defined by the expression

ds
(s) —, &°
w Zs 35 (25.1)

where s = s(x, y,z,t) is an arbitrary smooth surface in the ocean interior,

%
~ 0s

is the specific thickness, ds/dt is the material time derivative of the surface, with the material
time derivative defined by the resolved velocity field v. A full discussion of the dia-surface velocity
component can be found in Section 6.7 of Griffies| (2004), Section 2.2 of Griffies and Adcroft
(2008), or Section of the present document. In particular, we will encounter w'®) in equation
(2?) when presenting the tracer budget integrated in MOM4p1, in which case w'®) is the prognostic
model’s “vertical” velocity component appropriate for a model formulated with generalized level
coordinates.

For the purpose of understanding the rates of water mass transformation, we are interested
in the case where the generalized surface s is noe the model’s vertical coordinate. Instead, we
choose a surfaces determined by the locally referenced potential density, symbolized here by y.
Furthermore, we are interested in determining an associated w'?) arising just from those physical
processes that lead to the transformation of y. Such water mass transformations occur through
surface boundary fluxes and interior processes, with the following representing a general list:

Zg (25.2)

e Boundary (surface and bottom) fluxes of buoyancy, including penetrative shortwave radiation,
form the primary driver of water mass transformation.
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¢ Dianeutral mixing, as typically parameterized by vertical diffusion, is the canonical example
of a process contributing to interior water mass transformation.

¢ Nonlocal dianeutral mixing, which appears in certain boundary layer schemes such as KPP
Large et al. (1994), can also be an important source for water mass transformation.

¢ Neutral diffusion coupled to the ocean’s nontrivial equilibrium thermodynamics, which is cap-
tured by the seawater equation of state (IOC| [2010), leads to cabbeling, thermobaricity, and
halobaricity, each of which contribute to water mass transformation in the absence kinetic
energy dissipation (McDougall, [1987).

25.1.1 Resolved and parameterized tracer advection

Notably absent from the above list of processes affecting a transformation of water masses is any
process associated with parameterized advection, such as that proposed by Gent et al.| (1995).
The reason for the absence of such processes is that water mass transformation does not occur
from the advection of water parcels, either resolved or parameterized. The fundamental reason is
that advection is a reversible processes that does not impact the fluid entropy. Since the seminal
work of |Gent and McWilliams| (1990), ocean models, especially coarsely resolved models, gen-
erally consider the effects on tracers from resolved motions, embodied by the velocity field v, as
well as unresolved motions parameterized by a velocity v*. Hence, for the purpose of diagnosing
water mass tranformation processes, both resolved and parameterized advection play no role. We
return in Section ?? to caveat this conclusion by noting certain practical limitations associated with
numerical errors that arise when discretizing both resolved and parameterized advection.

We are interested in a formulation of the dianeutral velocity component that is appropriate for
both Boussinesq and non-Boussinesq models. As the Gent et al.|(1995) paper focuses on Boussi-
nesq fluids, we make a few comments here concerning its non-Boussinesq generalization. For
non-Boussinesq fluids, the parameterized advection velocity v* is assumed to satisfy the following
constraint

V- (pv*) =0, (25.3)

which ensures that seawater mass locally remains unaffected by the parameterization. This con-
dition ensures the existence of a vector streamfunction so that

pv' =V A (p¥). (25.4)
For Boussinesq models, the constraint reduces to the familiar non-divergence condition
V-v* =0, (25.5)
so that volume is locally unaffected, and the relation (25.4) reduces to
Vi=V AW, (25.6)

Notably, it is the vector streamfunction that is often employed in ocean models via the use of skew
diffusive tracer fluxes rather than advection fluxes (Griffies| |1998). Regardless whether one uses
a skew diffusive or an advection formulation of |Gent et al.| (1995) (or any other scheme parame-
terized as an eddy advection such as [Fox-Kemper et al.| (2008b)), it plays no role, in principle, in
the transformation of water masses.
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25.1.2 Defining the diaeutral velocity component w(?)

The above discussion motivates the following definition of a dianeutral velocity component

v, w) = ddw
’ t
Cdeas (25.7)
- p,9 dt IO,S dt 7

where w(?) is the dianeutral velocity component that measures the rate of water mass transforma-
tion, S is the salinity, and 6 is the potential temperature (or conservative temperature of[McDougall
(2003)) ] The partial derivatives

8,0)
Po = ( (25.8)
7\ ),

ap>
ps= (== (25.9)
S (as i

measure how in situ density changes as a function of potential temperature and salinity. Addition-
ally, the vertical derivative

Y:=0P00:+p0sS; (25.10)
provides a measure of the vertical stratification, with the squared buoyancy frequency determined
by

dy
N2= 8% 25.11
> 9z ( )
Finally, the material time derivative d'/dt is determined by the effective transport velocity
vi = v+ v, (25.12)

with v* determined by a SGS parameterization, such as Gent et al.| (1995) and/or |Fox-Kemper
et al.| (2008b).

25.2 Kinematic method for diagnosing w!")

There are two equivalent ways to diagnose w!*). Both should, in principle, result in the same an-
swer. In practice, numerical truncation errors will introduce differences. Indeed, it is important to
recognize that some of the diagnostic calculations required to capture w*) are nontrivial. Hence,
given the sometimes difficult numerical issues associated with diagnosing some of the terms as-
sociated with dianeutral water transformation, it is prudent to exploit both approaches to develop
confidence and robustness in the results.

The kinematic approach discussed in this section is perhaps the most straightforward of the
two methods. However, it provides zero information about how those physical processes listed
in Section individually contribute to water mass transformations. Hence, it is useful as a
complement to also consider the second approach, based on physical processes, which is the
subject of Section

Note that the pressure term (dp/dp) dp/dt, which appears in the material time derivative for in situ density p, is
absent from equation (25.7) since we are focused on the locally referenced potential density .
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25.2.1 Principles of the kinematic method

The kinematic method for diagnosing w(?) takes the definition (25.7)

1df
(v) — )4
w vodt (25.13)
and evaluates the terms on the right hand side, given expressions for the time tendency and
advection (resolved and parameterized) of potential temperature and salinity. In principle, that is
all that needs to be said for the kinematic method. However, it is useful to expand the material
time derivative of y to see more explicitly what is needed from the model. For this purpose, recall
that the material time derivative d'/dt takes the form

d d

T TR (25.14)

where again v* is a parameterized eddy-induced transport velocity that satisfies the non-divergence
constraint (25.3) for a non-Boussinesq fluid, and the constraint (25.5) for a Boussinesq fluid. Ex-
panding the derivatives acting on y then leads to

dJH/
V. (Y):W
die+ dfs
~PPar TPSar (25.15)
de s
=pe dt+P,sa+V (peVO+psVS)
de ds
LT +PSE+V -V,
where
Vy=pegVS+psVS (25.16)

is the gradient of . Multiplication of equation (25.15) by the in situ density, and use of the non-
divergence condition (25.3), renders

dy .
py,.w )—pEJrV (pv*y)

25.17)
de . ds \ (
—p,e< pgp TV (pv 9)>+P,s( pg tV-(pv S)>-

Finally, dividing by py. = —¢~! (0o N)? leads to the kinematic expression for the dianeutral velocity
component

wm:_((pf\])z) Bg( ‘011‘:+v (ov )>+§g< j‘j+v (pv*S))]. (25.18)

As we are allowing for the possibility of working with a generalized vertical coordinate ocean
model, where a smooth function s = s(x, y, z, t) defines surfaces of constant generalized vertical
coordinate, we choose to write the material time derivative from the resolved motions in the form

(fiit _ aat> VW, (25.19)
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where the time and horizontal derivative operators are taken on surfaces of constant s, u is the
horizontal velocity component, and w(®) is the model’s dia-surface velocity component defined
by equation (25.1). Furthermore, we note that the generalized vertical coordinate form of mass
conservation takes the form

9t (zsp)+ Vs(zspu)+ s (p w(s)) =0. (25.20)

Hence, the density weighted material time derivative of a tracer concentration takes the form

p—— =0, (250C) + Vs (zspCu) + 9 (pCw®) + V-1, (25.21)

where we introduced the shorthand
I=pv'C (25.22)

for the parameterized eddy induced advective tracer flux. It is the flux form tracer equation (25.21)
that facilitates a finite volume interpretation of the numerical model equations. These issues are

the subject of Section[25.2.2]

25.2.2 Finite volume form of the kinematic method

In developing diagnostic methods to measure levels of dianeutral transfer, we closely follow the
numerical methods used to time step the prognostic model variables. This is generally a prudent
means for diagnosing terms in a model simulations, and such is especially important when mea-
suring vertical and dianeutral transfer, whose instantaneous values can be quite small. For this
purpose, we briefly recall salient elements of the tracer budget discussed in Section

Grid cells in MOM4p1 are bounded on the sides by surfaces of constant horizontal coordinates
(x,y), and the vertical by surfaces of constant generalized vertical coordinate s (see Figure [25.1).
The continuous expression for the material time derivative of tracer

dic _ dc

Car TP

takes the following semi-continuous form when integrated vertically over the extent of a grid cell
(see Section[3.6.2)

Zk—1

i
/ <pddtc> dz =0,(pCdz) + V- (pCudz) + A(pCw"®) + V- (Idz) + A I®).  (25.24)

+V-1I (25.23)

Zk

In this equation, C is the tracer concentration (tracer mass per seawater mass) within the grid cell,
pdz is the seawater mass per horizontal area, dz (p Cu + I) is the horizontal flux of tracer mass
associated with resolved advection through the horizontal velocity u, and subgrid-scale (SGS)
processes embodied by I. The time tendency for tracer mass in a grid cell is affected by the
horizontal convergence of these fluxes, with V; the gradient operator taken on surfaces of constant
s. The fluxes crossing the vertical interfaces of the grid cell are given by (o Cw®) + 1)), and the
difference of these fluxes across the top and bottom of the cell is denoted by the operator A,. For
Boussinesq vertical coordinates, the density factors are cancelled, whereas they remain for the
non-Boussinesq pressure based vertical coordinates.
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5 = S5k-1

grid cell k

S = Sk

Figure 25.1: Schematic of an ocean grid cell labeled by the vertical integer k. Its sides are vertical
and oriented according to X and ¥, and its horizontal position is fixed in time. The top and bottom
surfaces are determined by constant generalized vertical coordinates s;_; and si, respectively.
Furthermore, the top and bottom are assumed to always have an outward normal with a nonzero
component in the vertical direction z. That is, the top and bottom are never vertical. We take the
convention that the discrete vertical label k increases as moving downward in the column, and
grid cell k is bounded at its upper face by s = s;_; and lower face by s = s;.

To develop an expression for the dianeutral velocity component that is appropriate for a finite
volume grid cell, we similarly integrate over the vertical extent of a grid cell (see Figure [25.1)

Zk—1
/ PY.z wVdz ~ Yz w) pdz, (25.25)
Zk

where the approximation defines the finite volume form of the cell integral. For the remaining
terms, we make use of the tracer equation (25.24), and assume that the density partial derivatives
v, and y s remain constant over the vertical extent of the cells, which leads to the finite volume
expression

Yz w() pdz=pg [Bt(dez) + Vs [(Ig+p6u)dz] + Ak(Iés) + pr(S))}
(25.26)

+ 0,5 [at(PSdZ) + Vs [(Is+ pSu)dz] +Ak(1é5) +,OSZU(S))} .

This result yields a discrete analog to the continuum kinematic expression (25.17).

25.3 Thermodynamic method for diagnosing w?)

The second method for diagnosing the dianeutral velocity component w(?) informs us how physical
processes individually impact w(¥). We term this the thermodynamic method, as it focuses on the
processes that give rise to irreversible mixing of water masses. In this approach, we note that
the material time derivatives of potential temperature and salinity are driven by physical processes
that are parameterized either by a local flux convergence, or a source. The tracer equation then
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takes the form

.i.

p% = -V-J9+5° (25.27)
"

p% =-V-J°+ 85, (25.28)

where again J consists of SGS fluxes arising from lateral and dia-surface mixing processes. The
local source/sink terms S and S° impact temperature and salinity in a non-flux convergence
manner, with the nonlocal transport term from KPP the most prominent example, and penetrative
shortwave radiation another. These forms for the tracer equations lead to the expression for the
dianeutral velocity component

df
v -,
PY0" =P g (25.29)

=po(—V-J°+8%) +ps5(-V-J°+S9).

Defining a subgrid scale flux for locally referenced potential density

) =00)° +0s)° (25.30)
and a corresponding source
SY=ppS%+psS° (25.31)
allows us to write equation (25.29) as
pvw = =V ] +8"+]°-Vpe+]° Vs (25.32)

Now we consider how w(?) appears for some canonical physical processes.

25.3.1 Sources

The contribution to the dianeutral velocity component from sources takes the form

w = — <(ng\1)2> (p/e S+ o5 SS) sources. (25.33)

As stated earlier, there are two prominent sources commonly arising in ocean climate models.

e Penetrative shortwave radiation provides a heating source S? that extends over the upper
50m-100m of the ocean, depending on optical properties. |ludicone et al.| (2008) emphasized
the importance of this term for water mass transformations.

e The mixed layer parameterization of |Large et al.| (1994) includes a nonlocal transport term,
whose form appears as a source to the potential temperature and salinity equations. The
importance of this term for water mass transformation remains unexplored in the literature.

e There are potentially other source terms that may arise in any particular simulation, such
as those associated with nonlocal mixing across land locked marginal seas (Griffies et al.,
2005).
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25.3.2 Neutral diffusion

In the presence of neutral diffusion, the horizontal and vertical tracer flux components take the
form

J'=—-AwpV,C (25.34)
JF=—-AwupS-V,C, (25.35)

with A4 > 0 the neutral diffusivity, S the neutral slope vector relative to the horizontal, and
V,=V.+80; (25.36)

the horizontal gradient operator oriented along neutral directions. Note that we are assuming
for the meantime that the vertical coordinate is geopotential. However, as we will see, the final
result of our manipulations will be coordinate invariant, thus facilitating evaluation with any vertical
coordinate.

With the flux components (25.34) and (25.35), one may show that there is no flux of locally
referenced potential density (see, for example (Griffies et al., [1998)

]V =00 4+psJ° =0  neutral diffusive fluxes. (25.37)

However, in the presence of a nonlinear equation of state, the non-flux terms J° - Vpg +J5-Vps
in equation (25.32)) give rise to cabbeling, thermobaricity, and halobaricity (McDougall, [1987). A
series of straightforward manipulations (e.g., Section 14.1.7 of Griffies, 2004) render

J°-Voo+J°-Vos=p*Au(C|V,0*+TV,p-V,0), (25.38)
where
(04
T=80,|=
B oy <l3>
_da «adf
T 9p Boap
P B (25.39)

_ Po
= —p 'psdp <)
P,s
-1 P06
=—p Pop —Pps | —
[ P : <P,s)]

is the thermobaricity parameter (units of inverse temperature times inverse pressure), and

ox o 0 fok 23/3
c= 5255 (3) a6

) (25.40)
=—p! [P,ee —2pps <p9> +p,s5 <p9> ]
p,s p,s
is the cabbeling parameter (units of squared inverse temperature), with
= —3)‘32 (25.41)
g Lo (25.42)

pdS
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the thermal expansion and haline contraction coefficients, respectively. The cabbeling parameter
is strictly positive in the ocean, thus leading to an increase in density through cabbeling. The
thermobaricity parameter is predominantly positive. However, the product V., p - V, 0 need not be
sign-definite, thus allowing for thermobaricity to either increase or decrease density.

Use of the expression (25.38) in equation leads to the dianeutral velocity component
arising from cabbeling and thermobaricity

w) = — <g1?2”d> (C IV,02+T Vyp- Vyé)) cabbeling and thermobaricity.|  (25.43)

Cabbeling results in a downward dianeutral velocity component (w*) < 0), corresponding to an
increase in density, whereas thermobaricity is sign indefinite.

25.3.3 Dianeutral diffusion

Dianeutral diffusion of tracer is generally parameterized using a downgradient vertical diffusive flux
(see Section 7.4.3 of |Griffies| (2004) for discussion)

Jo=-D9pa.02 (25.44)
Js = —Dpa.S2, (25.45)

with eddy diffusivities D > 0 and D(S) > 0 for potential temperature and salinity, respectively.
We identify the following regimes for which vertical diffusion acts to transform water masses.

e In the ocean interior, D ~ 107® m? s~! at the equator (Gregg et al., 2003), and D =~
10~° m? s~ in the middle latitudes (Ledwell et al., 1993), with far larger values near rough
topography and other boundary regions (Polzin et al., |1997).

e The diffusivity can be set to a very large value in gravitationally unstable regions.

e The diffusivity for potential temperature and salinity differ in regions where double diffusive
processes occur (Schmitt, 1994; Large et al., [1994).

e The upper and lower ocean boundary conditions for the vertical tracer diffusive flux are
Neumann conditions, whereby the temperature and salt fluxes are specified through bound-
ary interactions with other components of the climate system. Hence, the vertical diffusion
operator serves as the conduit through which the boundary fluxes are fed into the tracer
equations. There will be a correspondingly very large dianeutral velocity component in the
surface grid cell, and potentially nontrivial dianeutral velocity component at the ocean bottom
if geothermal heating is applied.

In summary, the dianeutral velocity component takes the following form in the presence of vertical
diffusion

v__(_8& dp\ 9 () dp\ 9 (s) . e
w <(pN)2> [(ag> 32 (PD 329)"‘ 35 ) 32 (pD azS> vertical diffusion.

(25.46)
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25.4 Comments and caveats

We provide some comments regarding the use of this diagnostic in practical situations.

25.4.1 Division by the vertical stratification

A very unsatisfying aspect of the dianeutral velocity component diagnostic is the need to divide
by the vertical stratification py. = —¢~! (p N)? to isolate the dianeutral velocity component w(?).
This division is very poorly behaved in regions of weak vertical stratification. Some form of reg-
ularization is required to produce sensible results. Details of this regularization can have some
impact on the diagnosed w(?). Various tests should be run to ensure that the results are physically
sensible.

25.4.2 Concerning numerical truncations and spurious mixing

Thus far in our formulation, there has been an assumption that the numerically diagnosed expres-
sions for w(?) correspond at least qualitatively to the continuum forms, with quantitative differences
arising from truncation errors. In particular, for the case of a linear equation of state with zero ver-
tical diffusion, zero sources, and zero boundary fluxes, we should diagnose a vanishing w*) since
there will be zero water mass transformation in the continuum fluid. Indeed, such will be the case
by definition of the kinematic method (equation (25.17)), since the method uses the diagnosed
time tendency and advection tendencies, which will be equal and opposite when there are no
boundary fluxes nor physical mixing processes. However, is this result a correct accounting of the
water mass transformation occurring in the simulation?

In a discrete model, there are generally nonzero sources of spurious mixing that arise from the
numerical discretization of advection, either resolved advection or paramaterized subgrid scale
advection (Griffies et al., 2000b). If we could extract these spurious effects from the numerical ad-
vection operator, the associated mixing (or unmixing) could be isolated, mapped, and interpreted
as a spurious subgrid scale process. However, an explicit diagnosis of truncation errors that create
spurious mixing is nontrivial, given the many sophisticated expressions for the numerical treatment
of either resolved or parameterized advection.

Hence, even with zero physical subgrid scale fluxes, the spurious numerical fluxes do not
generally vanish. The expressions for the diagnosed dianeutral velocity component fail to account
for these spurious terms since we do not know how to do so in general. However, one may wish
the diagnostic to behave just in this manner, so that it focuses on the physical aspects of the
simulation. Nonetheless, one must be careful not to over interpret the results from this diagnostic,
since there may be more water mass transformation actually occurring in the simulation than might
be diagnosed via w(?). So in practice, one can be confident in the diagnosed form of w(*) only in
those cases that the spurious sources of mixing are much smaller than the physical sources.

25.4.3 What has been implemented in MOM4p1

MOM4p1 has the following terms diagnosed according to the notions set out above.

e Time tendency of neutral density = ygd; (6 pdz) + v,s0: (S pdz)
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e Advection of neutral density = —y4[Vs - (Bupdz) + Ay (Bw® p)] — v [Vs - (Supdz) +
A (Sw p)]

e Vertical diffusion of neutral density = —y o A(p Fe(s)) —vsAk(p FS(S))

e Vertical diffusion of neutral density arising from vertical mixing processes = —y g A¢(p
(dianeutral)
Y,s Ak(PFs )

Fédianeutml)) .

o Vertical diffusion of neutral density arising just from the K33 element of neutral diffusion =
0 A0 FS) — 7,5 Ac(p F§Y).

e Nonlocal KPP tendency = y g 56(0nlocal) 4 o sg(nonlocal)

e Tendency from shortwave penetrative heating

e Tendency from crossland mixing (Chapter [20)

e Tendency from cross land insertion (Chapter [20)

e Tendency from smoothing either the surface height or the bottom pressure (Section
¢ Tendency from mixing downslope (Chapter[19)

e Tendency from overexchange (Chapter[19)

e Tendency from sigma transport (Chapter[19)

e Tendency from fresh water forcing (P-E and rivers plus calving).

The corresponding dianeutral velocity components are also saved, via the division of the above
tendencies by pdzvy .. As a check that the diagnostics are properly implemented, for the case
of zero background horizontal diffusion and zero tracer sources, we should have the following
identities satisfied:

time tendency = advection + Z processes affecting T/S
vertical diffusion = vertical diffusion dianeutral 4 vertical diffusion K33.
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CHAPTER
TWENTYSIX

Diagnosing the contributions to sea level evolution

The purpose of this chapter is to discuss the diagnostic in MOM4p1 that diagnoses the contribution
to sea level time tendencies due to changing currents, surface water forcing, and the steric effect.
The discussion follows that given in Section 3.4 of Griffies| (2004).

26.1 Mass budget for a column of water

Consider a column of mass conserving fluid extending from the ocean bottom at z = —H to the
ocean surface at z = n. The total mass of fluid, M, inside the column is given by

n
M:/dA /pdz, (26.1)
—H

where p is the mass density (the in situ density) of seawater, and
dA =dxdy (26.2)
is the time independent horizontal area of the column. For a hydrostatic fluid, in which

Pz=—P8 (26.3)

the total mass per area in a column of seawater is given by the difference in pressure at the ocean
bottom and the pressure applied at the ocean surface

n
g [ pdz=po—pa (26.4)
—H

That is, the total mass in the column is

M=g™! /dA (Po — pa). (26.5)

355
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In Section we developed a budget for the mass of fluid in a column. Repeating some of
those steps here for completeness, we note that the time tendency of mass within a fluid column

M, = / dA 9, ( /17 dz p) (26.6)

—H

arises when a net amount of seawater mass passes across boundaries of the fluid column, or
when there are sources within the column. We generally assume in climate modelling that no
seawater mass enters through the ocean bottom. Hence, the only means of affecting seawater
mass in the fluid column are through mass fluxes crossing the ocean free surface, from the conver-
gence of mass into the column from ocean currents, and from sources within the column. These
considerations lead to the time tendency

n n
M/t:/dA (quwv-/dzpu) +/dA /psz(M). (26.7)
—H —-H

The surface term
qwpwdA = f(n) fiu, (P— E+R) pwdA, (26.8)

represents the mass flux of fresh water (mass per unit time per unit horizontal area) crossing
the free surface, where py, is the in situ density of the fresh water. Equivalently, gy pw dA is
the momentum density of the fresh water in the direction normal to the ocean surface. The first
volume term arises from the convergence of mass into the column from within the ocean fluid, and
the second volume term arises from mass sources.

Equating the time tendencies given by equations and leads to a mass balance
within each vertical column of fluid

n n n
3 (/ dzp) +V. (/ dzpu) = Gw pw + / dzpSM. (26.9)
—H —H

—H
We can make this equation a bit more succinct by introducing the notation for density weighted
vertically integrated horizontal velocity
n
U’ = /dzpu, (26.10)
—H

which then leads to the following expression for mass conservation of a fluid column

7 n
9; (/ dzp) + VU’ = g pw + / dzpSM), (26.11)
—H —H

If we assume a Boussinesq fluid, the seawater parcels conserve volume rather than mass. In this
case, the budget for volume within a fluid column takes the form

n n
o (/ dz) + VU= qwpw/po + / dz SV (26.12)
—H

—H
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where ocean density factors appearing in the mass conservation equation (26.11) have been set
to the constant reference density p,, and

n
U= / udz (26.13)
H

is the vertically integrated horizontal velocity.

26.2 Evolution of sea level

The previous discussion provides integral budgets for a column of seawater extending from the
surface to the bottom. For many purposes, one may desire an evolution equation for the surface
height or sea level. The purpose of this section is to derive relations that isolate the surface height
and identify various physical processes affecting this height.

For this purpose, it will be useful to introduce the vertically averaged density

n
1
0= — . 26.14
5 H+n/dzp (26.14)
—H

This density can be readily computed within the prognostic model. Introducing the column mean
density into the column mass budget (26.11) leads to

n
PPy =—-V-UP+ pyqu+ / dzpS™ — Do, 7%, (26.15)
—H

where
D=H+n (26.16)

is the total thickness of the fluid column from the sea surface to the ocean bottom. Dividing
equation (26.15) by the vertically averaged density p* yields the surface height equation for a
mass conserving fluid

n
1 1
nQO”BOUSS = — <p2> VU + <ppvzv> gw + = / dzpSM —D9, Inp~. (26.17)
- steric
dynamics water forcing Source

The analogous result for the volume conserving Boussinesq fluid follows from equation (26.12),
and is given by

1
Bouss _ _ . Pw / V) 26.1
n; \Y U+<po>qw+ dz Y. (26.18)

dynamics ~~—~ ——~ -H
water forcing N
source

The dynamical, surface forcing, and source terms appearing in the two surface height equa-
tions (26.17) and (26.18) are directly analogous for both the non-Bousinesq and Boussinesq fluids.
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That is, the convergence arises from changes across a column in the vertically integrated fluid col-
umn motion (i.e., the “dynamics”). In a non-Boussinesq fluid, the convergence is also affected by
variations in density, whereas no such effects are present in the Boussinesq fluid. The fresh water
term arises from surface boundary forcing in both the Boussinesqg and non-Boussinesq fluids, and
the source term arises from mass or volume sources. The term —D 9, In p* appearing in the non-
Boussinesq surface height equation represents a fundamentally new process that changes the
ocean surface height when the vertically averaged density changes. For example, if the vertically
averaged density decreases, the surface height increases, and vice versa. This process is com-
monly called the steric effect. It is an important contributor to sea level in the real ocean, and is of
particular interest given the observed increases in ocean temperature arising from anthropogenic
climate change. Unfortunately, the steric effect is absent from the Boussinesq fluid’s prognostic
surface height equation (26.18). As discussed in Section we propose approximate methods
to diagnostically compute the steric effect in Boussinesq models.

26.3 Diagnosing terms contributing to the surface height

In summary, the previous derivations have led to a surface height evolution equation for a mass
conserving fluid that can be partitioned into four terms

ngonBouss _ (plz> V.U + <Z"Z"> < > / dz pS Dat Inp (26.19)

sterlc

dynamics water forcing Source

Each term on the right hand side is a time tendency that contributes to the evolution of the ocean
surface height. For diagnostic purposes, we split the surface height into the non-steric and steric
terms

nnonBouss _ nnonsteric + nsteric’ (26.20)
where the surface heights are defined according to their time tendencies
1 1\ |
pronsteric — (Z> V-UP+ <pvzv> Gw + <Z> / dz pS™ (26.21)
’ P P P
-H
nSere — —Da; Inp. (26.22)

We diagnostically time step each of these two surface heights in order to monitor the instantaneous
contributions to the full surface height arising from the physically distinct processes.

We next consider the details of how to diagnose these terms within a non-Boussinesq mass
conserving version of MOM4p1, using a pressure based vertical coordinate, as well as a Boussi-
nesq version of MOM4p1 using a depth based vertical coordinate. This formulation also provides
guidance for diagnosing these terms from commonly saved model output.

26.3.1 Pressure based vertical coordinates

As the pressure based version of MOM4p1 integrates the mass conserving nonBoussinesq equa-
tions, each term on the right hand side of equation (26.19) can be diagnosed in a straightforward
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manner. The result of the diagnostic calculation for n"°"Bouss will be, to within numerical trunca-
tion error, the same as the model’s prognostic calculation, which computes the surface height after
having time stepped the bottom pressure (see Section[7.3.4). Verifying that this is realized in the
model is a good way to check both the theory and the model formulation.

26.3.2 Depth based vertical coordinates

For a depth based version of MOM4p1, the surface height is determined from a discrete form of
equation (26.18)), which omits steric effects. However, it is possible to diagnose the terms appear-
ing on the right hand side of the non-Boussinesq surface height equation (26.19), and in particular
to approximate the non-Boussinesq surface height. To do so requires some approximations, which
we list here.

e For purposes of performing the vertical integrals to compute the depth averaged density
p*, as well as the density weighted horizontal velocity U?, we assume the currents, surface
height, and density computed in the Boussinesq model are reasonably close to those com-
puted in a non-Boussinesq model. This approximation is motivated by the results from a
careful comparison of non-Boussinesq effects in a steady state coarse resolution model by
Losch et al.|(2004). The approximation breaks down when (a) currents are ageostrophic as
near boundaries and the equator, (b) flows are strongly nonlinear, as in eddying simulations.
Nonetheless, for many purposes, especially for large scale patterns, the approximation re-
mains sufficiently accurate. Hence, it is possible to again diagnose the tendency terms
appearing on the right hand side of equation as in the non-Boussinesq model.

o To further approximate the calculation, we employ the constant Boussinesq density p, when
computing the dynamical contribution, and drop the density ratio when computing the water
forcing term and source term. Hence, the only place than in situ density is maintained is for
computation of the steric term.

In summary, we propose the approximation

nonBouss ~

. pBouss | steric (26.23)

where 1BOUsS is the prognostic surface height computed by the Boussinesq model,

Bouss  nonsteric (26.24)

n n

and nSte"C js the steric sea level diagnosed in the Boussinesq model, as described above.

26.4 Global averaged sea level

The previous discussion aimed to identify contributions to sea level change at each point in the
ocean. For many purposes, it is of primary interest to measure changes in global mean sea level.
We can answer this question by considering a horizontal area mean of the previous diagnostic
terms. However, it is cleaner to start from an even more basic perspective, whereby we consider
the following relation between the total mass of liquid seawater, total volume of seawater, and
global mean seawater density,

M=V (p), (26.25)



360 CHAPTER 26. DIAGNOSING THE CONTRIBUTIONS TO SEA LEVEL EVOLUTION

where M is the total liquid ocean mass
M =Y dxdydzp, (26.26)

V is the total ocean volume
V= Z dxdydz, (26.27)

and (p) is the global mean in situ density
(p) = M/ V. (26.28)

Temporal changes in total ocean mass are affected by a nonzero net mass flux through the ocean
boundaries, so that

o M= A(QY) (26.29)
where
Q" = pw qw (26.30)
is the mass per horizontal area per time of water crossing the ocean boundaries, and
Q") =AY dxrdy Q" (26.31)

is the global mean mass per horizontal area per time of water crossing the ocean boundaries.
Temporal changes in the ocean volume are associated with sea level changes via

oV = Ao (n), (26.32)
where A =Y dxdy is the area of the global ocean surface, and
(m) =AY ndxdy (26.33)
is the global mean sea level. Bringing these results together leads to the evolution equation for
the mean sea level : () VA 3 (o)
Hn) = RS <A> o (26.34)

The first term in equation is associated with mass fluxes across the ocean surface. The
second term arises from temporal changes in the global mean density; i.e., from steric effects. The
steric effect is missing in Boussinesq models, so that the global mean sea level in a Boussinesq
model is altered only by net volume fluxes across the ocean surface.

We can approximate each of the terms in equation over a finite time At via

S ()%

Aln) ~ (26.35)

A
where the A operator is a finite difference over the model time step. In a Boussinesq model, we
must compute each term on the right hand side in order to develop an accurate time series for the
global mean sea level that includes steric effects. For a non-Boussinesq model, (n) is computed
directly from the model’s surface height field, since the prognostic model includes steric effects.
In either the Boussinesq or non-Boussinesq case, it is of interest to diagnose the steric term

S=_ <D A<§)§> (26.36)



26.4. GLOBAL AVERAGED SEA LEVEL 361

in order to deduce the effect on (n) associated just with changes in global mean density, as
distinct from changes in ocean mass. The steric effect is straightforward to diagnose from a model
simulation, given temporal changes in the global mean density.

We now consider the question of how much the steric effect is determined by changes in
temperature and salinity. For this purpose, we write the time tendency for global mean density as

oulo) = (0r9) + " [ dxdy (olm) — (o)) 3, (2637)

where p(n) is the density at the ocean surface. It is the first term in this equation that interests us
when considering thermal effects, in which case we write

(0 p) = (—xpdi6) + (B0 S) + (¢ 0: p), (26.38)

where o« = —p~19p/d0 is the thermal expansion coefficient, 3 = p~19p/dS is the haline contrac-
tion coefficient, and ¢ = dp/dp is the squared sound speed. Given this expansion of the density
tendency, we identify the thermosteric contribution to sea level as the following finite increment

memo (V) {apA9))
S _< A) O (26.39)

A reasonably accurate approximation can be found by canceling the density factors

Sreme @) (o AD)). (26.40)

It is critical to not make the further approximation of extracting a constant thermal expansion from

the global average:

Sremo (Z) () (A(6)). (26.41)

The reason to avoid this approximation is that the thermal expansion coefficient varies quite a
lot over the World Ocean. Hence, it is important to weight the changes in temperature with the
corresponding local value of «.

The halosteric contribution to sea level change is defined analogously

halo — X <ﬁpA(S>>
sw=- (%) %% 62

~~ (%) wae).

The halosteric term becomes more important as increases in melt water from land glaciers dilute
seawater. Finally, the difference

Spressure = S o Sthermo _ 8ha|0 (2643)

identifies the steric effects arising from changes in pressure.
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CHAPTER
TWENTYSEVEN

Balancing the hydrological cycle in ocean-ice models

The purpose of this chapter is to discuss issues of how to balance the hydrological cycle in ocean-
ice simulations using MOM4p1 and the FMS coupler. In particular, we detail how the liquid water
flux transferred between sea ice and liquid ocean is diagnosed in MOM4p1, given the salt mass
flux transferred between the media.

27.1 Transfer of water between sea ice and ocean

As sea ice forms, water is extracted from the liquid ocean and passed to the solid sea ice. Ad-
ditionally, there is generally a nonzero salt mass transferred from ocean to ice, thus producing a
nonzero salinity for sea ice. Conversely, as sea ice melts, liquid water and salt are added to the
ocean.

The GFDL Sea Ice Simulator (SIS) generally simulates sea ice with a nonzero salt content.
For example, in the coupled climate model simulations discussed by Delworth et al.| (2006), sea
ice is assumed to have a salinity

_ kg saltinseaice

S.ice .
kg seaice

(27.1)

of S_ice = 0.005 (five parts per thousand).

27.2 Balancing the hydrological cycle

When running ocean-ice simulations, we are not explicitly representing land processes, such as
rivers, catchment areas, snow accumulation, etc. However, to reduce model drift, it is important
to balance the hydrological cycle in ocean-ice models. We thus need to prescribe some form
of global normalization to the precipitation minus evaporation plus river runoff. The result of the
normalization should be a global integrated zero net water input to the ocean-ice system over a
chosen time scale.

How often the normalization is done is a matter of choice. In MOM4p1, we choose to do so at
each model time step, so that there is always a zero net input of water to the ocean-ice system.
Others choose to normalize over an annual cycle, in which case the net imbalance over an annual
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cycle is used to alter the subsequent year’'s water budget in an attempt to damp the annual water
imbalance. Note that the annual budget approach may be inappropriate with interannually varying
precipitation forcing.

When running ocean-ice coupled models, it is incorrect to include the water transport between
the ocean and ice models when aiming to balance the hydrological cycle. The reason is that it is
the sum of the water in the ocean plus ice that should be balanced when running ocean-ice models,
not the water in any one subcomponent. As an extreme example to illustrate the issue, consider
an ocean-ice model with zero initial sea ice. As the ocean-ice model spins up, there should be
a net accumulation of water in the growing sea ice, and thus a net loss of water from the ocean.
The total water contained in the ocean plus ice system is constant, but there is an exchange of
water between the subcomponents. This exchange should not be part of the normalization used
to balance the hydrological cycle in ocean-ice models.

27.3 Water mass flux from salt mass flux

Balancing the hydrological cycle in an ocean-ice model run with the FMS coupler requires an
indirect method. The reason is that melt water from the ice model is added to the precipitation
field prior to being added to the ocean model. So prior to balancing the water fluxes, we must
remove the ice melt from the precipitation. The namelist option for performing this normalization is

zeromet,water,coupler

found in the module
mom4pl/ocean_core/ocean_sbc_mod.

An alternative namelist option is
zeromet,water,couple,restore

which balances the water due to precipitation minus evaporation plus runoff plus restoring flux
water. Note that in MOM4p0, ice melt was not removed from precipitation prior to computing the
water normalization using zero_net_water_coupler. This bug compromised the integrity of the
ocean-ice models run with MOM4p0 which used the option zero net water_coupler.

To obtain the water mass flux between sea ice and ocean, we could consider two approaches.
First, we could alter the FMS sea ice code so that it carries explicit information about the water
flux in question. This approach requires modifying code that lives outside of MOM4p1, and so is
not desirable from a MOM4-centred perspective. Alternatively, we can make use of the salt mass
flux passed between the ocean and sea ice. This approach is limitated to cases where the ice is
assumed to have a uniform bulk salinity, as presently assumed in the GFDL sea ice model.

In MOM4p1, we have access to the following salt flux

: T,

salt_flux_to_ice = Sice Psea ice 'CeATe't. (27.2)

In this equation, psesice i the density of sea ice, taken as pgegice = 905kgm~—3 in the GFDL
ice model, and Tice melt/ At is the thickness (in meters) of ice that melts over the time step (in
seconds) of the ice model. By convention, this salt flux is positive when there is growth in sea ice,
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thus representing a passage of salt from the liquid ocean into the sea ice. Correspondingly, this
flux is positive when there is a mass flux of water to the sea ice. Since we are here working from
an ocean perspective, we prefer to measure the flux of salt entering the ocean from the melting
sea ice

salt_flux_to_ocean = —salt_flux_to_ice. (27.3)

Dividing the salt flux by the salinity of sea ice yields the mass flux of water that melts (i.e., mass
flux of water transferred from sea ice to the ocean)

salt_flux_to_ocean
S.ice

_ < kg ice melt ) (Tice me") (27.4)
area seaice x Tice melt At '

B kg ice melt

N (area sea ice x At) '

This mass of melting sea ice represents a gain of liquid water for the ocean.

mass_melt =
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CHAPTER
TWENTYEIGHT

Gyre and overturning contributions to tracer transport

The purpose of this chapter is to discuss the diagnostic in MOM4p1 that computes the contribution
to advective tracer transport in the j-direction (generalized meridional) associated with gyre and
overturning components of the flow. Bryan and Lewis (1979) were amongst the first to make use
of this diagnostic, and |Peixoto and Oort| (1992) (page 342) describe the decomposition in more
detail. The gyre component has traditionally been associated with wind driven processes, and
overturning associated with thermohaline processes. However, this physical association is not
clean, as it is generally not possible to split the transport into two distinct physical processes.
For example, removing wind forcing does not necessarily mean the gyre contribution is zero.
Nonetheless, this decomposition is commonly performed, and such has provided some physi-
cal insight into the flow characteristics. It is for this reason that MOM4p1 provides a subroutine
inside ocean_tracer_advect.F90 to perform this decomposition.

28.1 Formulation

The meridional advective transport of a tracer within a particular ocean basin is given by the
integral

X 1
H(y,t) = /dx / dzpCru, (28.1)
X1 —H

where v is the meridional velocity component, p is the in situ density, C is the tracer concentration,
z = —H(x,y) is the ocean bottom, z = n(x, y,t) is the ocean surface, and x; and x, are the
longitudinal boundaries of the basin or global ocean. With the generalized horizontal coordinates
in MOM4p1, the coordinate y is assumed to be aligned with the j grid lines. For the purposes of
this diagnostic, we do not perform a rotation of the flow to the geographical longitude and latitude.
For the tripolar grid commonly used for global modeling with MOM4p1, generalized zonal integrals
along i-lines yield j-transport, and this is sufficient for most diagnostic purposes. Note the term
north will continue to be used, with this generally denoting the j-direction, which corresponds to
the geographical north when j-lines are parallel to longitudes.
In MOM4p1, the density and thickness weighted advective velocity component

YV =vpdz (28.2)
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is computed and held in the array vhrho nt, where p reduces to the constant Boussinesq density
o, for the Boussinesq version of MOM4p1, but it remains the in situ density for the nonBoussinesq
version. The product dx V measures the mass per time of seawater leaving the north face of the
grid cell, with dx V' C thus measuring the mass per time of tracer leaving the north face. We now
consider the following decomposition of this transport by defining the zonal average transport and
zonal average tracer concentration as follows

- Zi dxV
V] = Y dx (28.3)
. Zi dxC
[q_ZMw (28.4)
along with the deviations from zonal average
V=[V]+V* (28.5)
C=[C]+C". (28.6)

The discrete i-sum extends over the basin or global domain of interest, so that }; dx V is the total
meridional transport of seawater at this zonal band at a particular k-level. The resulting meridional
tracer transport becomes

H(y,t) =) ) dxVC (28.7)
i k

=Y ) dx (V][C]+VCY), (28.8)
ik

where the k sum extends over the depth of a column.
We identify three components in the code:

merid_flux_advect =} } dxVC (28.9)

ik
merid_flux_over = )" }" dx [V][C] (28.10)

ik
merid_flux_gyre = )} dxV* C*. (28.11)

ik

Note that

merid_flux_gyre = merid_flux_advect — merid_flux_over. (28.12)

This identity follows very simply when the advective flux takes on the simple form of either first
order upwind or second order centered differences. It becomes more involved when considering
higher order, or flux limited, advection schemes. Nonetheless, we use this as a defintion of the
gyre component, so that the advective flux is built from the advection scheme used in the model.

28.2 Enabling the diagnostic

The following is necessary to enable this diagnostic.
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e Set the ocean_tracer_advect nml logical
compute_gyre_overturn_diagnose = .true.

This logical is introduced since a number of global arrays must be defined, and it is simplest
to determine the need for these arrays by setting a single logical.

e Set any of the following within the diagnostic table:

“tracer’ merid_flux_advect_"basin”
“tracer’ merid_flux_over_basin”

“tracer” merid_flux_gyre_""basin”

where “tracer” is the MOM4p1 shortname for the tracer (e.g., “temp” or “salt”), and “basin” is

[ ] ” i ” [

one of the names “global”, “southern”,“atlantic”, “pacific”, “arctic”, or “indian”.

e To get the transport diagnostic partitioned into basins in the World Ocean, it is necessary to
read in a netCDF basin mask. A sample mask is provided with the OM3-CORE test case
discussed in Chapter [37] The logical to read in this mask is

read_basin mask = .true.
The convention is that the basins are defined by the following values in the mask:

Southern = 1.0

Atlantic = 2.0
Pacific = 3.0
Arctic = 4.0

Indian = 5.0.
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PART V
Test Cases

The purpose of this part of the manual is to introduce the MOM4p1 test cases. Test cases are
offered as a means to explore various numerical and physical options, thus allowing the user to
verify that the code is performing in a manner consistent with that at GFDL. This form of verification
is critical as one adopts the code for his or her particular research purposes. The test cases also
provide a sense for some of the options available in the code, though by no means are all options
exercised in the test cases. Note that due to resource limitations, the test cases are not always
updated.

REGRESSION TESTING FOR COMPUTATIONAL INTEGRITY

Output from the test cases provided with the MOM4p1 distribution is based on short integra-
tions that verify the computational integrity of a simulation. The associated runscripts are provided
that allow the user to rerun the regressions. These regression test suites (RTS) aim to verify that
the following identities hold, with precision maintained to all computational bits:

e Stopping and then restarting the integration will not change answers. That is, we insist on
the identity

X day integration = X/2 day integration 4 X/2 day integration. (28.13)

This test verifies that all the relevant fields are properly stored in the restart files, and that no
spurious reinitialization step is performed during the beginning of the second leg.

e Changing the number of computer processors will not change the answers. This test exam-
ines whether the code is properly written for parallel machines. Its satisfaction requires that
all message passing be correctly performed so that accessed halo points are filled with their
proper values. In the early days of parallel computing with MOM, this test was very tedious
to satisfy, since our experience was based on seriel computing. Now, after some years of
experience, it is generally straightforward to code in a manner that ensures answers do not
change when processor counts change.

Satisfaction of these two tests is critical to maintain computational integrity of the code.
It is important to note that the runscripts for the regressions are distributed with the following
settings:
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e diag step is set to a small number, such as 1 or 12, in various diagnostic modules. This
setting means that various numerical diagnostics are run at a very high frequency. These
diagnostics can be expensive. It is therefore strongly recommended that the setting for
diag_step be increased to a much larger number when running experiments for long periods
of simulation time. Otherwise, the model will be unreasonably slow.

e The diagnostic tables are setup to output netCDF diagnostics at a very high frequency, such
as daily. Again, this high frequency is unreasonable when running simulations for long pe-
riods of time. The output produced will be enormous, and the model will run at a much
slower pace. Additionally, a large number of diagnostics are included in the diag_table,
many of which may not be of interest to the user. Therefore, prior running an experiment, it
is important to edit the diag_table to refine the desired output.

COMMENTS ON THE TEST CASES

The chapters in this part of the manual represent a rough guide to the various test cases. We
present a sprinkling of model output to allow interested users to run simulations at their institution
to verify that the code has been properly ported. Many details of the experiments are omitted,
with examination of the supplied runscripts providing more details. Furthermore, a full accounting
of the test cases, both their design and simulation characteristics, is beyond the scope of this
document. Indeed, a full discussion would constitute a research paper. We thus present a taste,
with further details readily found by diving into the model, running experiments, and performing
analysis.

Some test cases are based on research experiments conducted at GFDL and elsewhere.
They may thus serve as useful starting points for research using MOM4p1. It is nonetheless
critical that the user not blindly assume that a test case is precisely appropriate for a particular
research project. Instead, one is strongly encouraged to scrutinize each option in a test case
before concluding that it is relevant.

As there are many options in MOM4p1, it is not feasible to exercise all options with only a
few test cases. Hence, some tests are distributed with more options enabled than scientifically
appropriate. Conversely, many options are not fully exemplified by the test cases. Omitted options
include the experimental options sprinkled through MOM4p1, with these options not supported for
general use. The developers are aware of the limitations in the test cases, but choose to release
the incomplete suite of tests in hopes that something is preferable to nothing.



CHAPTER
TWENTYNINE

Torus test case

The torus test case mom4_torus consists of a flat bottom square domain on the F-plane with doubly
periodic boundary conditions. It provides an idealized test bed for implementing various numerical
schemes, with applications to tracer advection frequently exercised at GFDL. The flow field can
be specified to have uniform horizontal velocity. For the illustration considered here, we consider
a zonal flow with (u,v) = (0.25ms™1,0).

There are various options in

mom4 /ocean_tracers/ocean passive mod

for specifying the initial profile of idealized passive tracers. We consider two profiles shown in

the top panel of Figure The first profile is a square wave or pulse, and the second is a

smooth Gaussian bump. The initial tracer concentrations all live within the range [0, 1]. Numerical

solutions that fall outside this range constitute spurious unphysical results arising from errors in

the advection scheme. A perfect advection scheme would advect the profiles without alteration.
The tracer profiles are advected with the following Courant number

u At
C= Ax
~0.25m s~ x 10800s (29.1)
o 1.04 x 10°m

~ 0.5

using the staggered time stepping scheme standard in MOM4p1 (Section [8.2). For the centred
2nd order and 4th order advection schemes, however, stability requires leap-frog time stepping, in
which case the Courant number is ~ 1 since the time step for advection is 2 At. We consider the
following advection schemes available with MOM4p1:

e 2nd: The second order centred differences scheme has been the traditional scheme em-
ployed in earlier versions of MOM. It is available only with the leap-frog version of MOM4p1,
since it is unstable with a forward time step used with the forward-backward method (Section

8.2).

e 4th: The fourth order centred scheme also is available only for the leap-frog version of
MOM4p1. This scheme assumes the grid is uniformly spaced (in metres), and so is less
than fourth order accurate when the grid is stretched, in either the horizontal or vertical.
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e Upwind: This is a first order upwind scheme, which is highly diffusive yet monotonic.

e Quicker: The quicker scheme is third order upwind biased and based on the work of Leonard
(1979). Holland et al. (1998) and |Pacanowski and Griffies| (1999) discuss implementations
in ocean climate models. This scheme does not have flux limiters, so it is not monotonic.

e MDPPM: The piece-wise parabolic method with flux limiters.

e Super B: Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert
(1994), with Super-B flux limiters ]

e Sweby: Multi-dimensional third order upwind biased approach of Hundsdorfer and Trompert
(1994), with flux limiters of \Sweby (1984)E]

e PSOM unlimited: The second order moment scheme of Prather (1986).

e PSOM limited: The second order moment scheme of |Prather| (1986) with flux limiters from
Merryfield and Holloway| (2003).

After 100 days, the tracer concentration profiles have evolved to those in the second, third, and
fourth panels of Figure There are clear differences between the various schemes.

The 2nd and 4th order schemes exhibit nontrivial extrema for the square pulse. Extrema arise
from the dispersion errors intrinsic to these schemes. The errors are especially large when ad-
vecting profiles with strong gradients, such as the square pulse. In contrast, they perform much
better for the Gaussian pulse, due to the pulse’s much more smooth initial profile. The first order
upwind scheme produces no extrema, yet it is highly dissipative, with the square pulse nearly as
damped as the Gaussian pulse after 100 days. The Quicker scheme is somewhat of a compromise
between the upwind scheme and the 2nd and 4th order schemes. It contains diffusion intrinsic
to the algorithm, which smooths the profile to help maintain a more reasonable level of bounded-
ness. However, its performance for the square pulse remains unsatisfying, as there remain some
nontrivial unphysical extrema.

In the third panel, the Sweby, Super B, and MDPPM schemes all show similar behaviour to
each other. In particular, each maintains the tracer within its physical bounds, since these schemes
are flux limited. More detailed analysis reveals that MDPPM is a bit less dissipative than the other
two schemes, thus allowing for a slightly better maintenance of the square pulse shape. It is
interesting that each scheme converts the initially smooth Gaussian pulse into a more square
feature over time. Such is a property common to many advection schemes with flux limiters.

The fourth panel shows results for the limited and unlimited PSOM schemes. The unlimited
PSOM scheme produces extrema for the square pulse, but with far smaller amplitude than Quicker,
2nd, or 4th order advection. Even so, it does a wonderful job maintaining the shape of the square
pulse. The limited PSOM scheme also maintains the square pulse, but clips the extrema thus
retaining tracer concentrations within their physically relevant bounds.

I This scheme was ported to MOM4 by Alistair Adcroft, based on his implementation in the MITgcm. The online
documentation of the MITgem at http://mitgcm.org contains useful discussions and details about this advection
scheme.

2This scheme was ported to MOM4 by Alistair Adcroft, based on his implementation in the MITgem. The online
documentation of the MITgem at http://mitgem.org contains useful discussions and details about this advection
scheme.
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Based on performance in the square pulse test, the limited PSOM scheme appears to be
the best if we insist on maintaining boundedness of the tracer, with the unlimited PSOM scheme
preferable if slight extrema are allowed. Use of the PSOM schemes come at the price of adding 10
extra three-dimensional arrays for each tracer. This added memory may preclude PSOM for some
models, depending on computer platform and number of tracers. One approach to reducing the
memory overhead is to employ the PSOM scheme for the active tracers (temperature and salinity),
and another scheme, such as MDPPM, for the passive tracers.
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Figure 29.1: Top panel: Initial passive tracer profile for the torus test case. The two profiles are
artificially offset in the zonal direction for purposes of clarity in presentation. Shown here is a plot
through y = 20°N. Second panel: passive tracer profiles after 100 days of integration using 2nd,
4th, Quicker, and Upwind advection schemes. Third panel: Results using MDPPM, Sweby, and
Super B. Fourth panel: Results from the limited and unlimited PSOM scheme.
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Symmetric box test case

The symmetric box test case mom4_symmetric_box consists of a flat bottom domain which is sym-
metric across the equator. It has solid walls and is forced with zonally constant forcing. The initial
conditions are constant temperature and salinity. The surface restoring fields are show in Figure
There is zero wind stress applied. Density is determined by the realistic equation of state of
Jackett et al.| (2006)), and the prognostic temperature variable is the conservative temperature of
McDougall (2003).

The aim of this test case is to examine numerical methods with respect symmetry across the
equator. Small discretization errors which are not symmetric will accumulate and become visible
in flow features. This test provides a useful means to measure this accumulation. Consequently,
there is a relatively large suite of physical parameterizations enabled, many of which are incom-
patible with one another. The purpose of enabling so many options is to thoroughly examine
symmetry properties of the schemes.

Figure shows the surface height and zonally averaged temperature and zonal velocity
after 1000 days of simulation. The surface height shows signs of asymmetry, whereas the zonally
averaged temperature and zonal velocity are reasonably symmetric.
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Restoring SST
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Figure 30.1: Restoring temperature and salinity for the symmetric box test case.
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Figure 30.2: Snapshots of simulation features after 1000 days. Top panel: surface height in metres;

Middle panel: zonally averaged temperature; bottom panel: zonally averaged zonal velocity.
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Box sector test case

The box test case mom4 _box consists of a flat bottom northern hemisphere sector domain with
thermohaline forcing at the upper boundary (Figure [31.1). There is zero wind stress. The initial
salinity is constant, and the initial temperature has a nontrivial zonally symmetric thermocline
structure (Figure [31.). Density is a linear function of temperature, and is independent of salinity
and pressure.

The domain and grid are of a modest size (24(x) x 35(y) x 18(z)), thus allowing this test to
be run on most any computer. The resulting circulation is driven by density gradients set up by
the thermohaline forcing. It exhibits an overturning circulation, with sinking in the north and rising
throughout the domain, which is reminscient of many similar idealized simulations run in the 1980s
and 1990s.

We illustrate the behaviour of this test with the four following vertical coordinates (see Chapter

6):
e Geopotential vertical coordinate, as in MOM4.0;

e The depth based vertical coordinate

* z—n
2 —H <H+n) (31.1)

e The pressure coordinate;

e The pressure based vertical coordinate
* 0 P —Pa
= , 31.2
P= e (Pb - Pa> 12

with pg the initial bottom pressure, py, the bottom pressure, and p, the applied pressure at
the ocean surface, which is set to zero for this suite of tests.

Figures[31.2] [31.3] and[31.4]illustrate the zonal averaged temperature, salinity, and age tracer
(see Section [3.6.4), each averaged over years 901-1000. The differences in the simulations is
very minor, especially when recognizing the different vertical axes extents for the pressure versus
depth based vertical coordinates. Figure shows the meridional overturning streamfunction
for the simulations, again revealing very minor differences.
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Figure 31.1: Initial and boundary conditions for the box test case. Upper panel: initial temperature.
Middle panel: SST used for computing the restoring flux of heat. Lower panel: SSS used for
computing restoring flux of salt or fresh water.
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Figure 31.2: Zonal averaged temperature time averaged over the years 901-1000 in the box test
case. Shown here are results for the four vertical coordinates considered in this chapter. Note that
for the depth based coordinates, the vertical refers to metres, whereas for the pressure based it is
dbars. This accounts for the slight offset in the vertical extent of the domains.
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Figure 31.3: As in Figure but for salinity.
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Figure 31.4: As in Figure but for the age tracer.
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Figure 31.5: As in Figure but for the meridional overturning streamfunction.
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Wind driven gyre test case

The test case mom4_gyre consists of a flat bottom middle latitude domain driven by a zonal wind
stress. The temperature is initially stratified in the vertical (Figure [32.1), with density a linear func-
tion of temperature and independent of pressure and salinity. We employ the modified pressure

coordinate
p* = (;’b _l;aa) (32.1)

for the vertical coordinate, with the applied pressure p; = 0, and the static reference bottom
pressure

0 .
=g [ dz™ (32.2)

determined by the initial density profile p'nit,

This test case has been used at GFDL for examining the spurious mixing properties of various
advection schemes. For this purpose, we initialize to unity a passive tracer on each of the 50
vertical levels, with zero value off the chosen level (Figure [32.1). As the initial temperature profile
is independent of horizontal position, the passive tracers are initialized on surfaces of constant
density. We use the MOM4p1 MDPPM scheme for the test shown here.

During spinup of the circulation (Figure [32.2), passive tracers are advected around the gyre.
Horizontal gradients on a temperature surface arise from inhomogeneous stretching and compres-
sion of the surface as a function of the level of eddy activity. The near surface has an Ekman layer,
where vertical overturning occurs, as parameterized with convective adjustment. This overturning
is in response to the Ekman suction.

Beneath the Ekman layer, spreading of passive tracer across surfaces of constant temperature
(Figure occurs for two reasons:

e nonzero vertical diffusivity, set here to 10~°m?s~1,
e spurious mixing from numerical advection.

Quantifying levels of spurious mixing is straightforward. We do so by matching the evolution of
passive tracer in density space to the evolution achieved with pure vertical diffusion, with a dif-
fusivity fit to match that from the spurious mixing. This approach is a complement to the more
complex sorting approach employed by (Griffies et al.| (2000b) (see Chapter [23).
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Figure 32.1: Upper panel: Section illustrating the initial temperature for the gyre experiment, with
no horizontal variation in the initial temperature field. Middle panel: Illustration of an initial
passive tracer, placed in this case on model level 26. Lower panel: The zonal wind stress applied
to the gyre model, which spins up a two-gyre circulation within a few years.
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Figure 32.2: Simulation characteristics at 12 months. Shown here are monthly means for the fol-
lowing fields. Upper left panel: surface height (metre); Lower left panel: bottom pressure anomaly
(dbar) py, — pg ; upper right panel: quasi-barotropic streamfunction; Lower right: Temperature at
500dbar depth. Note the very small bottom pressure anomalies, relative to the surface height
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Figure 32.3: Monthly averaged passive tracer at 2.5E, overlaid with contours of constant tem-
perature. Notice how the tracer undulates with the undulating temperature surfaces. Also, the
tracer has spread across surfaces of constant density, with this spread associated with the nonzero
vertical diffusivity and the spurious mixing from numerical advection errors.
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DOME test case

The experiment mom4_dome is based on the idealized overflow test established for the project Dy-
namics of Overflow, Mixing, and Entrainment (DOME). Details of the experiment are provided in
various published papers, such as|Legg et al.| (2006).

As with the bowl test case mom4_bowl discussed in Chapter [34] the DOME test case provides
a means to test various overflow parameterizations. In both tests, the simulations highlight the
ability, or inability, of the simulated flow to overcome the geostrophic balance, which aims to align
the flow along isobaths. In coarsely resolved level models, spuriously large levels of ambient
waters tend to be entrained to the dense pulse, thus compromising the ability of the simulation
to form dense deep water, and to feel the effects of the bottom (Winton et al., [1998). The main
difference between mom4_dome and mom4 bowl is that mom4 _dome allows for a steady state to be
achieved, since dense water continues to be injected from the embayment. The mom4_bowl test, in
contrast, is an adjustment experiment, with no boundary forcing considered.

Coarse resolution level models are notoriously poor at representing overflow processes (Win-
ton et al., [1998). Various approaches have thus been proposed to resolve, or to reduce, the
problem. Chapter [19] details the methods available in MOM4p1. For the simulations discussed in
this chapter, we employ the quasi-horizontal coordinate p* detailed in Section Any of the
other quasi-horizontal coordinates, such as z, z*, or p (Sections [6.1.1} |6.1.4, and [6.2.1) would
show similar results. In contrast, the terrain following coordinates o(*) or o) (Sections[6.1.5/and
show much more downslope flow, due to their ability to better represent the interaction
between the flow and the terrain (not shown).

The configuration consists of a shelf in the north with a shallow embayment. We use 1/2° grid
resolution in both latitude and longitude, which yields two zonal grid points in the embayment. The
vertical grid is the same 50 levels used in the global OM3 configuration described in Chapter [37]

Temperature is initialized with a zonally symmetric profile shown in Figure Cold water in
the north lives at the bottom of the embayment. It is injected southward by a transport imposed at
the embayment’s northern boundary. Salinity is initialized to zero everywhere, but it is given a value
of unity for water that is injected from the embayment. Density is a linear function of temperature,
with no dependence on salinity and pressure. Salinity thus provides a passive marker for injected
water that is transported southward and into the abyss. Both temperature and salinity are damped
to their initial conditions at the eastern and western boundaries. This damping, applied through
a sponge condition, eliminates the Kelvin wave signals. Finally, for tracer advection, we use the
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Prather| (1986) scheme, employed without flux limiters.
We test the following five cases in this chapter:

e No lateral or downslope parameterization; just advective transport;
e Advection plus sigma diffusion acting in the bottom grid cell;

e Advection plus sigma diffusion acting in the bottom grid cell plus the overflow scheme of
Campin and Goosse|(1999) (Section [19.3);

e Advection plus sigma diffusion acting in the bottom grid cell plus the overexchange scheme
discussed in Section[19.4];

e Advection plus sigma diffusion acting in the bottom grid cell plus the mixdownslope scheme
discussed in Section[19.41

Four months of integration is sufficient to highlight differences between various overflow op-
tions available in MOM4p1. Figure [33.2] shows salinity at the bottom of the domain, averaged
over the last five days of the four month experiment. The case with pure advection (plus some
vertical diffusion) shows little downslope flow, as well as some extrema (values less than zero)
arising from the absence of flux limiters on the advection scheme. Adding sigma diffusion allows
for salinity to penetrate further south. There are also no tracer extrema, likely due to the smoothing
of the otherwise strong gradients near the bottom. Adding the overflow scheme of (Campin and
Goosse| (1999) reduces the depth where salinity penetrates. Apparently it is acting in a manner
that handicaps the penetration of dense water southwards, perhaps due to over dilution. In con-
trast, the overexchange scheme allows for the salinity to penetrate further southward and hence
deeper. For this test, we applied the overexchange scheme in four adjacent grid cells. Finally, the
mixdownslope also allows for penetration further southward, although with a local extrema a few
points away from the embayment, perhaps due to the nonlocal manner of transport. The penetra-
tion of salinity southward is reflected in the zonally averaged temperature shown in Figure
Consistent with the salinity tracer, the densest waters arise from the case with the overexchange
and mixdownslope schemes. The different density profiles give rise to differences in flow charac-
teristics. Figure [33.4] shows the barotropic quasi-streamfunction (see Section 17.2 of Griffies et al.
(2004))

Y
Wy =- [ dyUny), (33.1)
Ysouth
where
n
u— / dzu (33.2)
—H

is the vertically integrated zonal transportE] The vertically integrated transport is far stronger in the
cases with dense shelf water penetrating into the deep.

Ina rigid lid model, or a free surface model having reached a steady state in the absence of surface boundary fluxes
of mass, then 1 is a vertically integrated streamfunction. For the present case, with a transient free surface model, 1 is
only a direct correlate to the true vertically integrated transport, hence the qualifier quasi.
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Initial temperature

Figure 33.1: Initial temperature for the DOME test case. The cold water in the far north is at the
bottom of the embayment. Southward flow is injected from this embayment, allowing for the cold
and dense water to leave the embayment and enter the abyss.
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Figure 33.2: Bottom salinity averaged over the last five days of a four month integration. Top
panel: no lateral or terrain following parameterization. Middle left: advection plus sigma dif-
fusion applied in the bottom grid cell. Middle right: advection plus sigma diffusion plus the
overflow scheme of [Campin and Goosse| (1999) (Section[19.3). Bottom left: advection plus sigma
diffusion plus the overexchange scheme (Section[19.4) Bottom right: advection plus sigma diffusion
plus the mixdownslope scheme (Section [19.4).
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Figure 33.3: Zonally averaged temperature for the DOME test case, with panels corresponding to

those in Figure
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Figure 33.4: Quasi-streamfunction (Sv) for the vertically integrated transport in the four DOME
simulations, with panels corresponding to those in Figure 33.2]
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Bowl test case

The bowl test case mom4_bowl is based on a configuration built for studies of overflow processes
by Winton et al.| (1998). It consists of a shallow shelf in the northern portion of the domain, with
a deeper bowl to the south (Figure [34.1). The initial conditions place cold dense water on the
shelf (Figure [34.2). Density is a linear function of temperature, and is independent of salinity and
pressure.

Integration proceeds with no surface forcing. Hence, this is a relaxation or adjustment experi-
ment, with no steady state realized. The initial pressure forces set up acceleration which causes
the water to move off the shelf and into the deeper portion of the domain. The numerical and
physical processes active in this relaxation experiment are described by Winton et al.| (1998). In
particular, the test case is useful to examine the sensitivity of the deep water formed to various
numerical and physical options. It can be used in tandem with the test case mom4_dome described
in Chapter [33]

Level models are notoriously poor at representing overflow processes (Winton et al., [1998).
Various approaches have thus been proposed to resolve, or reduce, the problems. Chapter
details the methods available in MOM4p1. We test the following four configurations here:

e Terrain following pressure based vertical coordinate
P — (” —Pa ) ) (34.1)
Pb — Pa
with pp, the bottom pressure, and p, the applied pressure at the ocean surface, which is set

to zero for this suite of tests. For this vertical coordinate, we transport tracer just by advection
plus some vertical diffusion.

e Quasi-horizontal pressure based vertical coordinate

* _ 0 P—Pa ) (34 2)
P (Pb—Pa ’
with pp the initial bottom pressure. In this test, we also just employ advection plus vertical

diffusion.

e In this test, we use p* with the addition of nontrivial sigma diffusion in the bottom cell, as
described in Section[19.2.1]
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e In this test, we use p* with the addition of nontrivial sigma diffusion in the bottom cell, as
described in Section[19.2.1] as well as the overexchange scheme discussed in Section|19.4]

Figures and[34.4]show the salinity (a passive tracer) and temperature at the botom of the
domain, after one year as averaged over the last five days of the year. Both of the cases without
any added subgrid scale methods show advection transporting the tracers southwards along the
western boundary. The terrain following o(¥) case brings the tracer further into the abyss than
the p* case. When adding sigma diffusion or overexchange to the p* cases, the bottom signal is
greatly diffusved, as expected since these parameterizations are diffusive. They also cause the
tracer to bleed into the abyss more uniformly, rather than following the path along the wester wall.

Topography for Bowl test case

-500

—-1000 —

—1500

—-2000 —

Depth (metre)

Latitude

Longitude

Figure 34.1: Geometry of the bowl test case, with shallow shelf in the north and deeper bowl to
the south.
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Figure 34.2: Initial conditions for temperature and salinity in the bowl test case. Upper panel:
meridional-depth slice of the zonally symmetric initial temperature. Middle panel: Initial salinity,
which has a unit value on the shelf and zero elsewhere. Lower panel: Plan view of the initial SST.
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Figure 34.3: Salinity at the bottom of the domain after one year, as averaged over the last five days
of the year. Upper left panel: results from o{?) vertical coordinate using advection alone for the
tracer transport; Lower left panel: results from p* vertical coordinate using advection alone for the
tracer transport; Upper right panel: p* with advection and sigma diffusion applied in the bottom
cell; Lower right panel: p* with advection and sigma diffusion applied in the bottom cell and the
overexchange scheme.
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Indian Ocean Model

The test case mom4_iom consists of a realistic regional model of the Indian Ocean. The lateral re-
gional boundaries are damped to climatology using sponges. This model was originally developed
as part of a course on large scale ocean modelling in Bangalore, India during October 2004. The
model remains a useful starting point for certain Indian Ocean research efforts using MOM. It is
essentially the MOM4p1 implementation of Version 1.0 of that model configuration. The model is
forced with a full suite of realistic atmospheric products, and employs a relatively modern suite of
physical parameterizations.
One point of departure from the standard MOM4.0 configuration is to employ the depth based
vertical coordinate (Chapter [6)
z*=H(z—n)/(H+n). (35.1)

This coordinate is useful in cases where it is desired to refine the vertical resolution in the upper
ocean. Such enhanced vertical resolution may be of use for the Indian Ocean, where important
vertical gradients exist especially near river mouths.

Figure[35.1|shows the SST, SSS, and surface height fields for the simulation after only two days
of integration. As this model is not actively run at GFDL, we have not run it ourselves for much
longer periods. Researchers interested in using this model configuration should consult with the
MOM4 user community to be able to access the experience of others in running this model.
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Figure 35.1: Daily averaged surface fields after two days integration of the Indian Ocean Model.
Top panel: free surface height (metre); middle panel: surface temperature (C); bottom panel: sur-
face salinity (psu).
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CSIRO Mark 3.5 test

The test case mom4 mk3p5 consists of a realistic global model with spherical coordinates. This
model was developed at the CSIRO Marine and Atmospheric Research in Aspendale, Australia. It
is routinely used as the ocean component for the Australian contribution to the IPCC report.

It is notable that this model was originally developed for a rigid lid algorithm in MOM1. For that
algorithm, a heavy dose of polar filtering was employed. The present configuration in MOM4p1,
employing a free surface, removes all polar filtering, yet it takes a longer time step than the polar
filtered rigid lid configuration. This result is indicative of the often paradoxical results found with
polar filtering. We strongly recommend that all polar filtering be removed from global simulations.
Indeed, although a polar filtering module remains as part of MOM4p1, it is not supported by GFDL
scientists. The main reason is that is breaks local conservation of tracer, thus leading to spurious
surface fluxes and poor high latitude simulations.
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Global ocean ice model with tripolar grid

The test case mom4_om3_core consists of a realistic global ocean and ice model using the tripolar
grid of Murray| (1996) (Figure [37.1). |Griffies et al| (2005) provides extensive details of the model
configuration. We thus only provide a brief introduction in this chapter.

The global coupled ocean-ice configuration is very similar to that used as part of the climate
model developed at GFDL for the 4th IPCC assessment of climate change (Griffies et al., [2005|;
Gnanadesikan et al 2006). The ocean-ice configuration is also the basis for the GFDL-MOM
contribution to the Coordinate Ocean-ice Reference Experiments (COREs) documented in Griffies
et al.| (2009). These experiments employ the boundary forcing from |Large and Yeager| (2004),
which was developed for the purpose of running global coupled ocean-ice simulations without an
interactive atmosphere. This|Large and Yeager| (2004) dataset is available through the GFDL web
site

http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html.

It has been part of the MOM4 distribution for a few years. In addition to using an updated version
of MOM relative to |Griffies et al.| (2005) and |Griffies et al.| (2009), some model details have been
modified in order to more thoroughly test various features of the simulation for this test case.

37.1 Three different vertical coordinates

In this section, we illustrate certain characteristics after 100 years of integration with focus on
results for the three different vertical coordinates (Chapter [6)

s=1z (37.1)

s=z"=H(z—n)/(H+n) (37.2)
— ot — 0 P — Pa

s=p" =pp <Pb — Pa) . (37.3)

We show how results from z and z* are very close for the full global domain. The p* differ in
some regards that may be attributable to differences in the dynamics and SGS parameterization
as treated with Boussinesq and nonBoussinesq models.
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37.1.1 Initialization of the p* simulation

In Section[7.2] we detailed how to initialize the non-Boussinesq models, such as the p* simulation.
In the p* simulation, the vertical grid is based on increments of p*, which are pressure increments.
Our choice for setting these increments is the simplest approach, whereby the vertical coordinate
increment is set according to

ds = —gp,dz’. (37.4)

The initial vertical depth increment dz° is set according to the MOM4 procedure for determining
the depth increments in depth-based vertical coordinate simulations.

Through the hydrostatic balance, specifying the pressure increments ds determines mass
within a coordinate layer. Placing initial temperature and salinity, such as from the World Ocean
Atlas, in these layers then sets the density of the layers. The mass and density of a layer then
determines the actual thickness dz™*, which is generally different from dz°. Hence, the sum of
thickness dz* over the column will generally not yield a zero surface height n. This is a problem,
since we aim to start the simulation with a zero surface height, as nonzero height anomalies can
lead to spurious initial motion of sea ice. It is additionally a problem numerically if the pressure
model initializes a bottom partial step that is very thin, or even of negative thickness, in order to fit
the mass within the column.

Hence, an iterative process is required, with some modification needed to leave n = 0 at
the initial condition. Our choice, as discussed in Section is to modify the bottom depths. To
remove the instability possible from thin bottom cells, we deepen those cells that are too shallow to
fit the chosen initial column mass, if the bottom partial step is determined to be below a threshold
thickness (chosen as 10m for this test case). For columns that can fit the chosen initial mass with
the given bottom depth, we do not modify the bottom depth at all. So the initial procedure only
deepens some cells. As shown in Figure [37.2] it only deepens cells by a small amount, with the
exception of a few cells in the Black Sea. These columns occur in a relatively shallow marginal
sea, and contain relatively light water.

37.1.2 Brief analysis for the simulations
We show the following figures on the subsequent pages:

e Figure [37.3} Anamolous surface temperature obtained by time averaging over years 81-100
of the simulation, with anomalies relative to the World Ocean Atlas (WOA).

e Figure[37.4; Anamolous surface salinity obtained by time averaging over years 81-100 of the
simulation, with anomalies relative to the World Ocean Atlas (WOA).

e Figure[37.5} Anomalies for SST and SSS for the z* and p* simulations relative to the geopo-
tential simulation.

e Figure[37.6[ Time series for the temperature and salinity biases relative to WOA, as a func-
tion of depth for the geopotential and z* simulation, and as a function of pressure for the p*
simulation.

e Figure [37.7] Meridional overturning circulation for the Atlantic basin averaged over years
81-100, as well as the time series for the maximum overturning at 45°N.
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In general, differences are small between the geopotential and z* simulations, whereas they
are more noticeable between these two Boussinesg models and the p* simulation. For surface
properties, the main differences are near the boundary current extensions in the Pacific and At-
lantic, with this difference signaling a slight shift in the boundary current with the p* model relative
to the depth based models. Overall, the larger spread with the p* model may be attributed to
accumulation of slightly different forcing, where the Boussinesq model normalizes by p, to con-
vert stresses (N /m?), heating (W/m?), and hydrological mass fluxes (kg/(m?s) to accelerations,
temperature fluxes, and moisture volume fluxes. The p* model normalizes by the in situ surface
density of the model. Additionally, the nonBoussinesq equations are slightly different, and accu-
mulation of these differences may be possible for realistic simulations, such as the OM3 CORE
test case.

37.2 Age tracer and sensitivity to overflow parameterizations

We saw in Chapter [33] how sigma diffusion acting in the bottom grid cell, plus the overexchange
scheme discussed in Section[19.4] affect the transfer of dense water into the abyss in the idealized
DOME configuration. We pursue that result here within the OM3 configuration using geopotential
vertical coordinate. In particular, we compare three MOM simulations plus an isopycnal simulation
using the Hallberg Isopycnal Model:

e Standard configuration using the Sweby advection scheme of Hundsdorfer and Trompert
(1994), with flux limiters of |Sweby| (1984). This configuration employs the sigma diffusion
scheme in the model’s bottom grid cells.

e Switch from Sweby to the second order moment scheme of |Prather (1986).
e Keep |Prather (1986) and enable the overexchange scheme discussed in Section

e Hallberg Isopycnal Model (HIM): This simulation is analogous to the MOM simulations, with
the exception that it employs three times larger restoring of the salinity field. A run with the
same restoring is underway and will replace this simulation when available.

All three MOM simulations are quite similar in broad patterns. There are differences when
focusing on certain boundary regions, as may be expected from the differences in the overflow
parameterization. But the broad scale patterns are quite similar. In contrast, the HIM simulation
is far more venitilated, especially in the Southern Ocean. This result is consistent with the coarse
resolution results documented by [Legg et al.| (2006).
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Figure 37.1: Illustration of the bipolar Arctic as prescribed by Murray] (see his Figure 7) and
realized in OM3. The transition from the bipolar Arctic to the spherical grid occurs at 65°N. We
denote horizontal grid cells by (i, j) indices. As in the spherical coordinate region of the grid, lines
of constant i—index move in a generalized eastward direction within the bipolar region. They
start from the bipolar south pole at i = 0, which is identified with i = ni, where ni is the number
of points along a latitude circle and ni = 360 in OM3. The bipolar north pole is at i = ni/2, which
necessitates that ni be an even number. Both poles are centered at a velocity point on the B-grid
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Figure 37.2: Top panel: Topography used in an earlier depth based version of the OM3 test case.
Bottom panel: Deepening of the topography required to start the p* simulation with a zero initial
surface height. The modifications are very minor in most of the World Ocean, with a few points
in the Black Sea most prominent.
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Figure 37.3: Surface temperature anomalies for the depth, z*, and p* simulations. Values are
computed from 20 year mean over years 81-100.
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Figure 37.4: Surface salinity anomalies for the depth, z*, and p* simulations. Values are computed

from 20 year mean over years 81-100.
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Figure 37.5: Difference in surface temperature and surface salinity between the z* and geopoten-
tial, and p* and geopotential. Values are computed from 20 year mean over years 81-100.
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Figure 37.6: Drift for the geopotential, z*, and p* simulations in annual mean tempera-
ture and salinity as a function of depth and time. This drift is defined as Tynn(z,t) =

(Zuy dxdydz (Tmodes — Tiita) / (Eey dxdy diz).
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Figure 37.7: Meridional overturning circulation for the Atlantic basin averaged over years 81-100,
as well as the time series for the maximum overturning at 45°N.
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Figure 37.8: Age tracer averaged over the depths 800m-1200m and years 81-100. Top left: Integra-
tion with Sweby advection. Bottom left: Prather advection. Top right: Prather with overexchange.
Bottom right: HIM.
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Figure 37.9: Zonally averaged age tracer averaged over years 81-100. Top left: Integration with
Sweby advection. Bottom left: Prather advection. Top right: Prather with overexchange. Bottom
right: HIM.
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Global ocean-ice-biogeochemistry model

The test case mom4_om3_ecosystem consists of the same realistic global ocean and ice model
used for the mom4_om3_core simulation (Chapter 37). The physical components are forced as in
mom4_om3_core. In addition, we enable the GFDL Ocean Biogeochemistry (GOB) model. This is
a model of oceanic ecosystems and biogeochemical cycles which considers 22 tracers including
the following:

e three phytoplankton groups

¢ two forms of dissolved organic matter

e heterotrophic biomass

e dissolved inorganic species for C, N, P, Si, Fe, CaCO3 and O, cycling.
The model includes such processes as

e gas exchange

e atmospheric deposition

e scavenging

e N, fixation and water column and sediment denitrification

e runoff of C, N, Fe, O,, alkalinity and lithogenic material.

The phytoplankton functional groups undergo co-limitation by light, nitrogen, phosphorus and iron
with flexible physiology. Loss of phytoplankton is parameterized through the size-based relation-
ship of [Dunne et al.| (2005). Particle export is described through size and temperature based
detritus formation and mineral protection during sinking with a mechanistic, solubility-based rep-
resentation alkalinity addition from rivers, CaCO3; sedimentation and sediment preservation and
dissolution.
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CHAPTER
THIRTYNINE

Global coupled model CM2.1

The test case mom4_cm2p1 consists of the same realistic global ocean and ice model used for the
mom4_om3_core simulation (Chapter [37). In addition, it couples to a realistic atmosphere and land
model. This test case is the same configuration used for the GFDL CM2.1 coupled climate model
used for the IPCC AR4 assessment, as documented by [Griffies et al. (2005), Gnanadesikan et al.|
(2006), [Delworth et al.| (2006), |Wittenberg et al. (2006), and [Stouffer et al. (2006). This model
configuration is being distributed as part of the MOM4p1 code release, in hopes that researchers
may find it useful both to develop their own coupled climate models, and to make use of the CM2.1
model as it is presently configured.

CM2.1 100—Year Mean Sea Surface Temperatures
Years 101-200

B0°N

son [ j ]
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Figure 39.1: Sea surface temperature climatology from the GFDL coupled climate model CM2.1 as

documented by (Griffies et al.|(2005), (Gnanadesikan et al[(2006), Delworth et al| (2006), Wittenberg
et al. (2006), and [Stouffer et al. (2006).
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CHAPTER
FORTY

Eastern upwelling area test case

This chapter was contributed by Martin Schmidt

martin.schmidt@io — warnemuende.de

The test case mom4_atlantic is derived from a regional ecosystem model of the Benguela
Upwelling area. It consists of a rectangular box delimited at the eastern side by the Namibian
shelf, but by three open boundaries to the south, west and north respectively. The topography is
derived from the etopo5 dataset. The circulation in the model area is driven by local wind fields,
but is also influenced by coastal trapped waves originating from the equatorial current system. For
experiments covering several model years a large model domain is needed, which includes the
equatorial current system. However, in the framework of an ecosystem model with many nutrient,
phytoplankton and zooplankton variables such a model system appears to be computationally
expensive. In detail, it needs to much compute time for sophisticated sensitivity studies. For
this purpose, regional sub-models may be of great help and the original purpose of this model
configuration is to perform such sensitivity studies. The large model is implemented with MOM-31
as an ecosystem model, but the regional test case configured with mom4_atlantic has only the
temperature and salinity tracer enabled.

The circulation at the shelf has three main components, a westward Ekman transport in con-
nection with a coastal jet driven by the trade winds, an intermittent southward undercurrent and
an Ekman compensation current which drives deep circulation onto the shelf. The more or less
permanent off-shore Ekman transport implies strong coastal upwelling.

The regional model should reproduce these features. The specific boundary conditions at
the open model boundaries (OBC) apply for tracer points and involve a radiation condition and
relaxation to prescribed values as well. In the ARAKAWA B-grid used with mom4p1, velocity points
are internal points, but momentum advection is not well defined and requires approximations.
Hence, only information on tracers and sea level is passed from the large model to the regional
sub-model.

Grid and topography in the sub-model and the large model are the same in the sub-model
domain. Also the atmosphere forcing is similar and this test case could also be considered as
a one sides nesting problem. However, the numerical schemes of the large and the regional

423



424 CHAPTER 40. EASTERN UPWELLING AREA TEST CASE

model are different. Open boundary conditions are one method to control inconsistency near the
boundaries, which eventually may grow large with nesting.

The large model is implemented with MOM-31. It is a regional model itself and covers the area
from 10° W to 18° E and 35° S to 8° N. Boundary values for temperature, salinity and sea level
are taken from the ECCO-model. The OBC for the large model are very similar to those used in
momdpl. 10 day averages of most model variables can be found at the LAS-server

http : //las.io — warnemuende.de : 8080/las/servlets/dataset.

Some details on the large model will be given below, which may be helpful to understand
differences to the regional mom4p1 implementation:

- coupled model with atmosphere data provided from external files,
- leapfrog time stepping with Robert time filter, time step 720 s,

- tracer conserving time stepping scheme as described in Griffies et al. (2001), explicit fresh
water flux from rivers and precipitation,

- tracer advection with the quicker scheme, in mom4p1 this is quickermom3,

- vertical diffusion with a modified kpp-scheme. Only that part of the short wave radiation,
which is absorbed to a certain depth is added to the non-local vertical heat flux. This avoids
numerical artifacts with unstable water column at daytime.

- horizontal diffusion and viscosity using the Smagorinsky closure scheme with a Prandl num-
ber of 10, and a Smagorinski factor of 4. Background values for viscosity and mixing are
chosen as small as possible.

- Ocean-atmosphere fluxes are updated every hour and are kept constant in-between.

- The wind stress is calculated from composites of three day QuikSCAT based wind fields with
high spatial resolution superimposed with a daily cycle derived from NCEP reanalysis data.
The wind stress is parametrized following |Large and Pond| (1981).

- Short wave radiation is calculated from the top atmosphere insolation modified by total cloud
cover taken from NCEP reanalysis data. Transmissivity depends on sun angle and absorption
is calculated from the optical path length. The albedo is calculated from Fresnel’'s formula.

- Long-wave upward radiation is calculated from a gray body formula with an emissivity of 0.96.
Long-wave downward radiation is taken from a gray body radiation formula with atmosphere
10 m temperature, modified by humidity and cloud coverage.

- Latent heat flux is calculated from virtual air temperature and SST by a usual bulk formula.

- Evaporation is calculated from 2m water vapor pressure. Specific humidity and air tem-
perature are from NCEP reanalysis data. The enthalpy corresponding to the mass flux with
evaporation is also taken into account.

- Precipitation data from NCEP reanalysis are used. To calculate the heat flux from precipitation
(heavy rain falls are possible in the model domain) the rain temperature is approximated by
the air temperature.
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- Atmosphere bottom pressure gradients are taken into account from ocean model pressure
gradients. This point is important for the performance of the OBC scheme.
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Figure 40.1: The topography of the large model and the embedded region of the sub-model.

Figure [40.1] shows the topography of the large model and the embedded sub-model area for
this test case. Along the sub-model boundaries time averages of sea level and tracers were stored
every 6 model hours. For the western boundary these data are in the input files obc_trop_west.dta.nc
and obc_clin_west.dta.nc. Similar files are written for the northern and southern boundary. For
mom4pl a calendar attribute was added to the time axis and the sea level values are transformed
to be given in meters.

Subsequently some corner points for the regional mom4pl implementation are given. The
namelist specifies more details:

- coupled model with atmosphere data provided from external files by data overriding,

two-level (Adams-Bashford) time stepping with a baroclinic time-step of 1200 s,

predictor-corrector free surface scheme,

explicit fresh water flux precipitation, rivers are not in the model domain,

geopotential coordinates. z*-coordinates have been also verified to work, but OBC are not
ready for pressure coordinates.
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- The model domain is an upwelling area. The baroclinic Rossby radius is almost resolved.
Hence, sigma-diffusion and neutral physics are disabled.

- Vertical diffusion is calculated from the kpp-scheme. This differs slightly from the method
used in MOM-31, but the consequences have not been investigated yet.

- Horizontal diffusion is calculated from the Laplacian scheme, with a small value for vel _micom =
0.001m s~ 1.

- Horizontal friction is calculated from the Laplacian Smagorinsky scheme, with a small value
for vel_micom_iso = 0.0005m s~! and k_smag_iso = 4.0.

- Tracer advection is carried out with the mdf1_sweby-scheme for all tracers.

- Atmosphere data to calculate ocean atmosphere fluxes are the same as used for the large
model. However, in mom4p1 the ocean surface velocity is taken into account in the wind stress
calculation, which is based on Monin-Obukhov similarity theory.

- Downward short- and long-wave radiation is not calculated but overridden from file instead.
6 hourly NCEP reanalysis data are used, with a coarse 4 degree spatial resolution. The daily
cycle will be represented less accurate than in the large model. Long-wave upward radiation
is approximated by a black body formula.

Remarks on file on file preprocessing

The input files of this test case do not fulfill all requirements for fms netcdf input files, but they are
recognized correctly. A calendar attribute was added to the time axis if missing. Most files are
preprocessed with ferret,

http : //ferret.pmel.noaa.gov/Ferret/,

which adds information on axis boundaries. Possibly the bnds-specification is not recognized by
the fms axis tools. For this reason the bnds-specification has been removed from all input files.

Plots of the input wind fields in windx.mom.dta.nc and windy.mom.dta.nc look strange near the
coasts. The reason is, that the wind fields are based on scatterometer data with missing values
at land points which let the horizontal interpolation tools of fms fail. Replacing missing values by
zero should be a bad choice. Hence, ocean values are extrapolates into land. This can be done
with the function £ill _xy of ferret which is undocumented part of version 6 and later and may
be used as follows:

use windx_inp.nc ! missing values at land
let mask = missing(windx_in,0)*® + 1 ! do not mask anything
let windx = fill_xy(windx_in,mask,5) ! fill with 5 passes

Experiments

The regional model was run with several choices of the namelist parameters over 11 model month.

To demonstrate the influence of the wind stress parameterization on the results, the parameteri-

zation according the Monin-Obukhov similarity theory and the neutral approximation are used.
Open boundary conditions with a radiation condition and prescribed external data are mathe-

matically ill-posed. Hence, a prefect scheme does not exist and the optimal choice of the boundary
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conditions needs experiments with boundary code parameters. It is suggested to vary the param-
eters used for OBC, especially modify the strength of the relaxation toward external data and to
test the different schemes for the calculation of the phase speed of baroclinic and barotropic waves.

Remarks on the wind stress parameterization

The scheme to calculate air-sea fluxes differs in many ways for the large and the regional model.
The OBC should be robust against such inconsistency. A detailed discussion of the surface flux
schemes in mom4p1 is out of the scope of this test case, but some details need attention.
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Figure 40.2: Scatter plots of the wind stress calculated in the large model (Large and Pond, |1981)
versus the parameterization in fms, left: Monin-Obukhov similarity approach, right: neutral ap-
proximation. Black dots at 11° E and 21° S, where the boundary layer is often unstable, red dots
from 14° E and 25° S in the upwelling area with low SST and a stable boundary layer.

Vertical momentum fluxes in the large model are estimated for a neutral boundary layer. This
should be appropriate in a region of more or less permanent trade winds. In the regional model
boundary layer stability was taken into account. Because there is no feedback from the ocean
to the atmosphere, radiation can drive the SST away from the 2 m air temperature. Indeed this
happens, because the cold band of upwelled water near the coast does not have its counterpart in
the coarse NCEP data. On the other hand, calculated SST appears warmer than in remote sensing
based data in the open ocean, which in turn leads to an unstable boundary layer.

Figure shows scatter plots of the wind stress from the large scale model (LARGE AND
POND, 1981, neutral boundary layer) and the fms schemes used in the regional model. Generally,
the wind stress in fms is lower than in the large scale model. Especially for high wind speed large
deviations can be seen. Results from the upwelling area (shown in red) show the influence of the
stable boundary layer. It can be suspected, that the coarse NCEP reanalysis data do not resolve
the narrow upwelling band and have to high atmosphere temperature. This corresponds to a very
stable boundary layer in the upwelling band an in the tendency to reduced upwelling compared
with a model driven by wind stress calculated for a neutral atmosphere-ocean boundary layer.

Here neither the neutral nor the Monin-Obukhov approach should be favored, but the differ-
ences should be mentioned as a source of differences between the large model and the regional
model with open boundaries.

The mixing layer depth in the regional model is smaller than in the large model. The vertical
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mixing scheme is configured similarly and the differences should be traced back to the different
wind stress scheme.

Remarks on the heat flux parameterization

Using the downward radiation from NCEP reanalysis data together with the default heat flux param-
eterization implemented infms, the calculated SST becomes to high within several model days.
The resulting discrepancy between boundary data and the model interior, drives currents along
the boundary. Comparing with the parameterization, used in the large scale model, it seems ap-
propriate to introduce an albedo factor of .9 for the long wave radiation in the data_table. Such
a ad hoc correction should be appropriate for a test case and removes the artificial boundary cur-
rents.

Mixing layer depth
The mixing layer depth in the regional model is smaller than in the large model. The vertical
mixing scheme is configured similarly and the differences should be traced back to the different
wind stress scheme.
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Figure 40.3: The mixing layer depth for the large scale model (upper part), mom4p1 and wind stress
from Monin-Obukhov similarity approach (middle) and mom4pl and wind stress for a neutral
boundary layer. Black lines for 11° E and 21° S, where the boundary layer is often unstable,
red dots from 14° E and 25° S in the upwelling area with cold SST and a stable boundary layer.
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The differences between the large model and the regional model are significant, especially at
14° E and 25° S. The reduced wind stress in the regional model compared with the large scale
model should be the major reason. However, a detailed investigation and evaluation with field data
will be done elsewhere.

Ekman transport

Figures and show the wind driven transport in the mixing surface layer. Apparently, the
parameterization in mom4p1 gives smaller results than the large scale model based on MOM-31. The
eddy like structure appearing in September 2000 are similar in all three models, but the amplitude
in mom4p1 is smaller. Notably, the open boundaries in the regional model permit a smooth solution.
An exception is the strong northward current to be seen in September in the model with Monin-
Obukhov wind stress at the western boundary at about 24°S, which tends to erode also the salinity
field. With a neutral boundary layer the wind stress is enhanced and this feature disappears.
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Figure 40.4: The vertically integrated transport in the mixing layer averaged from 2th March 2000
to 12th March 2000. Colours show the modulus. Left hand side the large scale model, middle
mom4p1 with Monin-Obukhov wind stress, right hand side mom4p1 with neutral wind stress.

Undercurrent at the shelf

A typical feature for eastern boundary currents is an undercurrent at the shelf. Figure [40.6] shows
an example. During strong upwelling it merges with the coastal jet and the direction may be
reversed as shown in Figure [40.7]

The regional model performs well at the shelf, but the strong salinity signal at the western
boundary cannot enter the model domain properly. Instead a strong along boundary current de-
velops, which balances the pressure baroclinic pressure gradient. Again, the regional model with
the stronger wind stress (neutral boundary layer scheme) is closer to the large scale model.

The cross shelf circulation

For the Namibian shelf the cross shelf circulation is an essential feature for the ecosystem dynam-
ics. With the cross shelf circulation oxygen is advected onto the shelf which ventilates the shelf
bottom water. The ability of the regional model to reproduce this part of the circulation system is
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Figure 40.5: The vertically integrated transport in the mixing layer averaged from 2th Septem-
ber 2000 to 12th September 2000. Colours show the modulus. Left hand side the large scale
model, middle mom4p1 with Monin-Obukhov wind stress, right hand side mom4p1 with neutral
wind stress.
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Figure 40.6: Salinity and undercurrent in 80 m depth averaged from 2th March 2000 to 12th March
2000. Left hand side the large scale model, middle mom4p1 with Monin-Obukhov wind stress, right
hand side mom4p1 with neutral wind stress.
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Figure 40.8: Salinity and cross shelf circulation at 23° S averaged from 2th March 2000 to 12th
March 2000. Left hand side the large scale model, right hand side mom4pl with neutral wind
stress. The red line marks the mixing layer depth, the contours the meridional currents. The
vertical velocity is scaled with the figures aspect ratio.

Figures [40.8] and [40.9] show a typical upwelling dominated circulation. For March 2000 results
from the large scale and the regional model are very similar. Note the tongue of more saline water
in 60 m depth generated by the differential advection, which is also verified by field data. Upwelling
goes along with a northward coastal jet within a narrow band at the coast. The figures reveal the
vertical structure of the poleward undercurrent which is detached from the coast. In September
2000 its deeper parts move off-shore, but there develops a new core near the coast in about 40 m
depth. There are differences between the large scale and the regional model in many details, but
the general structure of the circulation pattern and the salinity distribution is the same. Especially
near the western boundary the saline water appears deflected to the west in the regional model.
Some strong upward vertical current develops, which is not in the large scale model. It should
stem mostly from the inconsistency in the forcing of both models, which has to be smoothed by
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Figure 40.9: Salinity and cross shelf circulation at 23° S averaged from 2th September 2000 to 12th
September 2000. Left hand side the large scale model, right hand side mom4p1 with neutral wind
stress. The red line marks the mixing layer depth, the contours the meridional currents. The
vertical velocity is scaled with the figures aspect ratio.

the open boundary condition.

A remark about the atmosphere pressure

Inclusion of atmosphere pressure gradients to the surface forcing is often considered as a marginal
issue and minor correction because the sea level elevation rapidly adjusts to the air pressure.
Slowly varying air pressure gradients are compensated by sea level elevations of the opposite
sign and geostrophic currents balanced by surface pressure gradients should not be very different
with and without air pressure. However, for a regional model with prescribed sea level elevation
at the open boundaries a reference level for the sea level is defined. An air pressure gradient
imposed to the model acts in the same manner as a prescribed sea level gradient at the boundary,
if the boundary data are not produced consistently with this model configuration. This may happen,
when the boundary data come from a model, which does not include air pressure gradients, but
the regional model is run with air pressure “switched on”, or vice versa.

The regional model of test case mom4_atlantic covers parts of the St.-Helena high pres-
sure are, whose persistent pressure gradients are responsible for the permanent trade winds off
Namibia. The boundary data from the large scale model consider air pressure, but the default of
mom4pl is to have air pressure disabled. For the experiments discussed above, it is enabled in
ice_model_nml defining slp2ocean=.true..

In the surface currents, the influence of the wind stress dominates, but the deeper currents
depend strongly on the a consistent treatment of air pressure in the boundary conditions. This
should be clearly shown by Figure [40.70, where the regional model drifts away from the large
model, when air pressure is not considered. However, in this case the eddy does not appear,
which develops near the northern boundary in the regional model with air pressure.

Skills, shortcomings and limitations

The test case demonstrates, that OBC are suitable to drive a regional model with boundary data
taken from another model. Many deviations between the results of the large reference model
and the regional model can be traced back to different numerics and parameters. The numeri-
cal scheme used at the boundaries can be configured, to keep the influence of these deviations
small and allows for reliable experiments with the regional model. However, one must be aware,
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that some perturbations generated near the boundaries may propagate as eddies into the model
interior. Hence, mesoscale processes may be modified by perturbations from the OBC. The prob-
ability of such effects is increasing with the inconsistency between regional model dynamics and
prescribed boundary values.

This test case is an extreme application in so far, that the length of open boundaries is large.
For a semi-enclosed sea with a small connection to the open ocean the influence of the OBC
scheme on the model results should be smaller.

It must be also noted, that the model area is situated within an eastern boundary current.
Hence, artificial Rossby waves generated at the open boundaries are leaving the model domain.
A similar test case within a western boundary current was not tested yet.
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