Towards Attribution of Hurricane Activity Changes

M. Bender1, T. Delworth1, S. Garner1, I. Held1, T. Knutson1, S-J Lin1, I. Lloyd2, J. Sirutis1, B. Soden3, K. Swanson4, B. Tuleya1,5, G. Vecchi1, M. Zhao1

1-GFDL; 2-Princeton/AOS; 3-U. Miami; 4-U. Wisc.-Milw.; 5-Old Dominion U.

- How do we attribute?
 - Two part attribution: A -> B ; B -> Hurricanes

- Can we say what drove recent Atlantic increase?
Measure of Activity

- Which measure?
 - Hurricane count
 - Landfalling storm count
 - Extremes in intensity
 - Shifts in mean intensity
 - Integrated intensity

- Must balance demand with current ability to detect/attribute.
 - Obs, models and theory limit.

- Must communicate differences

Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature
Anomalies relative to 1981-2000 average; 2.13×10^3 m3/s2

Based on Absolute SST
- Annual Observed PDI (1946-2007)
- Five-year Observed PDI (1946-2007)
- Five-year PDI based on observed absolute SST (1946-2007); $r = 0.79$

Observed Activity
Absolute MDR SST
If causal, can attribute.

e.g. CCSP-3.3

Storm count*duration has been principal control of historical PDI changes
(Maue and Hart (2007))

Vecchi, Swanson and Soden
(2008, Science)
Observed Activity

Absolute MDR SST
If causal, can attribute.

Vecchi, Swanson and Soden (2008, Science)

Relative MDR SST
If causal, cannot attribute.
Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature
Anomalies relative to 1981-2000 average: 2.13×10^7 m2 s$^{-1}$

Based on Absolute SST
- Annual Observed PDI (1946-2007)
- Five-year Observed PDI (1946-2007)
- Five-year PDI based on observed absolute SST (1946-2007); $r = 0.79$
- Statistical Five-year PDI downscaling of global climate models (1946-20100)
 - Individual model
 - Average of 24 models

Based on Relative SST
- Annual Observed PDI (1946-2007)
- Five-year Observed PDI (1946-2007)
- Five-year PDI based on observed relative SST (1946-2007); $r = 0.79$
- Statistical Five-year PDI downscaling of global climate models (1946-20100)
 - Individual model
 - Average of 24 models

High-resolution model activity change
- Emanuel et al (08), Knutson et al (08)
- Oouchi et al (06), Bengtsson et al (07)

Vecchi, Swanson and Soden (2008, Science)
Observations

- Hurricane databases **NOT** built as climate data records.

- Efforts must continue to:
 - Identify issues
 - Homogenize when possible
 - Estimate uncertainty
Adjustment changes sign of hurricane count trend

Vecchi and Knutson (2009, in prep.)
GFDL C-X HiRAM GCMs

Family of global atmospheric models designed for better-representing tropical cyclone frequency. **C90 - 1°**, C180=1/2°, C360=1/4°, C720=1/8°

Adapted from AM2 with:

- Deep convection scheme adapted from Bretherton, McCaa and Grenier (MWR, 2004)
- Cubed sphere dynamical core
- Changes to parameterizations of cloud microphysics
- C90 Atm. resolution of 1°x1°

Explore C90 Model

North Atlantic Tropical Storms*

*lasting 2 days or more

AGCM with and without tropical-mean SST change

North Atlantic TS Count

Year

Vecchi et al (2009, in prep.)
1982-94 and 1995-2007 PDFs of NA TS Count

* lasting two days or more

2005 Observed

OBSERVED ATLANTIC TS COUNTS

- 1982-1994
 - $\mu = 6.9231; \sigma^2 = 6.6864$
 - $\mu = 11.231; \sigma^2 = 13.562$

- 1995-2007

C90 ATLANTIC TS COUNTS

- 1982-1994
 - $\mu = 6.9872; \sigma = 8.0639$
 - $\mu = 10.231; \sigma^2 = 12.178$

- 1995-2007

C90 ATLANTIC TS COUNTS - no mean SSTA

- 1982-1994
 - $\mu = 6.2821; \sigma^2 = 6.3563$
 - $\mu = 9.9487; \sigma^2 = 15.536$

- 1995-2007

C90 ATLANTIC TS COUNTS - no mean SSTA and no interannual

- 1982-1994
 - $\mu = 7.9; \sigma^2 = 3.49$
 - $\mu = 11.3; \sigma^2 = 2.61$

Vecchi et al (2009, in prep.)

2005: decadal pattern of SSTA and interannual variability.

16-Dec-2009

Gabriel Vecchi, NOAA/GFDL, Princeton, NJ
Shift in mean TS counts attributable to “AMO” SST change across 1994-1995

What drove this SST change? Internal variability? Aerosols? Combination?

Response to “AMO” forcing

Vecchi et al (2009, in prep.)
Conclusions

• It is premature to conclude that human activity--and particularly greenhouse warming--has already had a detectable impact on Atlantic tropical storm frequency or PDI.

• Atlantic TS frequency appears controlled by SST changes in the Atlantic relative those in other basins:
 – To attribute Atlantic TS changes need to attribute pattern of SST change (has not been done).

• Change in mean TS frequency across 1994-95 attributable to “AMO-ish” SST change
 – What drove SST?
 – What about shift in variance?
Idealized Forcing Experiments

If local SST the dominant control, as opposed to relative SST:

• Similar Atlantic Response to Atlantic and Uniform F’cing
• Little Pacific Response to Atlantic compared to Uniform
North Atlantic Response to Idealized SST

Change in Annual NA Storms from Idealized SST:
NATL, GLO, EQU

- **Atlantic Forcing**
- **Uniform Forcing**
- **Near-equatorial Forcing**

Similar TS frequency response to:
0.25° local warming
4° global cooling

Vecchi et al (2009, in prep.)