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Abstract 
 1 

Skillful seasonal forecasting of tropical cyclone (TC; wind speed ≥17.5 m s–1) activity is 2 

challenging, even more so when the focus is on the most intense hurricanes (Category 4–5; 3 

wind speed ≥58.1 m s–1) and landfalling TCs. Here we show that the 25-km mesh Geophysical 4 

Fluid Dynamics (GFDL) high-resolution climate model (HiFLOR) has improved skill in 5 

predicting the frequencies of Category 4–5 hurricanes in the North Atlantic and landfalling 6 

TCs over the United States and Caribbean Islands a few months in advance, relative to a more 7 

moderate resolution of 50-km mesh GFDL climate model (FLOR). HiFLOR also shows 8 

significant skill in predicting Category 4–5 hurricanes in the western North Pacific and eastern 9 

North Pacific, while both models show comparable skills in predicting basin-total TC 10 

frequency and landfall TC frequency in the basins.  11 

 12 

Index Terms: 3372 Tropical cyclones, 1922 Forecasting, 3337 Global climate models 13 

Key Words: Category 4 and 5 Hurricanes, Seasonal Forecasting, and High-Resolution Climate 14 

Model15 
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1. Introduction 16 

Tropical cyclones (TCs) are one of the most costly natural disasters to affect coastal 17 

regions all over the world [e.g., Pielke et al. 2008; Smith and Katz 2013]. In recent history, 18 

about 85% of the total TC damage has been caused by intense hurricanes (Saffir-Simpson 19 

Categories 3, 4, and 5), even though they make up a very small fraction of overall TCs [Pielke 20 

et al. 2008]. Furthermore, even though non-landfalling TCs can cause damage (e.g., to off-21 

shore energy platforms and ships), landfalliing TCs contribute substantially more to overall 22 

TC damages than do non-landfalling TCs. Therefore, predicting intense hurricanes and 23 

landfalling storms at seasonal time scales is a topic of large scientific and socio-economic 24 

interest [Vecchi and Villarini 2014]. Recent studies have reported that state-of-the-art 25 

dynamical models successfully predicted basin-total frequency of tropical storms and 26 

hurricanes a few months in advance [Zhao et al. 2010; Chen and Lin 2011, 2013; Vecchi et al. 27 

2014]. Specifically, Chen and Lin [2011] reported a correlation coefficient of 0.96 between 28 

observed and predicted year-by-year variation in hurricanes (i.e., storms with maximum wind 29 

speed greater than 32.9 m s–1); and Vecchi et al. [2014] reported skillful seasons in advance for 30 

regional basin-wide TC activity across the Northern Hemisphere. However, prediction of 31 

category 4 and 5 (C45) hurricanes and landfall storm frequency remains challenging [Vecchi 32 

and Villarini 2014; Camp et al. 2015; Murakami et al. 2016], although there are some 33 

suggestive results with high-resolution models for U.S. landfalling frequency [Murakami et al. 34 

2016]. Therefore, the limitations of dynamical forecasts have been alleviated using empirical 35 

statistical-dynamical methods [e.g., Wang et al. 2009; Zhao et al. 2010; Vecchi et al. 2011, 36 

2013, 2014; Villarini and Vecchi 2013; Murakami et al. 2016]. Murakami et al. [2015] 37 

provided a preliminarily assessment of the predictability of C45 hurricanes in the new high-38 
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resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model (HiFLOR). They 39 

evaluated retrospective seasonal forecasts initialized on July 1st in 1997 and 1998. The 40 

predictions showed the observed sharp contrast in terms of global TC activity due to the 41 

extreme El Niño and La Niña events of 1997–98 and 1998–99, respectively. Although 42 

HiFLOR could predict the contrast in the C45 hurricanes for 1997 and 1998 summer seasons, 43 

the results reported there should not be interpreted as applying broadly to predictive skill for 44 

all years. 45 

In this study, we conduct retrospective seasonal forecasts initialized on July, April, and 46 

January between 1990 and 2015 to evaluate and quantify the skill HiFLOR has in predicting 47 

TC activity in the ocean basins of western North Pacific (WNP), eastern North Pacific (ENP), 48 

and North Atlantic (NAT) (see fig. 3 in Murakami et al. [2015] for regional boundaries). We 49 

especially focus on the prediction of intense hurricanes and regional TC frequency in NAT 50 

over the study period. We show for the first time that this high-resolution global atmosphere-51 

ocean coupled model has significant skill in predicting the frequency of C45 hurricanes and 52 

regional TC activity as well as that of basin-total TCs a few months in advance in NAT as well 53 

as other ocean basins. We further show that both the FLOR and HiFLOR models can exhibit 54 

marginal skill at predictions of seasonal U.S. landfalling TC frequency. Section 2 provides a 55 

description of the models, seasonal forecasts, and TC detection method along with observed 56 

dataset. Section 3 presents the results. Finally, a summary is given in Section 4. 57 

 58 

2. Methods 59 

a. Dynamical Models, Seasonal Forecasts, TC Detection Methods 60 
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The dynamical models used here are the Forecast-oriented Low Ocean Resolution of 61 

GFDL Coupled Model version 2.5 (FLOR) [Vecchi et al. 2014] and the high-resolution version 62 

of FLOR (HiFLOR) [Murakami et al. 2015]. The atmosphere and land components of FLOR 63 

are taken from the Coupled Model version 2.5 (CM2.5) [Delworth et al. 2012] developed at 64 

GFDL, whereas the ocean and sea ice components are based on the GFDL Coupled Model 65 

version 2.1 (CM2.1) [Delworth et al. 2006; Wittenberg et al. 2006; Gnanadesikan et al. 2006]. 66 

FLOR comprises 50-km mesh atmosphere and land components, and 100-km mesh sea ice and 67 

ocean components. HiFLOR was developed from FLOR by decreasing the horizontal grid 68 

spacing of the atmospheric component to 25 km, while leaving most of the sub-grid physical 69 

parameterizations unchanged [Murakami et al. 2015]. HiFLOR yielded better simulations of 70 

the observed El Niño-Southern Oscillation (ENSO)-TC teleconnection in WNP, ENP, and 71 

NAT than FLOR does [Murakami et al. 2015; Zhang et al. 2016]. 72 

For each year and each month in the period 1990–2015, 12-month duration 73 

retrospective seasonal predictions were performed after initializing the model to the observed 74 

conditions for ocean components [Murakami et al. 2016]. The 12-member initial conditions 75 

for ocean and sea ice components were taken from GFDL’s ensemble coupled data 76 

assimilation system using CM2.1 [Zhang and Rosati 2010; Chang et al. 2013], whereas those 77 

for atmosphere and land components were built from a suite of sea surface temperature (SST)-78 

forced atmosphere-land-only simulations using the components for the FLOR predictions 79 

[Vecchi et al. 2014], and in the HiFLOR predictions using an arbitral year from a control 80 

climate simulation [Murakami et al. 2015]. Therefore, the predictability in these experiments 81 

comes entirely from the ocean and sea ice, and may be thought of as a lower bound on the 82 

potential prediction skill of the model, because predictability could also arise from 83 
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atmospheric and land initialization [Jia et al. 2016]. HiFLOR has forecasts only from July, 84 

April, and January at this moment, whereas FLOR has forecasts starting from every month. 85 

Therefore, we mainly focus on the forecasts from July, April, and January initial conditions for 86 

the predictions of TC activity in the boreal summer season (i.e., July–November) for the 87 

comparisons between FLOR and HiFLOR. Forecasts from other initial months by FLOR will 88 

be shown for the comparisons of prediction skill in large-scale parameters among FLOR, 89 

CM2.1, and HiFLOR. We define forecasts from July (January) initial conditions as lead-month 90 

0 or L0 (6 or L6) forecasts. Because North Indian Ocean has one of the two peaks of TC 91 

activity before July, we only focus on prediction skill in the WNP, ENP, and NAT during July–92 

November. 93 

 Model-generated TCs were detected following Murakami et al. [2015]. Briefly, the 94 

tracking scheme applies the flood fill algorithm to find closed contours of some specified 95 

negative sea level pressure (SLP) anomaly with a warm core (temperature anomaly higher 96 

than 1K for FLOR and 2K for HiFLOR). The detection scheme also requires that the TC lasts 97 

for 36 consecutive hours while maintaining a warm core as well as a specified wind speed 98 

criterion (15.75 m s–1 for FLOR and 17.5 m s–1 for HiFLOR). 99 

 100 

c. Observational datasets 101 

The observed TC “best-track” data were obtained from the National Hurricane Center 102 

Best Track Database (HURDAT2) [Landsea and Franklin 2013] and Joint Typhoon Warning 103 

Center (JTWC) as archived in the International Best Track Archive for Climate Stewardship 104 

(IBTrACS v03r06) [Knapp et al. 2010] and used to evaluate the TC simulations in the 105 

retrospective seasonal predictions. Because the best-track data were not available for 2015 106 
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when this study started, we obtained observed global TC dataset compiled on the Unisys 107 

Corporation website [Unisys 2016]. We only used TCs with tropical storm intensities or 108 

stronger (i.e., TCs possessing 1-min sustained surface winds of 17.5 m s–1 or greater) during 109 

the period 1990–2015. We also removed TC tracks that reportedly transformed to extra-110 

tropical cyclones (i.e., TC tracks after the time of its extra-tropical transition were removed). 111 

In this study, storms are categorized into three groups according to their lifetime maximum 112 

intensity: Tropical Cyclones (TC; ≥17.5 m s–1); Hurricanes (HUR; ≥32.9 m s–1 ); and Category 113 

4 and 5 hurricanes (C45; ≥58.1 m s–1). Note that although a hurricane is called “typhoon” in 114 

WNP, we describe hurricanes in WNP to represent typhoon in this study for convenience. 115 

In order to address differences in forecast skill in NAT between FLOR and HiFLOR, 116 

we compared prediction skill in four key large-scale parameters relative to observations. The 117 

four parameters are geopotential height at 500 hPa over the subtropical ENP (Φ500; 20–40N, 118 

130–170W), vertical wind shear over the tropical NAT (Wshear; 10–20N, 30–90W), SST 119 

anomaly over the tropical NAT (SST; 0–20N, 10–70W), and relative humidity at 600 hPa 120 

over the tropical NAT (RH600; 10–20N, 10–90W). Murakami et al. [2016] discussed the 121 

reason why Φ500 over the subtropical ENP shows a high correlation with TC frequency in 122 

NAT. When the anomaly of Φ500 is positive in the subtropical ENP, geopotential height is 123 

negative in the subtropical NAT (30–50°N, 55–75°W) through a series of wave trains along 124 

the subtropical westerly jet through the so-called Pacific/North American (PNA) pattern.  We 125 

use the UK Met Office Hadley Centre SST product (HadISST1.1) [Rayner et al. 2003] and the 126 

Japanese 55-year Reanalysis (JRA-55) [Kobayashi et al. 2015] for the period 1990–2015 as 127 

observed SST and atmospheric large-scale parameters, respectively.  128 

 129 
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d. Metrics for Evaluation of Forecast Skill 130 

In this study, we used three metrics in order to evaluate prediction skill for interannual 131 

variation of TC activity relative to observed values: rank correlation coefficient, normalized 132 

root-mean-square error (NRMSE), and mean square skill score (MSSS) [Kim et al. 2012; Li et 133 

al. 2013]. NRMSE is defined as: 134 

ܧܵܯܴܰ ൌ
ටభ
೙
∑ ሺ௙೔

೚್ೞି௙೔ሻమ
೙
೔సభ

ఙ೚್ೞ
 ,    (1) 135 

where n is the total number of years, ௜݂
௢௕௦ and ௜݂  are the values from observations and 136 

prediction for the ith year, respectively, and ߪ௢௕௦is the observational standard deviation. RMSE 137 

is normalized by the observed standard deviation because we want to compare variables in 138 

different units. MSSS is defined with the following equation: 139 

ܵܵܵܯ ൌ 1 െ
భ
೙
∑ ሺ௙೔

೚್ೞି௙೔ሻమ
೙
೔సభ

భ
೙
∑ ሺ௙೔

೚್ೞି௙೚್ೞሻమ೙
೔సభ

, (2) 140 

where ݂௢௕௦is the observational mean value. The MSSS is a metric that compares the skill of 141 

the model against climatological forecasts, with high values indicating a good predictive skill 142 

[Kim et al. 2012; Li et al. 2013]. 143 

 144 

3. Results 145 

a. Retrospective forecast of basin-total TC activity 146 

We first compare the retrospective forecast skill in basin-wide seasonal TC activity 147 

between FLOR and HiFLOR (Fig. 1) using scatterplots of rank correlation for interannual 148 

variation of seasonal mean value between observations and FLOR versus HiFLOR (see 149 

Supplemental Information Table S1 for more details). Here we compare basin-total 150 

frequencies of TCs, HURs, and C45s in addition to the basin-total values of accumulated 151 
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cyclone energy (ACE) and power dissipation index (PDI). Note that we only show the values 152 

of the correlation coefficient for C45 for HiFLOR only because FLOR cannot simulate C45 153 

hurricanes due to its low resolution. As expected, the shortest lead-month forecasts (L0) yield 154 

higher correlations than the longer lead months (L3 or L6) for most of the variables. In 155 

addition, both models show higher correlations in NAT than in the other two ocean basins. 156 

Most of the metrics forecasted from July initial conditions are statistically significant at more 157 

than 90% level for both HiFLOR and FLOR, and some of them are even significant for the 158 

forecasts initialized in April (Supporting Information Table S1). Overall, HiFLOR shows skill 159 

comparable to FLOR in both the WNP and ENP. On the other hand, compared to FLOR, 160 

HiFLOR shows higher correlations with observations in NAT than FLOR for most of 161 

variables. We also compared the NRMSE (Supporting Information Figure S1 and Table S2) 162 

and MSSS (Supporting Information Figure S2 and Table S3) [Kim et al. 2012; Li et al. 2013], 163 

resulting in the same conclusions as in the rank correlation. 164 

 Figure 2 shows time-series of the frequency of TCs, HUR, and C45 in NAT from the 165 

observations and HiFLOR/FLOR forecasts. Both models achieved high correlation 166 

coefficients (0.69–0.75) between observed and simulations initialized from July (i.e., L0) for 167 

NAT TCs and hurricanes. This skill is comparable to previous studies in which equivalent or 168 

higher correlations have been already reported using a dynamical model for the basin-total 169 

frequency of TCs and hurricanes [e.g., Chen and Lin 2011]. On the other hand, HiFLOR 170 

yielded a high correlation coefficient value of 0.71 for C45 hurricanes in NAT. HiFLOR also 171 

yielded statistically significant correlations for C45 hurricanes even for lead-month 3 and 6 172 

forecasts in NAT, highlighting that skillful forecasts of C45 hurricanes are feasible at least two 173 

seasons in advance (Supporting Information Table S1). Supporting Information Figure S3 174 
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shows the interannual variation of observed and predicted Accumulated Cyclone Energy 175 

(ACE) and Power Dissipation Index (PDI) in NAT. HiFLOR exhibits high correlation 176 

coefficients of 0.82 and 0.80 for ACE and PDI, respectively. This indicates that the GFDL 177 

dynamical model has significant skill predicting basin-total TC activity in NAT. In general, 178 

HiFLOR shows comparable skill for most of metrics relative to FLOR in WNP and ENP, 179 

although it depends on metrics. Specifically, for WNP, HiFLOR shows higher skill in 180 

predicting TCs and ACE for July initial forecasts than FLOR. For ENP, HiFLOR shows higher 181 

skill in predicting TCs for all initial forecast. Moreover, HiFLOR shows statistically 182 

significant correlations with observations for C45 hurricanes in both WNP and ENP for the 183 

lead-month 0 prediction. These results highlight practical use of HiFLOR to predict the most 184 

intense hurricanes of C45. 185 

 186 

b. Retrospective forecast of regional TC activity 187 

 Predictions of regional TC activity are also investigated (Fig. 3). Both FLOR and 188 

HiFLOR show significant skill in predicting TCs over the tropical NAT and central Pacific 189 

(Figs. 3a,b), indicating potential predictability for landfalling TCs over the Caribbean Islands, 190 

the coastal Gulf of Mexico, and Hawaiian Islands. For hurricanes (Figs. 3c,d), both models 191 

show significant skill for the abovementioned regions, although the regions showing skillful 192 

predictions are smaller than the prediction for TCs. In addition, HiFLOR shows skill in 193 

predicting TC and hurricane frequency of occurrence over the coastline of the Bay of Bengal, 194 

Japan, Guam, Hawaiian Islands, and the eastern coast of the United States. Moreover, 195 

HiFLOR shows some skill in predicting C45 hurricanes in the Caribbean Sea, tropical central 196 

Atlantic, tropical eastern Pacific, and western Pacific, whereas FLOR cannot simulate/predict 197 
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C45 hurricanes due to the low horizontal resolution. These results highlight potential use of 198 

HiFLOR (or FLOR) to predict regional TC activity, especially for intense TC activity, before 199 

the summer season. 200 

Figure 4 shows observed and predicted landfall TCs on the United States, Caribbean 201 

Islands, and Hawaiian Islands for HiFLOR and FLOR. Here, we define landfall TCs as those 202 

storms propagating within a 300 km buffer zone from the coastline (see blue domains in 203 

Fig.4). We investigated the dependence of the skill scores on the width of the buffer zone, and 204 

found only a small variation over the range (0–500 km) even though the skill is the highest for 205 

300 km buffer. Both models show marked skill in predicting landfall TCs for these regions 206 

(correlation coefficient of 0.3–0.7, see Fig.1 and Supporting Information Table S1) for lead-207 

month 0 prediction. Even for the lead-month 3 predictions, HiFLOR shows skill (statistically 208 

significant correlations of 0.5–0.6) in predicting landfall TCs over these regions (Fig. 1 and 209 

Supporting Information Table S1). Generally, HiFLOR shows higher skill than FLOR in 210 

predicting TC activity for these landfall regions (Fig.1, Supporting Information Figures S1 and 211 

S2). Overall, these results are very encouraging and provide empirical evidence to support the 212 

use of dynamical models for prediction of regional TC activity as well as basin-total TC 213 

activity. 214 

 215 

c. Retrospective forecast of large-scale parameters 216 

 Jia et al. [2015] and Murakami et al. [2015] reported through multi-decadal SST-217 

forcing experiments that the high-resolution model improves the simulation of large-scale 218 

parameters relative to the low-resolution model, leading to improved predictions of TC 219 

activity in the high-resolution model. As shown in Fig. 1c, HiFLOR yields higher skill than 220 
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FLOR in predicting various NAT TC metrics, although the predictability of TC activity in 221 

WNP and ENP are comparable between the models. To examine whether the higher skill in 222 

NAT by HiFLOR is obtained by the higher skill in predicting large-scale parameters, we 223 

compare the forecast skill in FLOR and HiFLOR in predicting large-scale parameters. Here 224 

we consider four parameters (see Section 2c), which appear to be highly correlated to the 225 

observed TC frequency for NAT (correlation map and selected domain are shown in 226 

Supporting Information Figure S4).  227 

 Figure 5a compares the correlation coefficients between the observed and predicted 228 

large-scale parameters in the key domains by FLOR (x axis), and between observed and 229 

predicted by HiFLOR (y axis). Most of points are located around the diagonal line, indicating 230 

similar skill between HiFLOR and FLOR. Similar results are obtained using NRMSE (Fig. 5b) 231 

and MSSS (Fig. 5c). In contrast to the previous studies of SST forcing experiments by Jia et 232 

al. [2015] and Murakami et al. [2015], these results indicate that the improvements in 233 

prediction of TC activity in NAT by HiFLOR relative to FLOR is not directly related to the 234 

improvements in prediction of the large-scale parameters. We hypothesize that the difference 235 

in prediction skill in TC activity in NAT between HIFLOR and FLOR may be due to the 236 

difference in the simulation of TCs themselves and the response of TC climatology to the 237 

same large-scale conditions. On the other hand, we also compare the prediction skill between 238 

FLOR and CM2.1 (Fig. 5, panels d–f). FLOR shows higher skill in predicting most of the 239 

large-scale parameters than CM2.1 (especially with respect to NRMSE and MSSS). The 240 

difference between CM2.1 and FLOR is mainly the horizontal resolution in the atmospheric 241 

component (i.e., CM2.1: 250 km, FLOR: 60 km). It is not clear why HiFLOR has comparable 242 

skill in simulating large-scale parameters to FLOR, whereas FLOR has better skill than CM2.1 243 
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in simulating large-scale parameters although the model differences are mainly horizontal 244 

resolution in atmospheric component for those cases. Further study is needed to address this 245 

question. 246 

 247 

4. Summary 248 

In this study, we have evaluated the retrospective seasonal forecasts of TC activity 249 

during the boreal summer (July–November) for the period 1990–2015 by the GFDL high-250 

resolution coupled climate model (HiFLOR) and compared this to skill in the moderate 251 

resolution version of FLOR. HiFLOR yielded comparable or higher skill to FLOR in 252 

predicting TC activity in NAT and comparable skill in WNP and ENP. Both models show high 253 

correlation coefficients (0.69–0.75) between observed and simulated TC activity initialized 254 

from July (i.e., lead-month 0) in ENP and NAT. Moreover, HiFLOR obtained a high 255 

correlation coefficient of 0.71 for C45 hurricanes: this is the first time that a dynamical model 256 

shows such a high correlation for the extremely intense hurricanes through seasonal forecasts. 257 

Even the lead-month 3 and 6 forecasts show statistically significant skill in predicting C45 258 

hurricanes in NAT. HiFLOR also showed high correlation coefficients (0.82 and 0.80) in 259 

predicting ACE and PDI in NAT. These encouraging results indicate that the GFDL’s 260 

dynamical model has significant skill in forecasting basin-total TC activity a few months in 261 

advance. The forecast skill in predicting key large-scale parameters for TC genesis in NAT 262 

using FLOR and HiFLOR is compared. The results show comparable skill between them, 263 

suggesting that the improved skill of predicting TC activity in NAT by HiFLOR relative to 264 

FLOR are not obtained by improving the large-scale parameters. 265 
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We also examined the predictability of regional TC activity. HiFLOR and FLOR show 266 

significant skill in predicting TCs over the tropical NAT and the central Pacific. Both models 267 

show marked skill in predicting landfall TCs for the U.S. coastal regions, Caribbean and 268 

Hawaiian Islands (correlation coefficients of 0.3–0.7 for July initialized forecasts). Moreover, 269 

HiFLOR shows some skill in predicting C45 hurricanes in the Caribbean Sea, tropical eastern 270 

Pacific and western Pacific, while FLOR cannot simulate/predict C45 hurricanes due to the 271 

low horizontal resolution. These results highlight potential use of HiFLOR to predict regional 272 

TC activity, especially high intensity storms, before the onset of the summer season. 273 

 274 
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List of Figures 363 

FIG. 1 Scatterplot of rank correlation coefficient between HiFLOR prediction and 364 

observations (y axis) vs FLOR prediction and observations (x axis) for (a) WNP, (b) ENP, and 365 

(c) NAT. Variables evaluated are basin-total frequency of TCs (TC), Hurricanes (HUR), 366 

categories 4 and 5 hurricanes (C45), basin-total values of accumulated cyclone energy (ACE), 367 

power dissipation index (PDI), the regional TC frequency for the United States (US), 368 

Caribbean Islands (CAR) and Hawaiian Islands (HI). Different colors indicate different lead 369 

months (L0, L3, and L6). Because FLOR cannot predict C45 hurricanes, C45 plots for 370 

HiFLOR are located along the y-axis for convenience. A correlation coefficient above the 371 

diagonal lines indicates that HiFLOR shows higher correlation than FLOR. 372 

 373 

FIG. 2 Retrospective forecasts of (a) basin-total TC frequency, (b) Hurricane frequency, and 374 

(c) C45 frequency in the NAT during the peak season of July–November for the period 1990–375 

2015 for the retrospective forecasts initialized in July using HiFLOR. (d)–(f) As in (a)–(c), but 376 
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for the retrospective forecasts using FLOR. The black lines refer to the observed quantities, 377 

the green lines to the mean forecast value, and shading indicates the confidence intervals 378 

computed by convolving inter-ensemble spread based on the Poisson distribution. The black 379 

dot indicates the forecast value from each ensemble member. The values of “R.Cor” and 380 

“RMSE” in each panel indicate the rank correlation coefficient and root-mean-square error 381 

between the black and green lines, respectively. 382 

 383 

FIG. 3 Retrospective forecast skill of TC frequency of occurrence during July–November for 384 

the period 1990–2015 initialized in July. Shading indicates the retrospective rank correlation 385 

of predicted versus observed TC frequency of occurrence (1°×1° grid box), masked at a two-386 

sided p=0.1 level. Results are shown for (top) TCs, (middle) HUR, and (bottom) C45, for (left) 387 

HiFLOR and (right) FLOR. Note that the results for C45 for FLOR are not shown due to its 388 

inability to simulate C45. Gray shading in all panels indicates that observed TC density is 389 

nonzero for at least 25% of years (i.e., 6 years). 390 

 391 

FIG. 4 As in Fig. 2, but for landfalling TC frequency for U.S. (a, b), Caribbean Islands (c, d), 392 

and Hawaiian Islands (e, f). The panels to the left (right) refer to HiFLOR (FLOR). 393 

 394 

FIG. 5 (a) Scatterplot of correlation coefficient between HiFLOR prediction and observations 395 

(y axis) vs FLOR prediction and observations (x axis). A correlation coefficient above the 396 

diagonal lines indicates that HiFLOR shows higher correlations than FLOR. (b), (c) As in (a), 397 

but for NRMSE and MSSS, respectively. A NRMSE (MSSS) below (above) the diagonal lines 398 

indicates that HiFLOR shows higher skill than FLOR. Variables evaluated are geopotential 399 
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height at 500 hPa in the subtropical ENP (Φ500), vertical wind shear in the tropical NAT 400 

(Wshear), SST anomaly over the tropical NAT (SST), and relative humidity at 600 hPa over the 401 

tropical NAT (RH600). Different colors indicate different lead months. (d–f) As in (a–c), but for 402 

comparisons between FLOR (y axis) and CM2.1 (x axis).403 
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FIG. 1 Scatterplot of rank correlation coefficient between HiFLOR prediction and 426 

observations (y axis) vs FLOR prediction and observations (x axis) for (a) WNP, (b) ENP, and 427 

(c) NAT. Variables evaluated are basin-total frequency of TCs (TC), Hurricanes (HUR), 428 

categories 4 and 5 hurricanes (C45), basin-total values of accumulated cyclone energy (ACE), 429 

power dissipation index (PDI), the regional TC frequency for the United States (US), 430 

Caribbean Islands (CAR) and Hawaiian Islands (HI). Different colors indicate different lead 431 

months (L0, L3, and L6). Because FLOR cannot predict C45 hurricanes, C45 plots for 432 

HiFLOR are located along the y-axis for convenience. A correlation coefficient above the 433 

diagonal lines indicates that HiFLOR shows higher correlation than FLOR. 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 



44

45

45

45

45

45

45

45

45

45

45

46

46

46

46

46

46

46

46

46

46

47

47

 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

FIG. 271 

(c) C472 

2015 f73 

for the74 

the gr75 

compu76 

dot in77 

“RMS78 

betwee79 

 72 

2 Retrospec

45 frequency

for the retros

e retrospecti

reen lines to

uted by conv

ndicates the 

SE” in each 

en the black

tive forecast

y in the NAT

spective fore

ive forecasts

o the mean 

volving inte

forecast va

panel indic

k and green li

ts of (a) bas

T during the 

ecasts initial

s using FLO

forecast val

r-ensemble 

lue from ea

ate the rank

ines, respect

 22

sin-total TC 

peak season

ized in July 

OR. The blac

lue, and sha

spread base

ach ensembl

k correlation

tively. 

frequency, 

n of July–No

using HiFL

ck lines refe

ading indica

d on the Po

le member. 

n coefficient

(b) Hurrican

ovember for 

OR. (d)–(f) 

er to the obs

ates the con

oisson distrib

The values

t and root-m

ne frequency

the period 1

As in (a)–(c

served quan

nfidence inte

bution. The 

s of “R.Cor”

mean-square 

 

y, and 

1990–

c), but 

ntities, 

ervals 

black 

” and 

error 



47

47

47

47

47

47

47

47

48

48

48

48

48

48

48

48

48

48

49

49

49

49

49

 

 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 

 87 

 88 

FIG. 395 

the pe96 

of pre97 

sided p98 

HiFLO99 

inabili00 

nonzer01 

3 Retrospect

eriod 1990–2

dicted versu

p=0.1 level. 

OR and (righ

ity to simula

ro for at leas

tive forecast

2015 initializ

us observed 

Results are 

ht) FLOR. N

ate C45. Gr

st 25% of ye

t skill of TC

zed in July. 

TC frequenc

shown for (t

Note that the

ray shading 

ears (i.e., 6 y

 23

C frequency o

Shading ind

cy of occurr

top) TCs, (m

e results for 

in all panel

years). 

of occurrenc

dicates the r

rence (1°×1°

middle) HUR

C45 for FL

ls indicates 

ce during Ju

retrospective

° grid box), 

R, and (botto

LOR are not 

that observ

uly–Novemb

e rank correl

masked at a

om) C45, for

shown due 

ved TC dens

 

er for 

lation 

a two-

r (left) 

to its 

sity is 



49

49

49

49

49

50

50

50

50

50

50

50

50

50

50

51

51

51

51

51

51

51

51

 

 96 

 97 

 98 

 99 

 00 

 01 

 02 

 03 

 04 

 05 

 06 

 07 

 08 

 09 

 10 

 11 

 12 

 13 

 14 

 15 

FIG. 417 

and H18 

 18 

4 As in Fig. 

awaiian Isla

2, but for la

ands (e, f). Th

andfalling TC

he panels to 

 

 24

C frequency

the left (righ

y for U.S. (a

ht) refer to H

, b), Caribbe

HiFLOR (FL

ean Islands (

LOR). 

 

(c, d), 



51

51

52

52

52

52

52

52

52

52

52

52

53

53

53

53

53

53

53

53

53

53

54

 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 25

 



 

 
 

26

FIG. 5 (a) Scatterplot of correlation coefficient between HiFLOR prediction and observations 541 

(y axis) vs FLOR prediction and observations (x axis). A correlation coefficient above the 542 

diagonal lines indicates that HiFLOR shows higher correlations than FLOR. (b), (c) As in (a), 543 

but for NRMSE and MSSS, respectively. A NRMSE (MSSS) below (above) the diagonal lines 544 

indicates that HiFLOR shows higher skill than FLOR. Variables evaluated are geopotential 545 

height at 500 hPa in the subtropical ENP (Φ500), vertical wind shear in the tropical NAT 546 

(Wshear), SST anomaly over the tropical NAT (SST), and relative humidity at 600 hPa over the 547 

tropical NAT (RH600). Different colors indicate different lead months. (d–f) As in (a–c), but for 548 

comparisons between FLOR (y axis) and CM2.1 (x axis). 549 


