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Questions (from Agenda)

To what extent have the linkages between
climate and fisheries been made (and verified)?

What mechanisms must be captured by climate
models to diagnose fisheries fluctuations?

What information can ecosystem models provide
for prominent fisheries issues?

What information can present global scale
models provide for coastal regions?
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JGOFS Goals

 To determine and understand on a global scale the
processes controlling the time-varying fluxes of carbon
and associated biogenic elements in the ocean...

To develop a capacity to predict on a global scale the
response to anthropogenic perturbations, in particular
those related to climate change

[A set of models that express
our understanding of the processes

controlling large-scale carbon fluxes.]

Carbon




Hardy’s (1924) web untangled into functional groups
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What is the role of ocean biology in
determining the fate of anthropogenic CO,?
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[Average annual fluxes between pools of carbon with standing stock in the
black in the box and extra input from anthropogenic input in red.]




Species composition (not just biomass)
affect sedimentation rate of sinking
particles and flux of organic matter to
the deep ocean

Fecal Pellets -

Ducklow, Steinberg and Bruessler (2001)
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New Production, Iogw(m mol N/m*/day); 5 Jul 1993
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“Challenges’

Resolution: non-convergence of physics, biology and
BGC, i.e., the solution depends on grid size and on
(evolving) functional groups or lack thereof. [Rigidity of
model structure — diversity.]

Making models more complex does not result in
improvements (e.g., Friedrichs et al.; Denman).

“Too many” parameters - difficult (impossible?) to
determine them and their spatial and temporal
dependence, although formal fitting methods help.

Prediction




GLOBEC Goals

To advance our understanding of the structure and
function of the global ocean ecosystem, its major
subsystems, and its response to physical forcing so
that

a capability can be developed to largeT 5pecies

forecast the responses of the
ecosystem to global change.

Calanus finmarchicus 2.5mm

[Physical-biological interactions:

from key (target) species to ecosystems ;
from individuals to populations.] | P
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Mullon, Lett. Parada,

Rpy, et al.
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Benguela Upwelling System:

retention & dispersal using
Individual Based Models (IBMs)




Spawning and nursery grounds
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Too eat or be eaten
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Recruitment

Gulf of Maine Haddock
Trends in Recruitment and Biomass
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Figure 2.6. Trends in recruitment (age 1) and biomass for Gulf of Maine haddock.



“Challenges’

How do we get from individuals (or target species) to
populations?

How do the interactions among individuals happen?
Density dependence?

How to impose behavior?

Rigidity of model structure; full life cycles. Size-
structured models?

Prediction




Question (from Agenda)

To what extent have the linkages between
climate and fisheries been made (and verified)?




The 1920s and 1930s Warming

From Ken Drinkwater (IMR, Norway)
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During the 1920s and 1930s there was rapid warming of
the atmosphere and oceans primarily north of 60°N that
produced temperatures as warm or warmer than the

present.
Johannessen et al. 2004. Tellus




Warming was concentrated in the
Northern North Atlantic

Sea Surface Temperature Change (1930-60 vs 1961-90)



West
Greenland-
Iceland
Connection for
Atlantic cod

GREELAND
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Conditions in 1920s
resulted in the drift of
larvae from Iceland to
West Greenland and
their survival.




West Greenland

‘The cod gradually spread northward.
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Hansen, 1940




Long time-scales, climate?

Basin-scale Synchronies and Asynchronies
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Question (from Agenda)

What mechanisms must be captured by climate
models to diagnose fisheries fluctuations?




Regime Shifts and the Pacific Decadal Oscillation

Nerth Pacific 1977 Regime Shift

Mid 1970's
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"Regimes” evident in fish stocks
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NEMURO &
4 NEMURO.FISH

North Pacific Ecosystem Model for
Understanding Regional
Oceanography

A consensus conceptual model [l
.. representing the minimum  ~ SR
trophic structure and "
biological relationships ...

thought to be essential in

describing ecosystem dynamics

in the North Pacific




NEMURO.FISH

NEMURO .For Including Saury and Herring
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ﬁ’elagic fish modeﬂ N

Ito et al.(2007) Rose et al.(2007)
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Question (from Agenda)

What information can ecosystem models provide
for prominent fisheries issues?




An attempt at a
future scenario

Hashioka and Yamanaka (2007),
Ecological Modelling
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CCCC/PICES/APN: NW Pacific response to G.W.
(T. Hashioka and Y. Yamanaka)

e

To predict the response of the lower-trophic level ecosystem
to global warming, we conducted and compared
the present-day and global warming experiments,
using a 3-D NEMURO in the western North Pacific.

SeaWiFS
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< Setting of our model >

Ocean General Circulation Model
*k CCSR Ocean Component model
(Hasumi et al., 2002)

*k Horizontal resolution: 1°x 1° degrees

Ecosystem Model
*k 15-Compartment model extended
from NEMURO (Yamanaka et al., 2004)

Boundary conditions for present-day sim.
*k Monthly mean climatology
from data-sets of OMIP and WOA 01




Percentage of
Diatoms (%)
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Change 1n Flow Field @ 100m
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Increase in the Kuroshio Current from 40cm/s to 50cm/s
at its maximum. associated with global warming.

Hashioka and Yamanaka, 2007 (Special Issue of NEMURQO in Ecological Modeling)
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Question (from Agenda)

What information can present global scale
models provide for coastal regions?




Linking basin- and coastal ocean models:
the need

eventually couple)
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1 Arctic 4 Sub Tropical
2 Sub Arctic B Tropical
3 Temperate A Georges Bank

Temperature (Growth rate increases with temperature)
Turbulence (Increases encounter between predator and prey)
Food (Preferred prey)

Light (Visual predators like cod, need light to forage)
Retention/advection (Large scale physical features)
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Linking ocean models to
other Earth System components




Land vegetation,
2xCO,,
atmosphere-ocean
interaction

Simulated wind-stress curl

(Diffenbaugh)

Fig. 2. Simulated California Current wind-stress curl. {4) May curl in the
2XCO2+VEG case. (B) August curlin the 2XCO2+VEG case. (C) September curl
inthe 2XCO2+VEG casa. (D) May curl in the 2XCO; case. (E) August curl in the
2XCO; case. (F) September curl in the 2XCO; case. (G) May curl anomalies
calculated as 2XCO; — CONTROL. (H) August curl anomalies calculated as
2XCOz — CONTROL. () September curl anomalies calculated as 2XCO; —
CONTROL. Units are 107 N/m?. Continental areas in the RCM are shown in
white. Two coastlines are shown. The jagged line represents the RCM coast-
line. The smooth line represents the actual coastline. RCM grid boxes are
40 > 40 km.

Fig. 2. Simulated California Current wind-stress curl. (4) May curl in the




PML

The QUEST Fish model

From
Manuel Barange

QUEST-Fish

Regional Physical-
Biological
Shelf-Sea Models

Potential Bio-economic marine

Fish Production commodity models
Estimates

Vulnerability
Assessments




Global
Climate

6Mt Fishmeal + 1.2 Mt Fish oil
(from 30 Mt fish or 25 % Global catch)




2-pela “i:bé’*'ﬁthlcidynamics as

driven by regional hydrodynamics

Conceptual Coupled Physical - Ecosystem Model

Couple the shelf seas to the global ocean
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fishmeal-based globalf,
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Future vulnerability of national economies and glob

“markets to effects of climate-change at

- dri

Bio-economic models

| Potential Impacts (PlI)

+
|Adaptive Capacity (AC) |

Implications for —

aquaculture via feed VULNERABILITY

substitution V =f( Pl, AC)




Summary

Important advances have been made in the
approaches to studying marine ecosystems

Challenges in linking across scales and
across biogeochemistry-individual species-
populations (end-to-end)

Predictions (on “ecological” space & time
scales)

Need to couple:
— open ocean and coastal regions

— ocean-land-atmosphere
— Human dimension




BASIN Study Area and a
conceptualization of the Instrumentation.

Basin-scale /\naI/sis

Synthesis, and INtegration
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To understand and simulate the impact of
climate variability and change on key species of
plankton and fish, as well as community
structure as a whole in the North Atlantic and to
examine the consequences for the cycling of
carbon and nutrients in the ocean and thereby
contribute to ocean management.




Prototype £

model

Copepodite Naupliar
stages stages
(C1-C6) (N1-N6)

(from M. Heath)







