
Hurricane Predictions 
and Projections	



Image:  NASA. 

G.A.  Vecchi1, M. Bender1, T. Delworth1, 
I.M. Held1,  H.S. Kim2,3, T.R. Knutson1, 	



S.J. Lin1, R. Msadek1, A. Rosati1, J. Sirutis1, ���
J. Smith2, G. Villarini4, M. Zhao1	



	


1.  NOAA/GFDL, Princeton, NJ	


2.  Princeton U.	


3.  Willis Research Network	


4.  University of Iowa	


	



Gabriel.A.Vecchi@noaa.gov	





Summary	


•  Premature to conclude we have seen hurricane change due to CO2	



•  Models allow estimates of future activity – pattern of SST change key:	


•  Next couple of decades: internal variability dominant player���

                (some may be predictable, some not)	



•  NA Hurr. Response to CO2: maybe fewer, probably stronger.	



•  Aerosol forcing and response a key to next few decades.	



•  Uncertainty in past and future changes in T(p) impacts interpretation of past, and 
perhaps TC prediction.	



•  Encouraging results from long-lead (multi-season and multi-year) 
experimental forecasts using hybrid system: ���
	

 	

“past performance no guarantee of future returns”���

 	

 	

but good past performance nice start…	



•  High-resolution coupled and atmospheric models enable the next 
generation of hurricane prediction and projection.	



	





Outline	



•  Historical hurricane records	



•  Projecting decadal to centennial hurricane activity	



•  Issues regarding non-moist-adiabatic warming	



•  Predicting multi-year hurricane activity	





Vecchi and Knutson (2008, J. Clim.)	


     Landsea et al. (2009, J. Clim.)	



     Vecchi and Knutson (2011, J. Clim.)���
Villarini et al. (2011, J. Clim.)	



Adjustments to storm counts 
based on ship/storm track 

locations and density	



Historical Hurricane Records	





U.S. Landfalling���
Hurricanes	



Basinwide	


Hurricanes	



Fraction of ���
Basinwide	


Hurricanes	


Making U.S.	



Landfall	



Vecchi and Knutson (2011, J. Clim.); Villarini et al. (2012, J. Clim.)	





Multi-decadal projections of TC 
activity	





In each grid cell:	



★ conserve momentum 
(F=m·a)	



★ account for changes 
in mass and 
composition	



★ conserve energy
(radiation, latent, etc...)	



“Force” with solar radiation,���
structure of continents and���

atmospheric composition (e.g., CO2)	



Models have land, ocean, 
atmosphere and ice components.	



Each encapsulates our best 
understanding of underlying 
processes controlling its evolution.	





GCM Projections of 21st Century Changes in Large-Scale Environment	
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Vecchi and Soden (2007, Nature)	



Contour: relative SST=local minus tropical-mean	





Why “relative SST”=Tlocal-Ttrop?	



PI ! Ts "To
To

(k* " k)
rmax

Surface warming -> PI increase	


Warming aloft -> PI decrease	





Why “relative SST”=Tlocal-Ttrop?	
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FIG. 2. Lag correlations of MSU channel-2 temperature anomaly
against precipitation-weighted SST anomaly (solid curve), total mean
SST anomaly (dotted curve), and Niño-3 SST anomaly (plus signs),
for 1982–98. A positive lag means the atmospheric temperature mea-
sured by MSU lags the SST.

signal of the largest El Niño events; this is true for the
1982/83 and 1997/98 El Ninõs, the first and third of the
three largest positive peaks in the time series. However,
it is not true for the second, so with such a small sample
the generality of this result is in doubt. In terms of
overall correlation with the MSU data, Fig. 2 shows that
SSTP is not superior to SST.
In Fig. 2 we show lag correlations between the two

different SST time series shown above and the MSU
channel-2 time series. Also shown, for reference and
because ENSO is considered to be the primary dynam-
ical driver of the interannual variations, is the lag cor-
relation between the Niño-3 (5�S–5�N, 90�–150�W) SST
and the MSU data. A positive lag means the SST leads
the atmospheric temperature. The SSTP and the mean
SST have nearly identical instantaneous (lag 0) corre-
lation, but the mean has somewhat greater correlation
at lags of 1 month and longer. The Niño-3 curve has a
smaller maximum correlation than any of the others and
a larger lag of maximum correlation, around 3–6
months, as has been noticed previously (Pan and Oort
1983; Yulaeva and Wallace 1994). The Niño-3 corre-
lation is also much greater than the others at lags of 4–
5 months or more.
The short lag of maximum correlation for all but the

Niño-3 time series can be explained by the fact that
local convective adjustment to SST anomalies is very
rapid in regions in which deep convection is common
and that the timescale for this adjustment to be com-
municated to the whole global Tropics is roughly the
timescale for a fast equatorial Kelvin wave to circum-
navigate the equator, or less than 1 month. The fact that
the Niño-3 region maximizes at considerably longer lags
than the others is consistent with the notion that the
Niño-3 region drives the warming of SST in other re-
gions through the atmosphere (Yulaeva and Wallace

1994; Klein et al. 1999; Chiang and Sobel 2002). The
longer lag is consistent with the larger heat capacity
associated with the ocean mixed layer (in regions other
than Niño-3), which must also be warmed in order for
convective heating anomalies directly associated with
Niño-3 anomalies to warm the atmosphere, inducing a
delay. The SSTP and mean SST curves already have
this delay built in. They are nearly synchronous with
the atmospheric temperature, presumably because both
are being simultaneously driven by the central and east
Pacific SSTs, as represented by Niño-3. The smaller
maximum correlation of the Niño-3 time series as com-
pared with the others is consistent with the fact that,
despite its being the locus of the strongest interannual
variability, the Niño-3 region constitutes only a small
portion of the tropical oceans and cannot single-hand-
edly determine the atmospheric temperature.
To understand in more detail why the tropical mean

SST is nearly as good a predictor of the tropospheric
temperature anomaly as the rainy region is, we per-
formed an empirical orthogonal function (EOF) analysis
on the histogram of tropical SST. For each month in the
record, we computed a tropical SST histogram with a
bin size of 0.2�C. The mean histogram over the entire
record is shown in Fig. 3a and has the expected negative
skewness with a cutoff near 30�C (Wallace 1992). We
then computed a seasonal climatology by computing a
mean histogram for each month of the year and com-
puted anomalous histograms with reference to these cli-
matological means. We then computed the EOFs of
these anomalous histograms (the EOFs computed when
the seasonal cycle is included are very similar). The
dotted curve in Fig. 3b shows the first EOF, which ex-
plains 31.8% of the variance and is well separated from
the next two at 16.0% and 12.9%, respectively. The
principal component time series of the first EOF has a
correlation coefficient of 0.81 with the tropical mean
SST. The solid curve in Fig. 3b was computed by taking
the mean histogram shown in Fig. 3a, shifting it by
0.2�C, subtracting the original from the shifted histo-
gram (in essence, a differentiation of the histogram),
and normalizing so that the curve thus produced and
the first EOF have the same maximum value. Apart from
some small noise-induced oscillations in the differen-
tiated histogram and the fact that it has somewhat larger
amplitude than the EOF at the lowest SSTs, the two
curves are very similar, indicating that the dominant
mode of SST variability corresponds approximately to
a shift in the entire histogram without change of shape.
Given this condition, there are many different ways of
sampling the SST histogram that would yield anomaly
time series similar to the mean (and to each other); the
rainy-region SST is just one example.

3. Discussion
The near invariance of the shape of the SST histogram

emerges as an interesting feature of our analysis, and
one that requires explanation. The simplest explanation

Sobel et al. (2002, J. Clim.)���
see also Sobel and Bretherton (2000, J. Clim.) 	
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FIG. 1. MSU channel-2 temperature (�C) anomaly (green), precip-
itation-weighted SST anomaly (blue), and total mean SST anomaly
(red) for 1982–98. Note that the mean SST anomaly is below the
other two in the 1982/83 and 1997/98 El Niños, the first and last of
the three largest positive peaks in all three curves.

follows that, to a first approximation, the entire tropical
atmosphere, including dry regions, should lie on a single
moist adiabat determined by the SST in the regions in
which it is highest (Wallace 1992). In regions of low
SST, the surface has no direct means of influencing the
free troposphere, and SST anomalies in such regions
should not induce free-tropospheric temperature anom-
alies unless the SST anomalies are both positive and large
enough to induce deep convection.
Based on this picture, there is no simple reason to

have expected the close correspondence between inter-
annual anomalies in tropospheric temperature and trop-
ical mean SST that is observed. The tropical mean SST
includes a significant contribution from regions of low
SST and infrequent deep convection, and thus the trop-
ical mean SST anomalies can in principle differ signif-
icantly from the SST anomalies in regions of high SST
and frequent deep convection, the latter of which should
determine the tropospheric temperature, in our view.
The observations need to be reconciled with our phys-
ical arguments if the idea of moist convective adjust-
ment is to be preserved.
We show that, at least for the two decades studied

here, our physical picture is consistent with observations
because the dominant mode of interannual variation in
the SST histogram is essentially a simple shift of the
entire histogram with no change in shape. The tropical
mean SST thus has nearly the same interannual anom-
alies as the SST averaged over the strongly precipitating
regions only (‘‘rainy-region SST’’). Our interpretation
is that the correspondence of the tropical mean SST with
tropical tropospheric temperature anomalies is essen-
tially a coincidence resulting from the approximate in-
variance of the SST histogram’s shape, though there may
be an underlying dynamical reason for that approximate
invariance. In strong El Niño events, the rainy-region
SST does seem to be a slightly better predictor of tro-
pospheric temperature than the tropical mean SST is.
Su et al. (2002, manuscript submitted to J. Climate)

use numerical simulations to infer an influence function
that describes to what extent SST anomalies in a given
region control tropospheric temperature anomalies.
They do find somewhat larger influence, though not
greatly larger (as our argument supposes), in regions of
high mean SST than elsewhere, and they provide ar-
guments to explain this result. We leave the moderate
discrepancy between their view and ours for future res-
olution.

2. Results
We use monthly mean anomalies in tropospheric tem-

perature, as measured by channel 2 of the microwave
sounding unit (MSU) instrument (Spencer and Christy
1992); the precipitation as analyzed by Xie and Arkin
(1997), which includes information from rain gauges,
satellite measurements, and model output; and the sea
surface temperature according to the Integrated Global

Ocean Services System (IGOSS) dataset (Reynolds and
Smith 1994).
Figure 1 shows the time series of monthly mean

anomalies in three quantities: the MSU channel-2 tro-
pospheric temperature, averaged from 30�S to 30�N and
over all longitudes; the mean SST averaged over all
ocean regions from 30�S to 30�N; and a rainy-region
SST, computed as

H(P � P )SST� i 0 i
iSST � , (1)P H(P � P )� i 0

i

where i represents a spatial location on the grid, Pi is
the (total) Xie–Arkin precipitation at that location, and
SSTi is the SST anomaly at that location.1 The sum is
again taken over all ocean points between 30�S and 30�N.
Here H is the Heaviside step function, and P0 is a thresh-
old, which we have chosen to be 6 mm day�1; the results
are not sensitive to modest changes in P0. Scatterplots
of monthly mean P versus SST for individual space–
time points (not shown) show, with considerable scatter,
mostly low values of P for SST � 27�C or so and a
rapid increase of P at higher SST, as expected based on
earlier studies that examined relationships between con-
vective indices, such as outgoing longwave radiation,
and SST (Graham and Barnett 1987; Fu et al. 1990,
1994; Zhang 1993). Thus, SSTP mainly samples the
upper portion of the tropical SST distribution.
The three curves in Fig. 1 are nearly coincident. There

is a hint in Fig. 1 that SSTP is better than the tropical
mean SST for capturing the atmospheric temperature

1 In doing this, the IGOSS data (at 1� grid spacing) were regridded
to the 2.5� grid spacing of the Xie–Arkin data.
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Why “relative SST”=Tlocal-Ttrop?	



b. Potential intensity

The sensitivities of changes in PI to changes in absolute
SST (RCE simulations) and relative SST (WTG simula-
tions) are presented in Fig. 5. For changes in absolute
SST, the PI increases almost linearly from 61.4 m s21

(SST5 268C) to 66.8 m s21 (SST5 308C), or at a rate of
about 1.4 m s21 8C21. For changes in relative SST, the PI
increases from 56.0 m s21 (SST 5 26.58C) to 82.3 m s21

(SST5 308C), corresponding to a rate of 7.6 m s21 8C21.
This is consistent with the slope obtained fromGCM and
reanalysis data of about 8 m s21 8C21 (Vecchi and Soden
2007). Thus, PI is much more sensitive to a given change
in relative SST than to the same change in absolute SST,
by a factor of about 5. The slope of PI change to relative
SST change is found to vary slightly, between about 7 and
8 m s21 8C21, depending on the values chosen for some
input parameters in the model’s convection scheme, as
well as whether parameterized horizontal moisture ad-
vection is included or not (see appendix).
There are two expressions commonly used to com-

pute PI:

V2 5V2
R

Ts ! T0

T0

Ck

CD

(k*! k), (1)

V2 5V2
R

Ts

T0

Ck

CD

(CAPEMS ! CAPEM). (2)

The first expression is the ‘‘enthalpy’’-based approach
(e.g., Bister and Emanuel 1998), while the second is that
implemented in Emanuel’s code and used in this study.
A key difference in (2) compared to (1) is the explicit ap-
pearance of the constant of proportionality, (Ts 2 T0)/Ts

(the so-called thermodynamic efficiency), which is im-
plicit in the CAPE terms. In both formulas, V is the
maximum azimuthal surface wind speed (the derived

quantity predicted by PI theory), Ts is the temperature
at the ocean surface, Ck and CD are the exchange co-
efficients for momentum and enthalpy, and VR is a con-
stant used to reduce the gradient wind to the 10 m wind
(chosen here to be 0.8), which is not included in Bister
and Emanuel (1998) but has been added here for con-
sistency with the PI as formulated in Emanuel’s PI code
(2). In the first formula,T0 is an enthalpy-weightedmean
outflow temperature, and (k* 2 k) is the difference
between the saturation enthalpy at the sea surface (k*)
and the enthalpy of the air at 10 m (k), both of which are
evaluated at the radius of maximum winds (RMW). In
the second formula, the outflow temperature, T0, is cal-
culated from a parcel lifted with temperature and relative
humidity of the environment at the lowest model level,
but with pressure at the RMW (thus T0 must be com-
puted interactively as part of the theory). TheCAPEMS is
the saturated CAPE at the RMW, and CAPEM is the
actual CAPE of the boundary layer air at the RMW. The
ratio of Ck to CD is assumed constant (chosen here to be
0.9), and so does not contribute to the difference in the PI
slopes shown in Fig. 5. Further, the ratio of Ts to T0 in (2)
varies almost negligibly between the WTG and RCE
simulations, ranging from about 1.47 to 1.48. This in-
variance is the result of very small changes inT0, which in
theWTGcalculations ranges from 203 Kat SST5 26.58C
to 205.5 K at SST 5 308C (see Fig. 6).
The two expressions for PI, Eqs. (1) and (2), are in

principle equivalent, but comparing them requires a
careful evaluation of the outflow temperature. Because
of approximations made in the PI code, the outflow tem-
perature that renders the two equivalent (given the other
quantities in the formulas, all of which are either computed
by the code or given by the input data) is not explicitly
computed by the code. When using (2) to interpret results
computed from the code [which, again, uses (1) for the

FIG. 4. Precipitation rate (mm day21) as a function of SST in RCE
and WTG.

FIG. 5. The PI as a function of SST in RCE (absolute SST) and
WTG (relative SST) modes.
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Ramsay and Sobel (2011, J. Clim.)	

b. Potential intensity

The sensitivities of changes in PI to changes in absolute
SST (RCE simulations) and relative SST (WTG simula-
tions) are presented in Fig. 5. For changes in absolute
SST, the PI increases almost linearly from 61.4 m s21

(SST5 268C) to 66.8 m s21 (SST5 308C), or at a rate of
about 1.4 m s21 8C21. For changes in relative SST, the PI
increases from 56.0 m s21 (SST 5 26.58C) to 82.3 m s21

(SST5 308C), corresponding to a rate of 7.6 m s21 8C21.
This is consistent with the slope obtained fromGCM and
reanalysis data of about 8 m s21 8C21 (Vecchi and Soden
2007). Thus, PI is much more sensitive to a given change
in relative SST than to the same change in absolute SST,
by a factor of about 5. The slope of PI change to relative
SST change is found to vary slightly, between about 7 and
8 m s21 8C21, depending on the values chosen for some
input parameters in the model’s convection scheme, as
well as whether parameterized horizontal moisture ad-
vection is included or not (see appendix).
There are two expressions commonly used to com-

pute PI:
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The first expression is the ‘‘enthalpy’’-based approach
(e.g., Bister and Emanuel 1998), while the second is that
implemented in Emanuel’s code and used in this study.
A key difference in (2) compared to (1) is the explicit ap-
pearance of the constant of proportionality, (Ts 2 T0)/Ts

(the so-called thermodynamic efficiency), which is im-
plicit in the CAPE terms. In both formulas, V is the
maximum azimuthal surface wind speed (the derived

quantity predicted by PI theory), Ts is the temperature
at the ocean surface, Ck and CD are the exchange co-
efficients for momentum and enthalpy, and VR is a con-
stant used to reduce the gradient wind to the 10 m wind
(chosen here to be 0.8), which is not included in Bister
and Emanuel (1998) but has been added here for con-
sistency with the PI as formulated in Emanuel’s PI code
(2). In the first formula,T0 is an enthalpy-weightedmean
outflow temperature, and (k* 2 k) is the difference
between the saturation enthalpy at the sea surface (k*)
and the enthalpy of the air at 10 m (k), both of which are
evaluated at the radius of maximum winds (RMW). In
the second formula, the outflow temperature, T0, is cal-
culated from a parcel lifted with temperature and relative
humidity of the environment at the lowest model level,
but with pressure at the RMW (thus T0 must be com-
puted interactively as part of the theory). TheCAPEMS is
the saturated CAPE at the RMW, and CAPEM is the
actual CAPE of the boundary layer air at the RMW. The
ratio of Ck to CD is assumed constant (chosen here to be
0.9), and so does not contribute to the difference in the PI
slopes shown in Fig. 5. Further, the ratio of Ts to T0 in (2)
varies almost negligibly between the WTG and RCE
simulations, ranging from about 1.47 to 1.48. This in-
variance is the result of very small changes inT0, which in
theWTGcalculations ranges from 203 Kat SST5 26.58C
to 205.5 K at SST 5 308C (see Fig. 6).
The two expressions for PI, Eqs. (1) and (2), are in

principle equivalent, but comparing them requires a
careful evaluation of the outflow temperature. Because
of approximations made in the PI code, the outflow tem-
perature that renders the two equivalent (given the other
quantities in the formulas, all of which are either computed
by the code or given by the input data) is not explicitly
computed by the code. When using (2) to interpret results
computed from the code [which, again, uses (1) for the

FIG. 4. Precipitation rate (mm day21) as a function of SST in RCE
and WTG.

FIG. 5. The PI as a function of SST in RCE (absolute SST) and
WTG (relative SST) modes.
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FIG. 2. Lag correlations of MSU channel-2 temperature anomaly
against precipitation-weighted SST anomaly (solid curve), total mean
SST anomaly (dotted curve), and Niño-3 SST anomaly (plus signs),
for 1982–98. A positive lag means the atmospheric temperature mea-
sured by MSU lags the SST.

signal of the largest El Niño events; this is true for the
1982/83 and 1997/98 El Ninõs, the first and third of the
three largest positive peaks in the time series. However,
it is not true for the second, so with such a small sample
the generality of this result is in doubt. In terms of
overall correlation with the MSU data, Fig. 2 shows that
SSTP is not superior to SST.
In Fig. 2 we show lag correlations between the two

different SST time series shown above and the MSU
channel-2 time series. Also shown, for reference and
because ENSO is considered to be the primary dynam-
ical driver of the interannual variations, is the lag cor-
relation between the Niño-3 (5�S–5�N, 90�–150�W) SST
and the MSU data. A positive lag means the SST leads
the atmospheric temperature. The SSTP and the mean
SST have nearly identical instantaneous (lag 0) corre-
lation, but the mean has somewhat greater correlation
at lags of 1 month and longer. The Niño-3 curve has a
smaller maximum correlation than any of the others and
a larger lag of maximum correlation, around 3–6
months, as has been noticed previously (Pan and Oort
1983; Yulaeva and Wallace 1994). The Niño-3 corre-
lation is also much greater than the others at lags of 4–
5 months or more.
The short lag of maximum correlation for all but the

Niño-3 time series can be explained by the fact that
local convective adjustment to SST anomalies is very
rapid in regions in which deep convection is common
and that the timescale for this adjustment to be com-
municated to the whole global Tropics is roughly the
timescale for a fast equatorial Kelvin wave to circum-
navigate the equator, or less than 1 month. The fact that
the Niño-3 region maximizes at considerably longer lags
than the others is consistent with the notion that the
Niño-3 region drives the warming of SST in other re-
gions through the atmosphere (Yulaeva and Wallace

1994; Klein et al. 1999; Chiang and Sobel 2002). The
longer lag is consistent with the larger heat capacity
associated with the ocean mixed layer (in regions other
than Niño-3), which must also be warmed in order for
convective heating anomalies directly associated with
Niño-3 anomalies to warm the atmosphere, inducing a
delay. The SSTP and mean SST curves already have
this delay built in. They are nearly synchronous with
the atmospheric temperature, presumably because both
are being simultaneously driven by the central and east
Pacific SSTs, as represented by Niño-3. The smaller
maximum correlation of the Niño-3 time series as com-
pared with the others is consistent with the fact that,
despite its being the locus of the strongest interannual
variability, the Niño-3 region constitutes only a small
portion of the tropical oceans and cannot single-hand-
edly determine the atmospheric temperature.
To understand in more detail why the tropical mean

SST is nearly as good a predictor of the tropospheric
temperature anomaly as the rainy region is, we per-
formed an empirical orthogonal function (EOF) analysis
on the histogram of tropical SST. For each month in the
record, we computed a tropical SST histogram with a
bin size of 0.2�C. The mean histogram over the entire
record is shown in Fig. 3a and has the expected negative
skewness with a cutoff near 30�C (Wallace 1992). We
then computed a seasonal climatology by computing a
mean histogram for each month of the year and com-
puted anomalous histograms with reference to these cli-
matological means. We then computed the EOFs of
these anomalous histograms (the EOFs computed when
the seasonal cycle is included are very similar). The
dotted curve in Fig. 3b shows the first EOF, which ex-
plains 31.8% of the variance and is well separated from
the next two at 16.0% and 12.9%, respectively. The
principal component time series of the first EOF has a
correlation coefficient of 0.81 with the tropical mean
SST. The solid curve in Fig. 3b was computed by taking
the mean histogram shown in Fig. 3a, shifting it by
0.2�C, subtracting the original from the shifted histo-
gram (in essence, a differentiation of the histogram),
and normalizing so that the curve thus produced and
the first EOF have the same maximum value. Apart from
some small noise-induced oscillations in the differen-
tiated histogram and the fact that it has somewhat larger
amplitude than the EOF at the lowest SSTs, the two
curves are very similar, indicating that the dominant
mode of SST variability corresponds approximately to
a shift in the entire histogram without change of shape.
Given this condition, there are many different ways of
sampling the SST histogram that would yield anomaly
time series similar to the mean (and to each other); the
rainy-region SST is just one example.

3. Discussion
The near invariance of the shape of the SST histogram

emerges as an interesting feature of our analysis, and
one that requires explanation. The simplest explanation

Sobel et al. (2002, J. Clim.)���
see also Sobel and Bretherton (2000, J. Clim.) 	
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FIG. 1. MSU channel-2 temperature (�C) anomaly (green), precip-
itation-weighted SST anomaly (blue), and total mean SST anomaly
(red) for 1982–98. Note that the mean SST anomaly is below the
other two in the 1982/83 and 1997/98 El Niños, the first and last of
the three largest positive peaks in all three curves.

follows that, to a first approximation, the entire tropical
atmosphere, including dry regions, should lie on a single
moist adiabat determined by the SST in the regions in
which it is highest (Wallace 1992). In regions of low
SST, the surface has no direct means of influencing the
free troposphere, and SST anomalies in such regions
should not induce free-tropospheric temperature anom-
alies unless the SST anomalies are both positive and large
enough to induce deep convection.
Based on this picture, there is no simple reason to

have expected the close correspondence between inter-
annual anomalies in tropospheric temperature and trop-
ical mean SST that is observed. The tropical mean SST
includes a significant contribution from regions of low
SST and infrequent deep convection, and thus the trop-
ical mean SST anomalies can in principle differ signif-
icantly from the SST anomalies in regions of high SST
and frequent deep convection, the latter of which should
determine the tropospheric temperature, in our view.
The observations need to be reconciled with our phys-
ical arguments if the idea of moist convective adjust-
ment is to be preserved.
We show that, at least for the two decades studied

here, our physical picture is consistent with observations
because the dominant mode of interannual variation in
the SST histogram is essentially a simple shift of the
entire histogram with no change in shape. The tropical
mean SST thus has nearly the same interannual anom-
alies as the SST averaged over the strongly precipitating
regions only (‘‘rainy-region SST’’). Our interpretation
is that the correspondence of the tropical mean SST with
tropical tropospheric temperature anomalies is essen-
tially a coincidence resulting from the approximate in-
variance of the SST histogram’s shape, though there may
be an underlying dynamical reason for that approximate
invariance. In strong El Niño events, the rainy-region
SST does seem to be a slightly better predictor of tro-
pospheric temperature than the tropical mean SST is.
Su et al. (2002, manuscript submitted to J. Climate)

use numerical simulations to infer an influence function
that describes to what extent SST anomalies in a given
region control tropospheric temperature anomalies.
They do find somewhat larger influence, though not
greatly larger (as our argument supposes), in regions of
high mean SST than elsewhere, and they provide ar-
guments to explain this result. We leave the moderate
discrepancy between their view and ours for future res-
olution.

2. Results
We use monthly mean anomalies in tropospheric tem-

perature, as measured by channel 2 of the microwave
sounding unit (MSU) instrument (Spencer and Christy
1992); the precipitation as analyzed by Xie and Arkin
(1997), which includes information from rain gauges,
satellite measurements, and model output; and the sea
surface temperature according to the Integrated Global

Ocean Services System (IGOSS) dataset (Reynolds and
Smith 1994).
Figure 1 shows the time series of monthly mean

anomalies in three quantities: the MSU channel-2 tro-
pospheric temperature, averaged from 30�S to 30�N and
over all longitudes; the mean SST averaged over all
ocean regions from 30�S to 30�N; and a rainy-region
SST, computed as

H(P � P )SST� i 0 i
iSST � , (1)P H(P � P )� i 0

i

where i represents a spatial location on the grid, Pi is
the (total) Xie–Arkin precipitation at that location, and
SSTi is the SST anomaly at that location.1 The sum is
again taken over all ocean points between 30�S and 30�N.
Here H is the Heaviside step function, and P0 is a thresh-
old, which we have chosen to be 6 mm day�1; the results
are not sensitive to modest changes in P0. Scatterplots
of monthly mean P versus SST for individual space–
time points (not shown) show, with considerable scatter,
mostly low values of P for SST � 27�C or so and a
rapid increase of P at higher SST, as expected based on
earlier studies that examined relationships between con-
vective indices, such as outgoing longwave radiation,
and SST (Graham and Barnett 1987; Fu et al. 1990,
1994; Zhang 1993). Thus, SSTP mainly samples the
upper portion of the tropical SST distribution.
The three curves in Fig. 1 are nearly coincident. There

is a hint in Fig. 1 that SSTP is better than the tropical
mean SST for capturing the atmospheric temperature

1 In doing this, the IGOSS data (at 1� grid spacing) were regridded
to the 2.5� grid spacing of the Xie–Arkin data.



Why “relative SST”=Tlocal-Ttrop?	



b. Potential intensity

The sensitivities of changes in PI to changes in absolute
SST (RCE simulations) and relative SST (WTG simula-
tions) are presented in Fig. 5. For changes in absolute
SST, the PI increases almost linearly from 61.4 m s21

(SST5 268C) to 66.8 m s21 (SST5 308C), or at a rate of
about 1.4 m s21 8C21. For changes in relative SST, the PI
increases from 56.0 m s21 (SST 5 26.58C) to 82.3 m s21

(SST5 308C), corresponding to a rate of 7.6 m s21 8C21.
This is consistent with the slope obtained fromGCM and
reanalysis data of about 8 m s21 8C21 (Vecchi and Soden
2007). Thus, PI is much more sensitive to a given change
in relative SST than to the same change in absolute SST,
by a factor of about 5. The slope of PI change to relative
SST change is found to vary slightly, between about 7 and
8 m s21 8C21, depending on the values chosen for some
input parameters in the model’s convection scheme, as
well as whether parameterized horizontal moisture ad-
vection is included or not (see appendix).
There are two expressions commonly used to com-

pute PI:

V2 5V2
R

Ts ! T0

T0

Ck

CD

(k*! k), (1)

V2 5V2
R

Ts

T0

Ck

CD

(CAPEMS ! CAPEM). (2)

The first expression is the ‘‘enthalpy’’-based approach
(e.g., Bister and Emanuel 1998), while the second is that
implemented in Emanuel’s code and used in this study.
A key difference in (2) compared to (1) is the explicit ap-
pearance of the constant of proportionality, (Ts 2 T0)/Ts

(the so-called thermodynamic efficiency), which is im-
plicit in the CAPE terms. In both formulas, V is the
maximum azimuthal surface wind speed (the derived

quantity predicted by PI theory), Ts is the temperature
at the ocean surface, Ck and CD are the exchange co-
efficients for momentum and enthalpy, and VR is a con-
stant used to reduce the gradient wind to the 10 m wind
(chosen here to be 0.8), which is not included in Bister
and Emanuel (1998) but has been added here for con-
sistency with the PI as formulated in Emanuel’s PI code
(2). In the first formula,T0 is an enthalpy-weightedmean
outflow temperature, and (k* 2 k) is the difference
between the saturation enthalpy at the sea surface (k*)
and the enthalpy of the air at 10 m (k), both of which are
evaluated at the radius of maximum winds (RMW). In
the second formula, the outflow temperature, T0, is cal-
culated from a parcel lifted with temperature and relative
humidity of the environment at the lowest model level,
but with pressure at the RMW (thus T0 must be com-
puted interactively as part of the theory). TheCAPEMS is
the saturated CAPE at the RMW, and CAPEM is the
actual CAPE of the boundary layer air at the RMW. The
ratio of Ck to CD is assumed constant (chosen here to be
0.9), and so does not contribute to the difference in the PI
slopes shown in Fig. 5. Further, the ratio of Ts to T0 in (2)
varies almost negligibly between the WTG and RCE
simulations, ranging from about 1.47 to 1.48. This in-
variance is the result of very small changes inT0, which in
theWTGcalculations ranges from 203 Kat SST5 26.58C
to 205.5 K at SST 5 308C (see Fig. 6).
The two expressions for PI, Eqs. (1) and (2), are in

principle equivalent, but comparing them requires a
careful evaluation of the outflow temperature. Because
of approximations made in the PI code, the outflow tem-
perature that renders the two equivalent (given the other
quantities in the formulas, all of which are either computed
by the code or given by the input data) is not explicitly
computed by the code. When using (2) to interpret results
computed from the code [which, again, uses (1) for the

FIG. 4. Precipitation rate (mm day21) as a function of SST in RCE
and WTG.

FIG. 5. The PI as a function of SST in RCE (absolute SST) and
WTG (relative SST) modes.
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Ramsay and Sobel (2011, J. Clim.)	
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FIG. 2. Lag correlations of MSU channel-2 temperature anomaly
against precipitation-weighted SST anomaly (solid curve), total mean
SST anomaly (dotted curve), and Niño-3 SST anomaly (plus signs),
for 1982–98. A positive lag means the atmospheric temperature mea-
sured by MSU lags the SST.

signal of the largest El Niño events; this is true for the
1982/83 and 1997/98 El Ninõs, the first and third of the
three largest positive peaks in the time series. However,
it is not true for the second, so with such a small sample
the generality of this result is in doubt. In terms of
overall correlation with the MSU data, Fig. 2 shows that
SSTP is not superior to SST.
In Fig. 2 we show lag correlations between the two

different SST time series shown above and the MSU
channel-2 time series. Also shown, for reference and
because ENSO is considered to be the primary dynam-
ical driver of the interannual variations, is the lag cor-
relation between the Niño-3 (5�S–5�N, 90�–150�W) SST
and the MSU data. A positive lag means the SST leads
the atmospheric temperature. The SSTP and the mean
SST have nearly identical instantaneous (lag 0) corre-
lation, but the mean has somewhat greater correlation
at lags of 1 month and longer. The Niño-3 curve has a
smaller maximum correlation than any of the others and
a larger lag of maximum correlation, around 3–6
months, as has been noticed previously (Pan and Oort
1983; Yulaeva and Wallace 1994). The Niño-3 corre-
lation is also much greater than the others at lags of 4–
5 months or more.
The short lag of maximum correlation for all but the

Niño-3 time series can be explained by the fact that
local convective adjustment to SST anomalies is very
rapid in regions in which deep convection is common
and that the timescale for this adjustment to be com-
municated to the whole global Tropics is roughly the
timescale for a fast equatorial Kelvin wave to circum-
navigate the equator, or less than 1 month. The fact that
the Niño-3 region maximizes at considerably longer lags
than the others is consistent with the notion that the
Niño-3 region drives the warming of SST in other re-
gions through the atmosphere (Yulaeva and Wallace

1994; Klein et al. 1999; Chiang and Sobel 2002). The
longer lag is consistent with the larger heat capacity
associated with the ocean mixed layer (in regions other
than Niño-3), which must also be warmed in order for
convective heating anomalies directly associated with
Niño-3 anomalies to warm the atmosphere, inducing a
delay. The SSTP and mean SST curves already have
this delay built in. They are nearly synchronous with
the atmospheric temperature, presumably because both
are being simultaneously driven by the central and east
Pacific SSTs, as represented by Niño-3. The smaller
maximum correlation of the Niño-3 time series as com-
pared with the others is consistent with the fact that,
despite its being the locus of the strongest interannual
variability, the Niño-3 region constitutes only a small
portion of the tropical oceans and cannot single-hand-
edly determine the atmospheric temperature.
To understand in more detail why the tropical mean

SST is nearly as good a predictor of the tropospheric
temperature anomaly as the rainy region is, we per-
formed an empirical orthogonal function (EOF) analysis
on the histogram of tropical SST. For each month in the
record, we computed a tropical SST histogram with a
bin size of 0.2�C. The mean histogram over the entire
record is shown in Fig. 3a and has the expected negative
skewness with a cutoff near 30�C (Wallace 1992). We
then computed a seasonal climatology by computing a
mean histogram for each month of the year and com-
puted anomalous histograms with reference to these cli-
matological means. We then computed the EOFs of
these anomalous histograms (the EOFs computed when
the seasonal cycle is included are very similar). The
dotted curve in Fig. 3b shows the first EOF, which ex-
plains 31.8% of the variance and is well separated from
the next two at 16.0% and 12.9%, respectively. The
principal component time series of the first EOF has a
correlation coefficient of 0.81 with the tropical mean
SST. The solid curve in Fig. 3b was computed by taking
the mean histogram shown in Fig. 3a, shifting it by
0.2�C, subtracting the original from the shifted histo-
gram (in essence, a differentiation of the histogram),
and normalizing so that the curve thus produced and
the first EOF have the same maximum value. Apart from
some small noise-induced oscillations in the differen-
tiated histogram and the fact that it has somewhat larger
amplitude than the EOF at the lowest SSTs, the two
curves are very similar, indicating that the dominant
mode of SST variability corresponds approximately to
a shift in the entire histogram without change of shape.
Given this condition, there are many different ways of
sampling the SST histogram that would yield anomaly
time series similar to the mean (and to each other); the
rainy-region SST is just one example.

3. Discussion
The near invariance of the shape of the SST histogram

emerges as an interesting feature of our analysis, and
one that requires explanation. The simplest explanation

Sobel et al. (2002, J. Clim.)���
see also Sobel and Bretherton (2000, J. Clim.) 	



PI ! Ts "To
To

(k* " k)
rmax

Surface warming -> PI increase	


Warming aloft -> PI decrease	
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FIG. 1. MSU channel-2 temperature (�C) anomaly (green), precip-
itation-weighted SST anomaly (blue), and total mean SST anomaly
(red) for 1982–98. Note that the mean SST anomaly is below the
other two in the 1982/83 and 1997/98 El Niños, the first and last of
the three largest positive peaks in all three curves.

follows that, to a first approximation, the entire tropical
atmosphere, including dry regions, should lie on a single
moist adiabat determined by the SST in the regions in
which it is highest (Wallace 1992). In regions of low
SST, the surface has no direct means of influencing the
free troposphere, and SST anomalies in such regions
should not induce free-tropospheric temperature anom-
alies unless the SST anomalies are both positive and large
enough to induce deep convection.
Based on this picture, there is no simple reason to

have expected the close correspondence between inter-
annual anomalies in tropospheric temperature and trop-
ical mean SST that is observed. The tropical mean SST
includes a significant contribution from regions of low
SST and infrequent deep convection, and thus the trop-
ical mean SST anomalies can in principle differ signif-
icantly from the SST anomalies in regions of high SST
and frequent deep convection, the latter of which should
determine the tropospheric temperature, in our view.
The observations need to be reconciled with our phys-
ical arguments if the idea of moist convective adjust-
ment is to be preserved.
We show that, at least for the two decades studied

here, our physical picture is consistent with observations
because the dominant mode of interannual variation in
the SST histogram is essentially a simple shift of the
entire histogram with no change in shape. The tropical
mean SST thus has nearly the same interannual anom-
alies as the SST averaged over the strongly precipitating
regions only (‘‘rainy-region SST’’). Our interpretation
is that the correspondence of the tropical mean SST with
tropical tropospheric temperature anomalies is essen-
tially a coincidence resulting from the approximate in-
variance of the SST histogram’s shape, though there may
be an underlying dynamical reason for that approximate
invariance. In strong El Niño events, the rainy-region
SST does seem to be a slightly better predictor of tro-
pospheric temperature than the tropical mean SST is.
Su et al. (2002, manuscript submitted to J. Climate)

use numerical simulations to infer an influence function
that describes to what extent SST anomalies in a given
region control tropospheric temperature anomalies.
They do find somewhat larger influence, though not
greatly larger (as our argument supposes), in regions of
high mean SST than elsewhere, and they provide ar-
guments to explain this result. We leave the moderate
discrepancy between their view and ours for future res-
olution.

2. Results
We use monthly mean anomalies in tropospheric tem-

perature, as measured by channel 2 of the microwave
sounding unit (MSU) instrument (Spencer and Christy
1992); the precipitation as analyzed by Xie and Arkin
(1997), which includes information from rain gauges,
satellite measurements, and model output; and the sea
surface temperature according to the Integrated Global

Ocean Services System (IGOSS) dataset (Reynolds and
Smith 1994).
Figure 1 shows the time series of monthly mean

anomalies in three quantities: the MSU channel-2 tro-
pospheric temperature, averaged from 30�S to 30�N and
over all longitudes; the mean SST averaged over all
ocean regions from 30�S to 30�N; and a rainy-region
SST, computed as

H(P � P )SST� i 0 i
iSST � , (1)P H(P � P )� i 0

i

where i represents a spatial location on the grid, Pi is
the (total) Xie–Arkin precipitation at that location, and
SSTi is the SST anomaly at that location.1 The sum is
again taken over all ocean points between 30�S and 30�N.
Here H is the Heaviside step function, and P0 is a thresh-
old, which we have chosen to be 6 mm day�1; the results
are not sensitive to modest changes in P0. Scatterplots
of monthly mean P versus SST for individual space–
time points (not shown) show, with considerable scatter,
mostly low values of P for SST � 27�C or so and a
rapid increase of P at higher SST, as expected based on
earlier studies that examined relationships between con-
vective indices, such as outgoing longwave radiation,
and SST (Graham and Barnett 1987; Fu et al. 1990,
1994; Zhang 1993). Thus, SSTP mainly samples the
upper portion of the tropical SST distribution.
The three curves in Fig. 1 are nearly coincident. There

is a hint in Fig. 1 that SSTP is better than the tropical
mean SST for capturing the atmospheric temperature

1 In doing this, the IGOSS data (at 1� grid spacing) were regridded
to the 2.5� grid spacing of the Xie–Arkin data.



What about tropical-mean PI change?	



Vecchi and Soden (2007, Nature)	



Not well constrained 
by SST changes.	


	


Related to vertical 
structure of 
temperature change.	





Why “relative SST”=Tlocal-Ttrop?	



PI ! Ts "To
To

(k* " k)
rmax

If warming something like moist adiabatic*, then relative 
SST (through impact of tropical-SST on upper 
troposphere) can be an OK proxy for PI changes.	


	


Also through stability, relative SST in Atlantic can be good 
proxy for other cyclone-relevant quantities (w500, rh700, 
shear, etc.)	


	


*Will come back to this.	





But, current computing power limits ability of ���
coupled global climate models to represent hurricanes	



Hurricane Rita (2005): 
orange grid is 

representative of most 
current coupled global 

climate model resolution.	



Size of grid limited by 
power of computers.	





“Downscale” Climate Model Projections With High-Resolution or 
Statistical Models 	



Large-scale
Global Climate Models -> High-resolution Model 

TS Frequency



The	
  GFDL	
  High-­‐Resolu2on	
  Atmosphere	
  Model	
  (HiRAM)	
  
•  Non-hydrostatic Finite-Volume dynamical core on the cubed-sphere	
  

•  Designed for resolution between 1‒ 100 km, capable of direct cloud 
simulation  

•  A PDF based 6-category cloud micro-physics with finite-volume vertical 
sub-grid reconstruction allowing vertically & horizontally sub-grid cloud 
formation 

•  A “non-intrusive” shallow convective parameterization (Bretherton 
scheme modified by Zhao et al. 2009) 

•  Options to couple with ocean and wave models  Slide: S-J Lin	





Geographical distribution of TC tracks (1981-2009) 

Observation 

HiRAM-C180 
AMIP simulation 

Zhao et al. (2009)	





Red/yellow = increase	


Blue/green = decrease 

Regional increase/decrease much larger than global-mean.	



Pattern depends on details of ocean temperature change.	



Sensitivity of response seen in many studies 
	

 	

e.g., Emanuel et al. 2008, Knutson et al. 2008, Sugi et al. 2010, Villarini et al. 2011, Knutson et al. 2013, etc. 

Adapted from Zhao et al. (2009, J. Climate) 

Response of  TC frequency in single 50km global atmospheric 
model forced by four climate projections for 21st century	





Idealized Forcing Experiments	



If local SST the dominant control, as opposed to relative SST:	



• Similar Atlantic Response to Atlantic and Uniform F’cing	



• Little Pacific Response to Atlantic compared to Uniform	





North Atlantic Response to Idealized SST	



Atlantic Forcing	



Uniform Forcing	



Near-equatorial 
 Forcing	



Similar TS frequency  
response to:	



0.25° local warming	


4° global cooling	



Vecchi et al (2013, in prep.) 



Response of TCs in high-resolution global coupled model ���
(GFDL CM2.5, Delworth et al. 2012, J. Climate; Kim et al. 2013 in prep.)	
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Figure 1. Tropical cyclone tracks for 50 years of (a) observations (IBTrACS, 1960–2009) and (b) 

model simulations (CM2.5, 91–140). Boxes denote the sub regions. 
 
 
 
 
 

 
 
Figure 1. Tropical cyclone tracks for 50 years of (a) observations (IBTrACS, 1960–2009) and (b) 

model simulations (CM2.5, 91–140). Boxes denote the sub regions. 
 
 
 
 
 

Observed Tracks	

 Coupled Model Tracks	



CM2.5 Tropical storm density response to CO2 doubling	



Fewer storms	



More storms	





Use homogenized data and high-res models to build statistical 
models for exploration and projections	



When we consider the linear trend over two different
periods (2001–50 and 2001–2100) from the entire 12-
model suite, we do not find an obvious pattern across the
different radiative forcing scenarios. The large inter-
model spread in the various projections masks the ten-
dency for the multimodel average to show a slight
increasingly negative trend with increasing greenhouse
gas forcing. There are three main reasons that could
explain the very different outcomes from the different
models in these scenarios: internal (unforced) climate
variability within each model, differences in the pre-
scription and model response to nongreenhouse gas
forcings (e.g., aerosol, ozone, and changes in land use–
land cover), and differences in model description and
parameterization of the physical processes that lead to
different sensitivity to greenhouse gas increases. We
distinguish between the greenhouse gas and nongreen-
house gas forcings here in particular because the
greenhouse gas forcing is relatively consistent across the
different models, whereas the nongreenhouse gas forc-
ings are specified, and responded to, in substantially
different ways among the different models. Therefore,
similar patterns of response across the models would

suggest a dominant influence of the (common) green-
house gas forcing.
We attempt to provide a first quantitative description

of the relative contribution of each of these three com-
ponents. The relative impact of internal climate vari-
ability versus total response to climate forcing agents
was examined by computing the correlation coefficient
between the 12-model response vectors for three dif-
ferent scenarios (SRES A2, A1B, and B1). In other
words, we ask to what extent do the models that tend to
show relatively smaller/larger changes in one scenario
also show it in the other scenarios? If the pattern of
ordering of the trends across scenarios is inconsistent,
then we can infer that the spread is largely driven by
either unforced climate variations or by differences in
forcings and responses to nongreenhouse gas forcings.
Focusing on the 2001–2100 trends in SRES A2, SRES
A1B, and SRES B1 (Fig. 6 and Table 2), we obtain
correlation coefficients of the model response across
scenarios between 0.68 and 0.74, indicating that differ-
ences in the model response to total forcing in those
scenarios explain about half of the variance in the
tropical storm response, and with the remaining half
originating from the unforced climate variability and the
nongreenhouse gas forcing/response.
The importance of the internal variability is under-

scored by examining the variability in the slopes from an
ensemble of 10 different GFDL CM2.1 model runs for
the SRES A1B scenario that differ only in their initial
conditions (Fig. 5, middle panel): over the period 2001–
50, the variance for the 10 slopes is equal to 6.2, which is
about 42% of the variance exhibited by the 12 climate
models for the same scenario. Even though each model
has a different internal variability and the results for the
GFDL CM2.1 model cannot be generalized to all of the
other ones, from these estimates we speculate that close
to half of the variability in the results can be attributed to
internal variability. As a third more direct way to esti-
mate the impact of the internal climate variability of the
models on the linear trends, we have examined the
preindustrial control runs for all 12 models, resampling
the data, creating 1000 12-member sets of 100-yr linear
trends and comparing the spread of these to the spread
of the 3 scenarios. In this case, we estimate the internal
climate variability in the models as responsible for close
to 50% of the spread in the projections. Based on these
auxiliary calculations, we conclude that about half of the
variability exhibited by the different models in these
scenarios comes from internal climate variability, with
the rest due to differences in the specification of or the
response to radiative forcing.
To attempt to isolate the role of differences in non-

greenhouse gas forcings in these models on the spread

FIG. 4. Slopes of the regression lines for three periods (2001–
50, 2051–2100, and 2001–2100) for all the 24 available climate
models. These results are based on the projections for the twenty-
first century of the tropical storm counts for the North Atlantic
basin under the SRES A1B scenario, using both tropical Atlantic
and tropical mean SSTs as covariates in the statistical model
(based on the model constructed using NOAA’s ERSSTv3b da-
taset). The solid black curves represent the probability density
function for a Gaussian distribution fitted to the 24 climate
models (gray dots; the mean m and the standard deviation s are
included). In the box plots, the limits of the whiskers repre-
sent the 5th and 95th percentiles, the limits of the boxes repre-
sent the 25th and 75th percentiles, and the horizontal lines and
the squares inside the boxes are the median and the mean,
respectively.
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Projections of North Atlantic TS Count Trends	


Using Observationally-based Statistical Model 	



and SST Projected by 23 CGCMs	



Family of statistical models based 
on observed and high-res. model 
hurricane activity and SST.	


	


Use two predictors:	


-  Tropical Atlantic SST (positive)	


-  Tropical-mean SST (negative)	


	


Consistent with high-res dynamical 
models, understanding on controls 
to hurricanes & “cheap”.	



Rate = ea+bSSTATL!cSSTTRO

Knutson et al. (2008) Swanson (2008), Vecchi et al. 
(2008),  Zhao et al. (2009, 2010), Villarini et al. 
(2010, 2011.a.,.c), Villarini and Vecchi (2011)	



Villarini et al. (2011)	





Simple statistical model explains much of the spread 
across many high-res modeling studies	



Knutson et al. (2013, J. Clim.)	


See also Villarini et al. (2011, J. Clim.)	



Vecchi et al. (2008, Science)	



Differences in projected 
patterns of surface warming 
drive large uncertainties in 
hurricane projections	



Rate = ea+bSSTATL!cSSTTRO



Dynamical Projections of Atl. Hurricanes for end of 21st Century	



Adapted from Zhao et al. (2009, J. Clim.) and Held et al. (2013, submitted)	



CMIP3	

 CMIP5	



20
30

s	



20
30

s	



20
90

s	
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90

s	



Using GFDL-HiRAM	



+100%	



+50%	



-50%	



-100%	





GFDL-CM3 indicates aerosols key for NA TS projections���
(projected aerosol clearing -> more storms)	



Villarini and Vecchi (2012, Nature C.C.)	



All Forcing	


No future aerosol or O3	



No future aerosol	





Large-scale	


Global Climate Models -> High-Res Model -> Hurricane model	



TS Frequency	

 Intensity	



Multi-decadal projections	





Dynamical double downscaling for Atlantic: ���
Overall frequency decrease projected, ���

but more of the strongest storms 	



Adapted from Bender et al (2010, Science)	


see also Knutson et al. (2008, Nature Geosci.); Knutson et al. (2013, J. Clim., in press)	





Projections of changes in atmospheric aerosols contribute to 
projected increases in Atlantic hurricane intensity	



PDI = Umax
3

storms
!

Power Dissipation Index	



Villarini and Vecchi (2013.b, J. Climate)	


See also Knutson et al. (2013, J. Climate)	



!

Aerosols and GHG change	


Only GHG increases	





Historical aerosol forcing 
may have masked century-
scale greenhouse-induced 
intensification in Atlantic	



PDI = Umax
3

storms
!

Power Dissipation Index	



Villarini and Vecchi (2013.b, J. Climate)	





Issues regarding non-moist-
adiabatic warming	



If warming something like moist adiabatic, then relative SST 
(through impact of tropical-SST on upper troposphere) can be an 
OK proxy for PI, circulation, humidity, shear, precip…changes.	





What about non-moist adiabatic warming?���
Estimates of past atmospheric ΔT	



Vecchi et al. (2013.b, J. Climate, in press)	



Reanalyses    Radiosonde-only   AGCM	



NCEP used in 
Knutson et al. 
(2008) and 

Emanuel et al. 
(2008)	


	



HiRAM used in 
Zhao et al. 

(2009)	





Differences in vertical structure of ΔT lead to differences in ΔPI���
Largely from TTL and Upper Troposphere	
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Vecchi et al. (2013.b, J. Climate, in press)	





Different TC downscaling studies assume/simulate different 
ΔT(p) in historical simulation: get similar correlation	



Simulates ~adiabatic warming	



Use NCEP (assume UT/TTL cooling)	



Vecchi et al. (2013.b, J. Climate, in press)	





Multi-year hurricane prediction	





Key uncertainty sources to projections of decadal TS activity	



Sources of uncertainty (after Hawkins and Sutton, 2009)	


•  Variability: ~independent of radiative forcing changes	


•  Response: “how will climate respond to changing GHGs & 

Aerosols?”	


•  Forcing: “how will GHGs & Aerosols change in the future?”	



Villarini et al. (2011), Villarini and Vecchi (2012)	



Tropical Atlantic SSTA	

 NA TS Frequency	





Decadal/multi-year prediction: New efforts focused mixed ���
                                              initial/boundary value problem	



Climatology ���
(what happens typically, including randomness)���

need good observations	


Evolution of initial conditions ���
(e.g., weather or El Niño forecast)���

need good observations, models, initialization schemes	


���

Climatology 	


Climate response to forcing ���

(e.g., CO2, aerosols, sun, volcanoes)���
need good models and estimates of forcing	



Sources of & Limitations on climate predictability	
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Merge multiple tools and understanding to build experimental long-lead 
hurricane forecast system: skill from as early as October of year before	



Hi-Res AGCM in 
many different 

climates. ���
Count storms.	



Build statistical model 
of the response of 

hurricanes in HiRAM	



Use initialized coupled 
model to forecast 

future values of SST	



Apply Stat 
model to 
Predicted 

SST	



Make Prediction 
of Full PDF of 

Hurricane Activity	



Initialized January: r=0.66	



Vecchi et al. (2011); Villarini and Vecchi (2013.b)	



April & onward 
forecasts fed to 
NOAA Seasonal 
Outlook Team	



http://gfdl.noaa.gov/HyHuFS	



HyHuFS	





Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	



•  Retrospective predictions encouraging.	


•  However, small sample size limits confidence	


•  Skill arises more from recognizing 1994-1995 shift than actually predicting it.	


•  This is for basinwide North Atlantic Hurricane frequency only.	



Vecchi et al. (2013.a, J. Clim. in press), see also Smith et al. (2010, Science)	



EXPERIMENTAL: NOT OFFICIAL FORECAST	



FORCED	

 FORCED & INTIALIZED	





Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	



•  Retrospective predictions encouraging.	


•  However, small sample size limits confidence	


•  Skill arises more from recognizing 1994-1995 shift than actually predicting it.	


•  This is for basinwide North Atlantic Hurricane frequency only.	



Vecchi et al. (2013.a, J. Clim. in press), see also Smith et al. (2010, Science)	



EXPERIMENTAL: NOT OFFICIAL FORECAST	



FORCED	

 FORCED & INTIALIZED	



This predicted sharp increase is 
likely an artifact of increasing 
quality of observations – model 
bias induces “drift”.	





Removing observational inhomogeneity removes post-2004 upswing: 
need stable, sustained observations 	



Vecchi et al. (2013.a, J. Climate in press)	





Experimental decadal predictions���
Hybrid system: statistical hurricanes, dynamical decadal climate forecasts	



Vecchi et al. (2013.a, J. Climate in press); Msadek et al. (2013, submitted)	



80% &	


90% C.I.s	





Summary	


•  Premature to conclude we have seen hurricane change due to CO2	



•  Models allow estimates of future activity – pattern of SST change key:	


•  Next couple of decades: internal variability dominant player���

                (some may be predictable, some not)	



•  NA Hurr. Response to CO2: maybe fewer, probably stronger.	



•  Aerosol forcing and response a key to next few decades.	



•  Uncertainty in past and future changes in T(p) impacts interpretation of past, and 
perhaps TC prediction.	



•  Encouraging results from long-lead (multi-season and multi-year) 
experimental forecasts using hybrid system: ���
	

 	

“past performance no guarantee of future returns”���

 	

 	

but good past performance nice start…	



•  High-resolution coupled and atmospheric models enable the next 
generation of hurricane prediction and projection.	
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