

Recent Results with the GFDL High-Resolution Coupled Modeling Systems

Presented by Gabriel Vecchi

GFDL/NOAA Princeton, NJ USA

Reference: Delworth, T.L., A. Rosati, W. Anderson, A. Adcroft, V. Balaji, R.
Benson, K. Dixon, S.M. Griffies, H.-C. Lee, R.C. Pacanowski, G.A. Vecchi, A.T.
Wittenberg, F. Zeng, R. Zhang (2011): Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model.
Manuscript in preparation.

High Resolution Model Development

Scientific Goals:

- Developing improved models (higher resolution, improved physics, reduced bias) for studies of variability and predictability on intraseasonal to decadal time scales
- Explore impact of atmosphere and ocean on climate variability and change using a high resolution coupled model
- New global coupled models: CM2.4, CM2.5, CM2.6

	Ocean	Atmos	Computer	Status
CM2.1	100 Km	250 Km	GFDL	Running
CM2.3	100 Km	100 Km	GFDL	Running
CM2.4	10-25 Km	100 Km	GFDL	Running
CM2.5	10-25 Km	50 Km	DOE/GFDL	Running
CM2.6	4-10 Km	50 Km	DOE/GFDL	Running

SURFACE CURRENTS MUCH MORE ENERGETIC

However, to Reproduce Observed EKE Need Higher Resolution Yet

Resolution enhancement allows model to better represent processes

Oceanic Mesoscale Coupling in Western Arabian Sea

Resolution enhancement allows model to better represent processes

Some Aspects of Tropical Climate Improve with Resolution

Annual Tropical Precipitation on 2.5x2.5 Grid

Adapted from Delworth et al (2011)

Some Aspects of Tropical Climate Improve with Resolution

East Pacific Rainfall: "Double-ITCZ" reduced

SOME ASPECTS OF TROPICAL CLIMATE IMPROVE WITH RESOLUTION Near-equatorial Zonal Winds

Some Aspects of Tropical Climate Improve With Resolution Structure of tropical SST variability

ENHANCED RESOLUTION AND COUPLING IMPROVE ASIAN MONSOON RAINFALL

SOUTH ASIAN MONSOON RAINFALL IMPROVES WITH RESOLUTION

RESOLUTION IMPACTS EAST ASIA RAINFALL

Response to 2xCO₂

- Global-scale response (with a few exceptions) similar between high and low resolution models
 - High resolution model has higher climate sensitivity and warms more quickly.
 - Southern Ocean warms robustly in high-res model, but not in low-res model
- Regional rainfall response can differ considerably
- Must understand sources of difference in order to judge relative plausibility.

Higher-res does not mean "better".

GLOBAL SURFACE TEMPERATURE RESPONSE TO 2xCO2

GLOBAL SURFACE TEMPERATURE RESPONSE TO 2xCO2

CM2.1 (lo-res)

GLOBAL ZONAL-MEAN RESPONSE TO 2XCO2

Equatorial Zonal Wind Response to 2xCO2

Equatorial winds weaken in both models.

Location of weakening in Pacific different.

SOUTH ASIAN MONSOON RAINFALL IMPROVES WITH RESOLUTION

South Asian Monsoon Response to 2xCO2

Response model dependent, hi-res model shows orographically-tied features

Why is response different?

EAST ASIA JJAS RAINFALL RESPONSE TO 2xCO2

Response model dependent, hi-res model shows orographically-tied features

June-September Precipitation - 60 year averaged response to 2xCO2 CM2.1 (Lo-Res) CM2.5 (Hi-Res)

Why is response different?

SUMMARY

- New high-resolution coupled climate models being developed and run at GFDL.
- Enhanced resolution important both to resolve important phenomena/features (cyclones, orography), as well as to resolve important processes (eddies, etc).
- Aspects of tropical climate improve from increasing atmospheric and oceanic resolution: tropical precipitation, near-equatorial winds, structure of interannual SST variability, regional monsoon rainfall structure.
- Some aspects of large-scale response to CO2 similar in climate models with very different resolution, but others differ: in hi-res model climate sensitivity larger, southern hemisphere warming stronger, more eastern equatorial Pacific warming, weakened equatorial Pacific easterlies more to the east.
- Regional precipitation response to increased CO2 can differ fundamentally between models of differing resolution. High-res model shows orographically-tied features: what are mechanisms?
- Why do models differ? Is one of the responses more plausible? Higher resolution does not necessarily mean a "better" model/response.