TOWARDS ATTRIBUTION OF HURRICANE ACTIVITY CHANGES

G. Vecchi¹, T. Delworth¹, I. Held¹, T. Knutson¹, J. Smith², B. Soden³, G. Villarini², M. Zhao¹

I-GFDL; 2-Princeton CEE; 3-U. Miami

Can we say what drove recent Atlantic increase?

How do we attribute?

Two part attribution: A -> B; B -> Hurricanes

2011 ASLO Meeting

MEASURE OF ACTIVITY

- Which measure?
 - Hurricane count
 - Landfalling storm count
 - Extremes in intensity
 - Shifts in mean intensity
 - Integrated intensity
- Must balance demand with current ability to detect/attribute.
 - · Obs, models and theory limit.
- Must communicate differences

Global Mean Temperature

Trop. Atl. SST

Atl. TS Counts

Adj. Atl. TS Counts

Landfalling U.S. TS

Landfalling U.S. Hurrs.

ONE TEMPERATURE PREDICTOR OF ATLANTIC HURRICANE ACTIVITY

Observed Activity Absolute Atlantic Temperature

If causal: can attribute

Vecchi, Swanson and Soden (2008, Science)

TWO TEMPERATURE PREDICTORS OF ATLANTIC HURRICANE ACTIVITY

Observed Activity
Absolute Atlantic
Temperature

If causal: can attribute

Observed Activity
Relative Atlantic
Temperature

If causal: cannot attribute

Vecchi, Swanson and Soden (2008, Science)

Two Statistical Projections of Atlantic Hurricane Activity

Observed Activity
Absolute Atlantic
Temperature

Observed Activity
Relative Atlantic
Temperature

Vecchi, Swanson and Soden (2008, Science)

... ADD DYNAMICAL PROJECTIONS OF ATLANTIC HURRICANE ACTIVITY

Observed Activity
Absolute Atlantic
Temperature

Dynamical Model Projections

Observed Activity
Relative Atlantic
Temperature

Vecchi, Swanson and Soden (2008, Science)

RECORDED NA HURRICANES SHOW CLEAR INCREASE

But was there really an increase?

Vecchi and Knutson (2011, J. Climate, in press)

OBSERVED NA HURRICANE FREQUENCY CHANGES

Record Uncertain

Many timescales

Centennial Trend Unclear

Document-based reconstruction of Antilles TS and HU

Chennoweth and Divine (2008)

(e.g., Nyberg et al. 2007, Chennoweth and Divine 2008, Mann et al 2009)

Various efforts to homogenize instrumental TC record (e.g., Kossin et al. 2007, Landsea 2007, Chang and Guo 2007, Mann et al 2007, Vecchi and Knutson 2008, Landsea et al 2010, Vecchi and Knutson 2010).

Data Archeology and Paleo-proxy Indicators Complement Instrumental Records

WEST ATLANTIC HAS SEEN CENTURY-SCALE DECREASE IN HURRICANES

1878-2008 Trend in Hurricane Occurrence

Vecchi and Knutson (2011, in press J. Clim.)

Attribution of Recent TS Frequency Increase IN NORTH ATLANTIC

100km GFDL-HiRAM AGCM recovers recent NATS Trend when forced with HadISST.v1 SST

(2011, in prep.)

1982-94 AND 1995-2007 PDFs OF NA TS COUNT*

★ 2005 Observed

* lasting two days or more

Vecchi, Delworth, Zhao and Held (2011, in prep.)

2005: decadal pattern of SSTA and interannual variability.

SHIFT IN MEAN TS COUNTS ATTRIBUTABLE TO "AMO" SST CHANGE ACROSS 1994-1995

What drove this SST change? Internal variability? Aerosols? Combination?

1995-2007 minus 1982-1994 "AMO" SSTA Forcing

AMO Index: Regression of SST onto NA SST

Response to "AMO" forcing

Vecchi, Delworth, Zhao and Held (2009, in prep.)

Statistical Projections of 21st Century NATS Trends (model based on difference Atlantic to Tropical SST)

Stat. model projects small changes of differing sign

Villarini et al (2011, in press)

RECENT INCREASE NOT ROBUSTLY "FORCED" IN CMIP3 MODELS

Recent trends in statistical hurricane model applied to CMIP3 20c3m runs

Vecchi et al. (2011, in prep.)

CONCLUSIONS

- It is premature to conclude that human activity (particularly greenhouse warming) has already had a detectable impact on Atlantic tropical storm and hurricane frequency or PDI.
- Atlantic TS frequency appears controlled by SST changes in the Atlantic relative those rest of tropics:

To attribute Atlantic TS changes need to attribute pattern of SST change (has not been done).

Same for prediction/projections: what controls regional SST patterns? (see LeLoup and Clement 2009, Xie et al 2009).

 Change in mean TS frequency across 1994-95 attributable to "AMO-ish" SST change

What drove SST pattern? What about shift in variance? Interannual variability important.

GFDL C-X HIRAM GCMS

Family of global atmospheric models designed for better-representing tropical cyclone frequency. **C90 - 1°,** C180=1/2°, C360=1/4°, C720=1/8° *Ref. Zhao et al (2009, J. Climate)*

Explore C90 Model

Adapted from AM2 with:

- Deep convection scheme adapted from Bretherton, McCaa and Grenier (MWR, 2004)
- Cubed sphere dynamical core
- Changes to parameterizations of cloud microphysics
- C90 Atm, resolution of l°xl°

IDEALIZED FORCING

If local SST the dominant control, as opposed to relative SST:

- Similar Atlantic Response to Atlantic and Uniform F'cing
- Little Pacific Response to Atlantic compared to Uniform

NORTH ATI ANTIC RESPONSE

Atlantic Forcing

Uniform Forcing

Near-equatorial Forcing

Similar TS frequency response to:
0.25° local warming 4° global cooling

Vecchi et al (2009, in prep.)