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A taste of our predictability/prediction research:

eI anc the NIMME (one of a number of “real time™, now " operdtionalsreliSisi
 GFDL-FLOR: world’s highest resolution real-time seasonal prediction model
* GFDL-HIFLOR: opportunities for extreme hurricanes and regional hydrology



GFDL & the NMME
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Ffficient resource use: automation and focus

GFDL Prediction process: every month

- Real-time forecasts a challenge
within research environment:

human & computer resources
as well as culture.

<:: Fully-automated workflow soon
to be our main M.O.

- We've targeted our tools to
prediction problem




GFDL FLOR: Experimental high-resolution coupled seasonal to
decadal prediction system

Goal: Build a seasonal to decadal forecasting system to:
Yield improved forecasts of large-scale climate
Enable forecasts of regional climate and extremes

. Precipitation in Northeast USA High resolution
Medium (CM2.5-FLOR)

resolution
(G

Delworth et al. (201 2), Vecchi et al. (2014)

MEaliiccaersion of CM25 (Delworth et al. 2012);

* 50km cubed-sphere atmosphere
* |° ocean/sea ice (low res enables prediction work)
~[5-18 years per day. Multi-century integrations. 4500+ model-years of

experimental seasonal predictions completed and being analyzed.



Pioneering seasonal prediction of regional tropical storm activity
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Skilltul FLOR-based predictions of anomalous storminess

over North America in winter 201 3-14
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Causes of and sources of predictability for summertime heatwaves:
need atmos./land Initialization, In addition to ocean,

in order to predict heat waves.
2006 Jun-Aug 2012 Jun-Aug

2006 JJA t2m anom: obs 2012 JJA t2m anom: obs

Observed

Modeled with
observed SST

Predicted with
ocean/ice
initial info.

Predicted with
ocean/ice+atm./land

initial info.

-2.25-1.75-1.25-0.75-0.25 0.25 0.75 1.25 1.75 2.25
Surface air temperature anomalies (°C) Jia et al.(2015,in prep.)




Opportunities

Newly developed “"HIFLOR"™ model
25 Km atmosphere, [° ocean
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HIFLOR: doubling atmospheric resolution of FLOR (cost 6x) allows us
model to simulate Cat. 4-5 TCs (most destructive storms)

A, (OEREN, &
= Sl

10-Aug.: Cat. 5 Typhoon
(158 knot winds)




HIFLOR prototype NOAA-GFDL prediction model recovers
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HIFLOR experimental predictions encouraging...

(i) C45 Hurricane (NAT)

July Predictions
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UV,

# Major (Cat. 3-4-5) Hurricanes Atlantic

HiFLOR 1-Jul. Coupled Preds
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Mean January—March Station Snowpack for 1999 — 1998

owards predicting western U.S. snowpack
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GFDL Predictions and the NMME

Key foci: ENSO, hurricanes, water resources, extratropical storms, drought,
sea ice, snow, heat waves, data assimilation, intraseasona-to-decadal

St - ENSO rainfall
COUpled data aSSImIIatlon teleconnections,
- CM2.1-ECDAV3.1 (1960-present) for the most
predictable
FLOR model (50km atmosphere) comIDongnaa]
. . : : global rainfall
- “sweet spot” of quality, speed, readiness
over land

- regional applications, extremes :
- seamless predictions: intraseasonal to decadal (Jia et al. 2014)
Groundbreaking forecast system

- Outstanding forecasts in the NMME

- Highest-resolution seasonal forecasts in the world

- Seasonal hurricane outlook — NOAA

- ENSO outlook — IRl

- sea ice outlook — SEARCH

Opportunities (25km HiFLOR)

- To target extreme TCs and ultraregional water resources
- Need resources: “shovel ready”
- Approached DoE, but declined after great science review

Strategic decisions for U.S., NOAA & GFDL

- Developed by small group, building on past efforts
- Transient convergence of unique opportunities

- Forecasts need resource infusion to continue B

- Computer allocation, personnel, model strategy

: 1 1
-0.1 -0.025 0.025 041 0.3 0.6 1 2

mm/day per stddev
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FLOR Improves on CM2.1 for SST Predictions

NINO3.4 (5°S-5°N, 170°W-120°W) SST Forecasts 1-Jan. Init.
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FLOR Improves on CM2.1 for SST Predictions

Atl. MDR (10°N 25°N, 80°W-20°W) SST Forecasts1 Jan Inlt
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Preliminary analysis of FLOR-P2 predictions: Subseasonal
variability over land, Role of Atm. |.C.)

NAO Composite, t2m, obs NAO Composite, precip, obs

@0

£

P |

-t 06 -03 -0.1 -00250025 01 03 08 1 2

e 2m  DJF NAO+ Composite ' "eclP




Phased approach to FLOR predictions

Phase |

Proof of concept, assess
value of high-resolution.
Targets: seasonal, multi-
month lead large-scale as
well as regional and
extremes (regional TC
activity)

Use CM2.1's ocean-ice
|Cs, atmosphere/land from
a long AMIP run. 1980-

present forecasts.

Done & ongoing —
first real-time forecast
delivered to NMME
5-March-2014

Phase 2

Test hypothesis that
atmospheric inttialization
Improves predictions.
Enable intraseasonal
predictions of regional and

extremes (e.g, regional TC
and XTC activity, sea ice)

Nudge atmosphere to
MERRA analyses, CM2.1’s

ocean-ice ICs, Make 1990-
present forecasts.

(Exploring subseasonal
predictability)

Nudging run done for
| 980-present,
retrospective forecasts
done for [990-present,
evaluating impact of
constraining atmosphere.

Phase 3

“Best shot” at predictions
of regional and extremes,
seamlessly on a weekly to
multi-season timescale.
Large ensemble spread to
provide reliable
probabilistic information

Build coupled assimilation
on high-res system, run
| 9XX-present forecasts.

Assimilation in
development. Running
retrospective assimilation
and reforecasts would
take huge CP and human
commitment. 7%




DL-FLOR to the NMME (2)

Initialization of GFDL FLOR P2
v Ocean & sea ice initialized from CM2.1 V3.l EnKF Assimilation

v Atmosphere and land initialized from the atmosphere-nudging-to-reanalysis AGCM simulations

(i.e, only information contained in atmosphere, SST and radiative forcing in atmos/land ICs)

Hindcast experiments:

v 1990 to present, |2 ensemble members

v' | 2-month hindcasts starting first day each month

Computational cost for each month (Total core hours ~120,000)
v' Data assimilation: 384x4
ElEE s oG (CML. 1), 2x6240x9 (FLOR), 3x195 2| (AMIP-nudging)

Exploring the subseasonal predictability due to atmosphere component initialization: M|O,
NAQO, stratosphere-troposphere interactions, et al.

Preliminary results of FLOR P2: skill difference between P| and P2, mechanism for the
difference



Most predictable pattern in rainfall improved in FLOR
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Most predictable precip pattern (mm/day) (i etal.2014,]. Clim.)



Preliminary analysis of FLOR-P2 predictions: Skill for monthly lana
temperature and precipitation, Role of Atm. .C))

Percentage of areas with signif. ACC (IC=086; tZm) Percentage of areas with signif. ACC (IC=12; t2m)
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FLOR improves prediction skill of ENSO precipitation
(and temperature) over land
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