Indian Ocean cooling events: large-scale conditions and coupling

Ian Lloyd - AOS Program, Princeton U. Gabriel A. Vecchi - NOAA/GFDL Princeton, NJ, USA

• What drives intraseasonal SST variability in thermocline ridge?

•What is its relationship to large-scale ocean conditions?

•What is its connection to variations in atmospheric convection?

- ·Intraseasonal SST variability comparable to interannual variability.
- ·Variability seasonally dependent.
- \cdot Associated with atmospheric convection in both seasons/hemispheres.

e.g. Harrison and Vecchi (2001), Sengupta et al (2002), Vecchi and Harrison (2002), Fu et al (2003), Duvel et al (2004), Wang et al (2005), Saji et al (2006) etc.

SST signature of MJO in Thermocline Ridge

Mooring-based analysis suggests SST variability controlled by surface heat fluxes.

From (Vialard et al. 2008, GRL)

Character of Cooling Events

Cooling event definition

Compute sub-monthly TRI from TMI-SST.

Mechanisms for Observed TRI Cooling

Surface heat budget:

Initial approach:

$$Q_{anom} = \rho c_p H \frac{\partial (SST_{anom})}{\partial t}$$

<u>Right:</u> Composite of Q_{anom} and HF_{anom} for OBS (NCEP RA-2 fluxes and TMI SST data).

Mixed layer depth H =
22m from Boyer
Climatology (Boyer et. al.
2004) for DJF.

TRI Cooling Events in CGCM

<u>CM2.1 – 1990 control run (Delworth et. al. 2006)</u> Composite for 50 years daily data. <u>Atm</u>: 2° x 2.5°, 24 levels <u>ocean</u>: 1° x 1° (1/3° at equator), 50 levels.

From Lloyd and Vecchi (2008) in prep.

CGCM Cooling Event Magnitude Comparable to Observed

Cooling events in GFDL CGCMs

- Both CGCMs indicate oceanic processes O(1) to cooling events.
- Differs from results of Duvel et al (2004) and Vialard et al (2008) for particular events. Why?

Look at less extreme intraseasonal swings

- · More symmetric, and primarily due to heat fluxes.
- But not source of large negative skewness in IS-SST. (not "Cooling Events")

Ocean changes and Cooling Events

Interannual T'Cline Ridge Variations and SST

Figure 14: a) Annual-mean depth of the 20°C isotherm (contours in m) and correlation of its interannual anomalies with local SST (color shades) (from Xie et al., 2002).

Subsurface temperature preconditioning in CGCM months 2.5 20°N -2 preceding cooling events in CM2 m anomalous temperature 2 1.5 10°N -0.5 0• 10°S --1.5 -2 20°5 -100100°E 120°E 140°E Lloyd and Vecchi (2009, JC, Submitted)

CM2.1 Oceanic Changes

Lloyd and Vecchi (2009, JC)

Cooling Events Preconditioned by Cool/Shallow Thermocline Ridge

GFDL CM2.1

GFDL CM2.4

Cooling Events Associated with La Niñalike SSTA 5-12 weeks before

Moderate Intraseasonal SST Swings not preconditioned by ocean

Relationship to Convection

TRI Cooling and Convection

Cooling events are associated with a strong eastward convective perturbation. Phase speed matches MJO (~ 5 m/s).

Does strong SST variability feed back to the atmosphere and influence the MJO?

TRI cooling events and rainfall in CM2.1

Thermocline ridge cooling events:

- Oceanic processes important to cooling in model:
 - appear important for average observed (need more data).
- CGCM able to produce strong SST changes
 - Intraseasonal cooling events preconditioned by oceanic conditions.
 - In CGCM cooling events seem important to e-ward propagating rainfall.
- Implications for Annual Cycle/MJO/Interannual Variability?

Lloyd and Vecchi (2009): "Submonthly Indian Ocean cooling events and their relation to large-scale conditions", Submitted to J. Climate