Atlantic tropical cyclones and climate: observed changes

Gabriel Vecchi, Tom Knutson NOAA/GFDL

Chris Landsea

NOAA/NHC

Gabriele Villarini, Jim Smith CEE, Princeton U.

Hurricane Katrina, Aug. 2005

Clear increase in recorded number of Atlantic tropical storms since late-19th Cy.

Records of Atlantic TS Frequency well-correlated to Atlantic SST

Source: Emanuel (2006); Mann and Emanuel (2006) EOS. See also Holland and Webster (2007) Phil. Trans. R. Soc. A

Real change in TS frequency?

Characteristics of recorded storms exhibit strong secular changes, e.g., fraction of storms hitting land

Source: Landsea, EOS, 2007.

Characteristics of recorded storms exhibit strong secular changes, e.g., time as tropical depression

Ability to observe cyclones has also changed with time: e.g., new technologies

Source: Landsea, EOS, 2007.

Ability to observe cyclones has also changed with time: e.g., ship track density

Probability we cannot exclude a storm from having been missed

- Storms near land least likely to have been "missed"
- "Detectability" increases with time.

Atlantic Tropical Storm counts show no significant trend from 1878 after adjusting for 'missing storms' based on ship track densities.

Trend from 1878-2006: Not significant (p=0.05, 2-sided tests, computed p-val ~0.2)

Trend from 1900-2006: Is significant at p=0.05 level

Missing storm adjustments to HURDAT storms (1878-2007)

Tropical storm duration exhibits a large decrease, even with adjustment: why?

Recorded increase in storm counts comes from short duration storms

1878-2008 linear trend in Atlantic tropical storm counts

Atlantic tropical storms (< 2 day duration) show a strong rising trend, but storms of >2 day duration--adjusted for missing storms--do not show a trend.

Hurricane frequency

Adjustment to hurricane counts leads to a nominal long-term decrease in hurricanes.

Significant increase in HURDAT recorded hurricane frequency

Accounting for observing system changes, cannot reject null hypothesis of no long-term change in frequency.

source: Vecchi and Knutson (2011, J. Climate)

Fraction of Hurricanes Making U.S. Landfall as Hurricanes

Hurricane activity shifts eastward in long-term (similar change in TSs)

Projected 21st Century Changes in Vertical Wind Shear

Over swath of tropical Atlantic and East Pacific, increased wind-shear.

If (**big IF**) eastward shift is real, is it response to anthropogenic increase in shear?

Normalized Tropical Atlantic Indices

Sources:

Vecchi and Knutson (2008) Landsea et al. (2010) Vecchi and Knutson (2011)

Statistical model built on homogeneized SST gives results consistent with high-resolution dynamical downscaling techniques

Villarini et al (2011, J. Clim. in press)

Summary

- Changes in observing practices have left a mark on our hurricane databases:
 - We will never know with certainty what TS or hurricane frequency was at the beginning of 20th Century
 - We can estimate what the influences of changing observing systems have been.
- Increase in TS frequency driven by increase in very short duration storms, which appears to be spurious.
- Century-scale decrease in West Atlantic hurricane and TS activity.
- No observed long-term change in U.S. landfalling activity.
- It is premature to claim an anthropogenic increase in basin-wide Atlantic TS or hurricane frequency.
 - Cannot reject null that frequency has not changed (no detection)
 - Competing dependence on SST (local and remote) prevents two-step attribution
- Homogenized historical records and dynamical models are consistent with the interpretation that relative Atlantic SST is key index
 - It's not a warm/cool Atlantic, but a warmer/cooler Atlantic that is key
 - Currently precludes attribution to greenhouse forcing, implies small changes, large variability.