

The Next Season's Hurricanes

Gabriel Vecchi NOAA/GFDL

Image: NASA.

Days Between Major Hurricane (Cat 3, 4, 5) Landfalls in Florida: 1 January 1900 to 1 June 2015

U.S. Landfalling Hurricanes

> Basinwide Hurricanes

Fraction of Basinwide Hurricanes Making U.S. Landfall

Vecchi and Knutson (2011, J. Clim.); Villarini et al. (2012, J. Clim.)

Estimate of Hurricane LF

Sources of & Limitations on Climate Predictability

Months to decades

hours to a month

Evolution of initial state of ocean/atmosphere.

Need good models and observations of present and past

Many decades to centuries Climate response to forcing

(e.g., CO₂, soot/dust, sun, volcanoes, land use) need good models and estimates of forcing

Predictability has inherent limits: need to be probabilistic.

From Global Warming: basin-wide North Atlantic frequency decrease & intensity increase, so strongest storms may become more frequent

Elements of Climate Prediction System of Systems

Image sources: NOAA/PMEL and Argo.ucsd.edu

Global climate observing system:

Sparse observations of many quantities across globe.

Dynamical modeling system:

Allows forward integration from present state, including expected changes in radiative forcing.

Data assimilation system:

Combines sparse observations with model, to estimate present state.
Usually based on dynamical model.

Analysis and dissemination system:

Take output from predictions and produce "useful" information, communicate predictions.

Multi-year prediction of NA basin-wide frequency

Although there are some initial encouraging results for basin-wide frequency, they need to be treated with caution.

Seasonal Predictions of Hurricane Frequency in Atlantic have been getting more precise and accurate

Each bar is a different North Atlantic hurricane prediction system

Correct predictions of basin-wide active 2010 but not of U.S. landfall absence

Can we reliably predict statistics of storms more regionally than "basin-wide" number?

100 days of single ensemble of I-Aug-2005 initialized CM2.5-FLOR 10-m v

Systems under development show promise at regional scales

Shaded: "retrospecitve" predictions 1980-2012 tend to distinguish between years with many and few storms nearby

***EXPERIMENTAL RESEARCH PRODUCT – NOT AN OFFICIAL OUTLOOK *** Experimental 2014 TC density forecasts

Forecasts of 2014TC density anomaly with GFDL-FLOR-HAD13 initialized 1-April-2014 and 1-July 2014.

Contour: all values

Shade: locations with significant retrospective correlation

Most impactful hurricanes tend to be strongest.

Need prediction models that can capture them. New prototype model

("GFDL-HiFLOR", first run May 2014) able to simulate Cat. 4-5s

New prototype NOAA-GFDL prediction model is able to recover history of Cat. 4-5s...experimental predictions underway...

Because of "Butterfly Effect" forecasts should always be in terms of probabilities

- Climate system is <u>chaotic</u>: even the "best" prediction system conceivable will not be able to precisely predict upcoming season.
- If predictions are *reliable*, even things deemed unlikely will sometimes happen.
- Most useful way to communicate predictions depends on application.

Summary

- · We understand more than we did
- We have better tools than we did
- Our predictions are better than they used to be and will probably continue to get "better" (more regional, more reliably probabilistic)
- There will always be limits on predictability and prediction skill