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Abstract 
 1	  

A new high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model 2	  

(HiFLOR) has been developed and used to investigate potential skill in simulation and 3	  

prediction of tropical cyclone (TC) activity. HiFLOR comprises of high-resolution (~25-km 4	  

mesh) atmosphere and land components and a more moderate-resolution (~100-km mesh) sea 5	  

ice and ocean components. HiFLOR was developed from the Forecast Oriented Low 6	  

Resolution Ocean model (FLOR) by decreasing the horizontal grid spacing of the atmospheric 7	  

component from 50-km to 25-km, while leaving most of the sub-gridscale physical 8	  

parameterizations unchanged. Compared with FLOR, HiFLOR yields a more realistic 9	  

simulation of the structure, global distribution, and seasonal and interannual variations of TCs, 10	  

and a comparable simulation of storm-induced cold wakes and TC-genesis modulation 11	  

induced by the Madden Julian Oscillation (MJO). Moreover, HiFLOR is able to simulate and 12	  

predict extremely intense TCs (categories 4 and 5) and their interannual variations, which 13	  

represents the first time a global coupled model has been able to simulate such extremely 14	  

intense TCs in a multi-century simulation, sea surface temperature restoring simulations, and 15	  

retrospective seasonal predictions.16	  
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1. Introduction 17	  

Recent advances in dynamical modeling and computational resources have enabled 18	  

climate simulation, prediction, and projection using high-resolution atmospheric general 19	  

circulation models (AGCMs: e.g., Walsh et al. 2015). A number of numerical modeling 20	  

studies have reported that increasing resolution in an atmospheric model leads to improved 21	  

simulation of intense tropical cyclones (TCs). For example, Oouchi et al. (2006) and 22	  

Murakami et al. (2012) demonstrated a realistic global distribution of intense TCs in multi-23	  

decadal simulations using a 20-km-mesh Meteorological Research Institute (MRI) AGCM. 24	  

Zhao et al. (2009) also showed a realistic simulation of TCs in multi-decadal simulations using 25	  

a 50-km mesh Geophysical Fluid Dynamics Laboratory (GFDL) High-Resolution 26	  

Atmospheric Model (HiRAM). Zhao et al. (2010) showed skill in retrospective seasonal 27	  

predictions of TC frequency in a number of basins using the 50-km version of HiRAM. Chen 28	  

and Lin (2011, 2013) conducted retrospective seasonal forecasts for hurricanes using a 25-km 29	  

mesh HiRAM, revealing a remarkable correlation of 0.96 between observed and the simulated 30	  

TC counts over the 1991–2010 period. Manganello et al. (2012) reported realistic simulations 31	  

of global TC frequency and intensity with the European Center for Medium-Range Weather 32	  

Forecasts (ECMWF) Integrated Forecast System (IFS) at 10-km horizontal resolution. 33	  

Rathmann et al. (2013) reported that a 25-km-mesh EC-earth model outperformed lower-34	  

resolution models, in terms of global TC distribution and the interannual variation of TC 35	  

genesis frequency. Yamada (2010) conducted future projections using a 14-km-mesh 36	  

atmospheric model (NICAM), representing the first time that a nonhydrostatic global 37	  

atmospheric model had been used for climate projections. While the atmospheric resolution 38	  

required for reliable future climate projections of TCs has not yet been determined, a number 39	  



	  

	  
	  

2	  

of studies have reported that a 60-km mesh may be suitable for such projections (Murakami 40	  

and Sugi 2010; Walsh et al. 2013). 41	  

On the other hand, AGCMs lack in physical accuracy at the air-sea interface that is 42	  

known to be crucial for TC intensity and development (Emanuel 2003; Hasegawa et al. 2007; 43	  

Knutson et al. 2001). Sea surface temperature (SST) generally decreases along TC tracks due 44	  

to cold-water wakes induced by wind-induced ocean mixing (Lloyd and Vecchi 2011), which 45	  

serves to weaken TC intensity and suppress subsequent TC genesis (Schade and Emanuel 46	  

1999; Bender and Ginis 2000; Knutson et al. 2001). Because this negative feedback is 47	  

neglected in AGCMs, atmosphere and ocean coupled models (CGCMs) are preferable to be 48	  

used for sensitivity studies, predictions, and climate projections of TC activity. However, 49	  

because a high-resolution CGCM is still computationally expensive, most state-of-the-art 50	  

CGCMs incorporate a 50–200-km mesh atmosphere component, which is unable to simulate 51	  

the most intense TCs. A relatively smaller number of studies (Gualdi et al. 2008, Bell et al. 52	  

2013, Kim et al. 2014) have used CGCMs to explore the sensitivity of tropical cyclone activity 53	  

to changes in greenhouse gases. Therefore, the Intergovernmental Panel on Climate Change 54	  

(IPCC) fifth assessment report (IPCC 2013) relied on principally on results from high-55	  

resolution AGCMs (regional and global) rather than CGCMs for future projections of changes 56	  

in TC statistics [see Table 14.SM.4a in IPCC (2013)]. High-resolution CGCMs have been 57	  

shown to be potentially useful tools for the subseasonal to seasonal prediction of hurricane 58	  

activity (Vitart 2007; Vecchi et al. 2014; Camp et al. 2015; Xiang et al. 2015.a, b); though 59	  

these results have focused principally on tropical cyclone or hurricane frequency, rather than 60	  

intense tropical cyclones. Dynamical (e.g., Knutson et al. 2015) or statistical (e.g., Zhao and 61	  

Held 2010; Villarini and Vecchi 2013) refinements are potential mechanisms to extract 62	  
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intensity information from GCMs that do not explicitly simulate the most intense hurricanes. 63	  

We here focus, however, on a global CGCM that is able to explicitly simulate intense tropical 64	  

cyclones. 65	  

In this study, we develop a high-resolution CGCM (HiFLOR), with an atmospheric 66	  

horizontal grid spacing of ~25 km and oceanic horizontal grid spacing of ~100 km. This high-67	  

resolution CGCM is developed from a more modest (~50 km) high-resolution CGCM (FLOR) 68	  

(Vecchi et al. 2014) by reducing the horizontal grid spacing of the atmosphere and land 69	  

components to ~25 km. The main objective of this study is to elucidate how much influence 70	  

the horizontal resolution of the atmospheric component exerts on the simulation and seasonal 71	  

prediction of TCs, with a particular focus on the most intense (Category 4–5) TCs. 72	  

 The remainder of this paper is organized as follows. Section 2 describes the models, 73	  

experimental design, and data used in this study. Section 3 assesses the performance of 74	  

simulations and predictions by the high-resolution CGCM compared with the moderate-75	  

resolution CGCM. Finally, Section 4 provides a summary of the results. 76	  

 77	  

2. Methods 78	  

a. Models and simulation settings 79	  

The models used in this study comprise the GFDL Forecast-oriented Low Ocean 80	  

Resolution model (FLOR; Vecchi et al. 2014; Jia et al. 2015) and a high atmospheric-81	  

resolution version of FLOR (HiFLOR). FLOR is comprises 50-km mesh atmosphere and land 82	  

components, and 100-km mesh sea ice and ocean components. The atmosphere and land 83	  

components of FLOR are taken from the Coupled Model version 2.5 (CM2.5; Delworth et al. 84	  

2012) developed at GFDL, whereas the ocean and sea ice components are based on the GFDL 85	  
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Coupled Model version 2.1 (CM2.1; Delworth et al. 2006; Wittenberg et al. 2006; 86	  

Gnanadesikan et al. 2006). CM2.5 substantially improves near-surface and atmospheric 87	  

climate simulation relative to CM2.1 (Delworth et al.2012; Doi et al. 2012; Delworth and 88	  

Zeng 2012) as well as tropical cyclones (Kim et al. 2014). The details of FLOR and its 89	  

simulation performance are documented in Vecchi et al. (2014), Jia et al. (2015), and 90	  

Krishnamurthy et al. (2015a). FLOR has been used to understand the change, variability and 91	  

predictability of global and regional climate, and extremes (Vecchi et al. 2014; Msadek et al. 92	  

2014; Winton et al. 2014; Jia et al. 2015; Yang et al. 2015; Krishnamurthy et al. 2015.a,b; 93	  

Delworth et al. 2015; Zhang and Delworth 2015); real-time seasonal predictions with FLOR 94	  

are made every month through the North American Multi-Model Experiment for seasonal 95	  

prediction (NMME; Kirtman et al. 2014). 96	  

HiFLOR was developed from FLOR by reducing the horizontal grid spacing of the 97	  

cubed sphere (Putnam and Lin 2007) atmosphere and land components to a 25-km mesh 98	  

(Chen and Lin 2011, 2013); physical processes and ocean component were inherited from 99	  

FLOR with only minor changes to the dynamical core and physical parameterizations. In 100	  

increasing the dynamical core atmospheric resolution, we halved the dynamical time-step of 101	  

the model, but kept the “physics” time-step (time-step of the convection, cloud an radiation 102	  

schemes in the model) the same as FLOR. Among the adjustments, HiFLOR applies a 103	  

reduction in ocean roughness under the intense wind speeds such as TCs (Moon et al. 2004), 104	  

as implemented in Chen and Lin (2013), which is primarily relevant to the simulation of 105	  

intense TC that are not present in the FLOR model. However, we have performed a 106	  

preliminary investigation of dependency of this parameterization on TC intensity, revealing 107	  

that the effect is small. 108	  
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 We generate 300-year control climate simulations using both FLOR and HiFLOR by 109	  

prescribing radiative forcing and land-use conditions representative of the year 1990. The 110	  

control simulations are so-called “free runs” in which flux adjustments (Magnusson et al. 111	  

2013; Vecchi et al. 2014) are not applied. Therefor the FLOR and HiFLOR simulations have 112	  

biases in their sea surface temperature (SST) climatology; as noted in Vecchi et al. (2014), 113	  

these SST biases can be a large contributor to biases in the TC climatology and interannual 114	  

variability. Note that because the control runs are free runs, simulated interannual climate (and 115	  

TC) variations will not be in phase with those in observations. 116	  

We also conducted additional experiments in which simulated sea surface salinity 117	  

(SSS) and SST are restored to the observational estimates over 1971–2012. The simulated SSS 118	  

was restored to the monthly climatology from the World Ocean Atlas 2005 (Antonov et al. 119	  

2006), while SST was restored to the interannually-varying monthly mean value derived from 120	  

the UK Met Office Hadley Centre SST product (HadISST1.1; Rayner et al. 2003). To test 121	  

sensitivity of restoring timescale, the restoring experiments are performed with either a 5-day 122	  

or a 10-day restoring time scale with three different initial conditions, thereby yielding 6 123	  

ensemble simulations each for FLOR and HiFLOR. The restoring experiments, by bringing 124	  

model SST into closer alignment with that observed, should have their climate variations 125	  

phased with those observed. 126	  

 To provide a preliminary assessment of the predictability of intense TCs in HiFLOR, 127	  

we conducted a pair of 36-member ensemble retrospective seasonal forecasts initialized on 128	  

July 1st 1997 and 1998. Following Vecchi et al. (2014), 10-month duration predictions are 129	  

performed after initializing the climate model to observationally constrained conditions. The 130	  

36-member initial conditions for ocean and sea ice components were taken from a twelve-131	  
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member coupled ensemble Kalman filter (EnKF) data assimilation system with CM2.1. 132	  

Meanwhile, initial conditions for atmosphere and land components were taken from three 133	  

arbitrary years in the 1990 control simulations with HiFLOR. Therefore, the predictability in 134	  

these experiments comes entirely from the ocean and sea ice, and may be thought of as a lower 135	  

bound on the potential prediction skill of a model, because predictability could also arise from 136	  

atmospheric (particularly stratospheric) and land initialization. Combining the twelve 137	  

ocean/sea ice initial conditions with the three land/atmosphere intial conditions yields 36 138	  

ensemble members. 139	  

 140	  

b. Observational datasets 141	  

The observed TC “best-track” data were obtained from the International Best Track 142	  

Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010) and used to evaluate the TC 143	  

simulations in the control and restoring experiments, and seasonal predictions. The dataset, 144	  

which consists of best-track data compiled by the National Hurricane Center (NHC) and the 145	  

Joint Typhoon Warning Center (JTWC), contains historical TC information regarding the 146	  

locations of the centers of cyclones, cyclone intensities (maximum 1-minute surface wind 147	  

speeds), and sea level pressures at 6-hourly intervals. We only used TCs with tropical storm 148	  

strength or stronger (i.e., TCs possessing 1-min sustained surface winds of 35 kt or greater) 149	  

during the period 1965–2013. To compare simulated cold wakes induced by TCs with 150	  

observations (Section 3.b), we used the high resolution SST analysis product of National 151	  

Oceanic and Atmospheric Administration (NOAA) Optimal Interpolation (OI) 1/4 Degree 152	  

Daily Sea Surface Temperature Analysis (OISST Version 2; Reynolds et al. 2007) for the 153	  

period 1982–2012. For evaluation of simulated intraseasonal variations (Section 3.d), we used 154	  
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daily Outgoing Longwave Radiation (OLR) data from the Advanced Very High Resolution 155	  

Radiometer (AVHRR) (Liebmann and Smith 1996) and upper- (200 hPa) and lower- (850 156	  

hPa) tropospheric zonal winds from the National Centers for Environmental Prediction/ 157	  

National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996) for 158	  

the period 1979–2005. To evaluate simulated mean SSTs, HadISST1.1 is used during the 159	  

period 1979–2013. For the evaluation of simulated mean precipitation, the Climate Prediction 160	  

Center Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997) is used for the period 161	  

1979–2013. 162	  

 163	  

c. Detection algorithm for tropical cyclones 164	  

Model-generated TCs were detected directly from 6-hourly output using the following 165	  

tracking scheme in which sea level pressure (SLP) and the temperature anomaly (ta) averaged 166	  

between 300 and 500 hPa are mainly used. 167	  

(1) Local minima in a smoothed SLP field are detected. The location of the center is 168	  

fine-tuned by fitting a biquadratic to the SLP field and placing the center at its minimum. 169	  

(2) Closed contours of some specified interval dp (here 2 hPa) are found about each 170	  

center. The Nth contour is identified as the contiguous region surrounding a low of central 171	  

pressure P, with pressures less than dp × N + P, as found by a “flood fill” algorithm. Hence, 172	  

the contours need not be circular; however, there is a maximum distance of 3,000 km that the 173	  

algorithm will search away from the candidate low center. 174	  

(3) If the above closed contours are found, the low is counted as a storm center at that 175	  

time. The tracker then tries to find as many closed contours about that low that it can find 176	  

without going too far from the low center or running into contours claimed by another low. 177	  
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The maximum 10-m wind inside the set of closed contours is considered to be the maximum 178	  

wind speed for the storm at that time. 179	  

(4) Warm cores are found through a process similar to the above: closed 2K contours 180	  

for HiFLOR (1K for FLOR) are sought out about the maximum ta within a storm’s identified 181	  

contours, not more than 1° apart from the low center. This contour must have a radius less 182	  

than 3° in distance. If no such core is found, the center is not rejected, but is simply marked as 183	  

not being a warm-core low. 184	  

(5) Storm centers are connected into a track by taking a low center at time T – dt, 185	  

extrapolating its motion forward dt, and then looking for storms within 750 km. Deeper lows 186	  

get first choice of track. 187	  

(6) Final TCs are selected by considering satisfactions of duration conditions as 188	  

follows. 189	  

a. At least 72 hours of total detection lifetime. 190	  

b. At least 48 cumulative (not necessarily consecutive) hours of having a warm core. 191	  

c. At least 36 consecutive hours of a warm core plus winds greater than 17.5 m s–1. 192	  

d. The start (last) time of 24 consecutive hours of a warm core plus winds is assigned 193	  

to genesis (cyclolysis) time. Location of TC genesis should be equatorward of 40°N. 194	  

As a sensitivity test, we also applied different tracking schemes from Zhao et al. (2009) 195	  

and Murakami et al. (2012), and found similar results. 196	  

TC positions are counted for each 2.5° × 2.5° grid box within the global domain at 6-197	  

hour intervals. The total count for each grid box is defined as the frequency of occurrence of 198	  

TCs (TCF). The frequency fields are smoothed using a 9-point moving average weighted by 199	  

distance from the center of the grid box. 200	  
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Fig.2  

Fig.1  

The analyses considered total global (GL) results, and results for seven ocean basins: 201	  

North Indian Ocean (NIO); western North Pacific (WNP); eastern North Pacific (ENP); North 202	  

Atlantic (NAT); South Indian Ocean (SIO); and South Pacific Ocean (SPO) (see Fig. 2 for 203	  

regional boundaries). 204	  

 205	  

3. Results 206	  

a. Tropical cyclone distributions 207	  

Figure 1a, b compares simulated biases (relative to HadISST1.1) of climatological 208	  

mean SST for 300-yr simulations of FLOR and HiFLOR. Simulated biases of FLOR are also 209	  

documented in Vecchi et al. (2014). Overall, the spatial patterns of SST biases in HiFLOR are 210	  

similar to those in FLOR: both models show substantial cold biases in the NAT and WNP, 211	  

although HiFLOR shows slightly larger cold biases in the tropics and SIO. However, HiFLOR 212	  

improves warm bias in ENP and eastern tropical Atlantic. The models also share similar bias 213	  

patterns in the mean precipitation field (Fig. 1c, d), although the amplitude of the biases is 214	  

slightly reduced in HiFLOR relative to FLOR, especially in the central Pacific. However, 215	  

HiFLOR appears to have an increase wet bias over the equatorial Atlantic. Overall, the large-216	  

scale climate in HiFLOR and FLOR are relatively comparable. 217	  

Figure 2 compares observed and simulated distributions of TC tracks during all 218	  

seasons. The annual mean TC number for each basin is also shown in Fig. 2. Compared with 219	  

observations (Fig. 2c), HiFLOR (Fig. 2b) reproduces extremely intense TCs of categories 4 220	  

and 5 (C4 and C5, respectively) more realistically than FLOR (Fig. 2a). For example, HiFLOR 221	  

simulates concentrated C5 storms in the Philippine Sea as seen in observations. Although 222	  

FLOR also captures the concentrated location of intense TCs, FLOR critically underestimates 223	  
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Fig.4 

Fig.3 

TC intensity due to low horizontal resolution: simulated maximum TC intensity around the 224	  

Philippine Sea is at most category 2. The simulated annual mean TC number in HiFLOR is 225	  

improved in the NAT (SIO) in which FLOR critically underestimates (overestimates) TC 226	  

number. However, the simulated TC numbers in WNP and ENP by FLOR are much closer to 227	  

observations than HiFLOR. 228	  

Figure 3a, b compares the spatial distributions of model biases in TCF for the control 229	  

simulations. Both models generally show similarities in their biases: overestimates in the 230	  

WNP, central Pacific, and SIO, and underestimates in the eastern ENP and NAT. Note that 231	  

HiFLOR shows a larger positive bias in WNP than FLOR, as indicated by the overestimation 232	  

of TC genesis number (Fig. 2). However, HiFLOR reduces the biases in NIO, SIO, SPO, 233	  

central Pacific, and NAT, leading to improved simulation of the global distribution of TCs by 234	  

HiFLOR. This result indicates that the high-resolution model is desirable for accurate 235	  

simulations of the TC spatial distributions, which is also consistent with previous studies 236	  

(Murakami and Sugi 2010; Manganello et al. 2012; Walsh et al. 2013; and Murakami et al. 237	  

2014a). 238	  

 239	  

 b. Tropical cyclone intensity and composite structure 240	  

 As indicated in Section 3a, HiFLOR can simulate intense TCs of C4 and C5. Figure 4 241	  

shows more detailed comparisons of TC intensity between FLOR and HiFLOR, revealing that 242	  

HiFLOR improves lifetime maximum intensity (Fig. 4a) significantly relative to FLOR. 243	  

Although HiFLOR still underestimates C5 TCs (i.e., >69 m s–1) compared with observations, 244	  

the probability distribution in HiFLOR is closer to observations than in FLOR. The simulated 245	  

relationship between maximum wind speed (MWS) and minimum SLP (MSLP) using all the 246	  
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Fig.5 

6-hr TC data is also investigated in Fig. 4b. Also shown in the figure is Atkinson and 247	  

Holiday’s (1977) nonlinear regression curve derived from observations in the WNP (dashed 248	  

black curve). HiFLOR can simulate more intense TCs than FLOR while keeping the observed 249	  

MWS-MSLP relationship, indicating that the simulated TC structure by HiFLOR is reasonable. 250	  

 Figure 5a−c compares composite TC structure between FLOR and HiFLOR simulated 251	  

through the 300-yr control simulations. Composite structures are made for the TCs at their 252	  

lifetime maximum intensity in the Northern Hemisphere. HiFLOR simulates more intense SLP 253	  

minima, and more intense wind speeds and precipitation than in FLOR. Both models show 254	  

that the maximum tangential wind speed is located less than 100 km from the storm center 255	  

(Fig. 5c), which is consistent with observations (Frank 1984; Murakami et al. 2008). 256	  

 Figure 5d−f compares composite structures of SST cooling in the wake of TCs. 257	  

Following Lloyd and Vecchi (2011), we used daily mean SST anomaly relative to monthly 258	  

climatology. SST anomalies at 2 days after storm passages relative to the average over 2 to 12 259	  

days before the storm passages were used for the input data. As discussed in Lloyd and Vecchi 260	  

(2011), surface cooling depends on translation speed and latitude. Thus, we consider 261	  

nondimensional parameter of V/f where V is translation speed [m s–1] and f is the Coriolis 262	  

parameter [s–1]. V/f is normalized with 100 km (i.e., 1 unit is 100 km). V/f=1 divides all 263	  

storms equally. Lloyd and Vecchi (2011) found that surface cooling is larger in V/f <1 (i.e., 264	  

slow-moving or high-latitude) storms than in V/f >1 (i.e., fast-moving or low-latitude) storms. 265	  

Thus, composites are made for all storms (>34 kt) with V/f < 1 in this study. 266	  

 Both FLOR (Fig. 5d) and HiFLOR (Fig. 5e) recover the structure of the observed cold 267	  

SST wake (Fig. 5f). The cold wake is similar between HiFLOR and FLOR, despite the 268	  

stronger wind speeds in HiFLOR (e.g., Fig. 4). This may be because most of the samples used 269	  
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Fig.7  

Fig.6 

for the composites are from relatively weaker phases of the storm lifetime. When composites 270	  

are made for each TC intensity category, both FLOR and HiFLOR simulate larger surface 271	  

cooling as TC intensity increases (figure not shown). Lloyd and Vecchi (2011) reported that 272	  

the observed cold-wake is nonmonotonic: stronger cyclones produces more cooling up to C2 273	  

but less or approximately equal cooling for C3–5 TCs. Although Lloyd et al. (2011) reported 274	  

that this nonmonotonicity is well reproduced by GFDL Hurricane Forecast Model (GHM; 275	  

Kurihara et al., 1998; Bender et al., 2007), HiFLOR could not reproduce this nonmonotonicity 276	  

(i.e., the HiFLOR cold-wake is stronger in C3–5 TCs than in C2 TCs). The reason for this 277	  

discrepancy is under investigation. 278	  

Figure 6 shows the composite mean SST anomaly for each day before and after storm 279	  

passage, indicating that simulated cold wake is generally restored to a steady condition 30 280	  

days after storm passage, which is consistent with observations (black line). Figure 6 also 281	  

indicates that the observed SST does not return to the pre-cyclone condition: SST anomaly 282	  

remains –0.2K at 30 days after storm passage, which is consistent with the previous study 283	  

(Lloyd and Vecchi 2011). This irreversible surface cooling is also well simulated by both 284	  

models. 285	  

 286	  

c. Seasonal variations 287	  

Figure 7 compares seasonal variation of TC genesis frequency between FLOR and 288	  

HiFLOR. Although simulated biases in both models are similar to those for CM2.5 as shown 289	  

in Kim et al. (2014), HiFLOR simulates a more reasonable seasonal cycle of TC genesis 290	  

frequency. For example, the peak month of TC genesis frequency is improved in the WNP and 291	  

ENP compared with FLOR. Over the NIO (Fig. 7a), FLOR underestimates (overestimates) TC 292	  



	  

	  
	  

13	  

Fig.8 

in pre-monsoon (post-monsoon) season, whereas HiFLOR improves these biases. Although 293	  

simulated annual mean TC number in WNP appears to be better in FLOR than in HiFLOR 294	  

(Fig. 2), FLOR underestimates TC number during July–September, whereas HiFLOR 295	  

simulates reasonable frequency in August and September. Simulated seasonal variations of TC 296	  

genesis frequency in the Southern Hemisphere are mostly identical between the models. The 297	  

above improvements in HiFLOR relative to FLOR (or CM2.5) are consistent with the previous 298	  

work of Murakami and Sugi (2010), who noted that increasing horizontal resolution leads to 299	  

improved seasonal variation of TC frequency for most ocean basins. 300	  

 301	  

d. Interannual variation 302	  

 The El Niño-Southern Oscillation (ENSO) is one of the primary drivers of interannual 303	  

variations in TC activity (Lander 1994; Chen et al. 1998; Wang and Chan 2002; Wu et al. 304	  

2004; Camargo and Sobel 2005), and a fundamental source of interannual TC predictability 305	  

(Vecchi et al. 2014). Figure 8 compares simulated composite anomalies of TCF for each warm 306	  

(El Niño) and cold (La Niña) phase of ENSO during August–October (ASO). Here, we 307	  

computed SST averaged over the Niño-3 region (5°S–5°N, 90°W –150°W) and Niño-4 region 308	  

(5°S–5°N, 160°E–150°W) for each year, and the anomaly is computed by subtracting the 309	  

climatological mean value. El Niño (La Niña) years correspond to years in which the Niño-3 310	  

or Niño-4 SST anomalies exceed one (minus one) standard deviation. 311	  

The observations (Fig. 8a, e) reveal marked southeast-northwest contrast in TCF in the 312	  

WNP as reported in Wang and Chan (2002). Overall, both FLOR (Fig. 8b, f) and HiFLOR 313	  

(Fig. 8c, g) faithfully reproduce the contrasting features. However, during El Niño (La Niña) 314	  

years, the simulated peak of positive (negative) anomalies in FLOR extends further east of the 315	  
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dateline in the Pacific relative to observations. Simulated location of peak in positive anomaly 316	  

in WNP during El Niño years is also closer to observations in HiFLOR (Fig. 8c) than in FLOR 317	  

(Fig. 8b). In addition, during El Niño years, the inhabitation of TCF in ENP is more 318	  

pronounced in FLOR than HiFLOR. The above discrepancies between FLOR and 319	  

observations are documented in Vecchi et al. (2014) and Krishnamurthy et al. (2015b). They 320	  

attribute those inconsistencies to a stronger ENSO in FLOR than observed. Indeed, the 321	  

simulated standard deviation of the Niño-3.4 index is 1.5K, 1.0K and 0.8K in FLOR, HiFLOR, 322	  

and observations, respectively, revealing that the biases in ENSO amplitude are reduced in 323	  

HiFLOR. 324	  

During La Niña years, both models show positive anomalies in the ENP (Fig. 8f, g), 325	  

whereas observations show negative anomalies (Fig. 8e). Krishnamurthy et al. (2015b) 326	  

reported that in FLOR, La Niña reduces the number of days with strong vertical wind shear 327	  

and the location of the reduction is co-located with the main TC genesis region in ENP, 328	  

leading to opposite relation between La Niña and TCF anomaly in FLOR compared to 329	  

observations. Although sign of anomaly is different from observations, the bias of positive 330	  

anomaly in ENP during La Niña years is reduced in HiFLOR. 331	  

 Because the control simulations by FLOR and HiFLOR are free CGCM runs, their 332	  

simulated year-by-year TC variations are independent of the variations in observations. Here, 333	  

we conducted additional SSS and SST restoring ensemble experiments, in which the simulated 334	  

SST is restored to interannually-varing observations at 5-day timescale with three different 335	  

initial conditions. To test sensitivity of restoring timescale and increase ensemble size, a 336	  

parallel set of experiments with 10-day restoring time-scale is also applied, thereby yielding 6 337	  

ensemble members in total for each model (see Methods section). The difference in TC 338	  
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Fig.9 

Tab.1 

simulation between 5-day and 10-day restoring time scales was small for both FLOR and 339	  

HiFLOR (figure not shown), so we treat all six members as a single population from each 340	  

model. Figure 9a compares interannual variation of TC genesis number in the NAT between 341	  

FLOR (blue) and HiFLOR (red). HiFLOR simulates the observed interannual variations, as 342	  

well as the long-term linear trend better than FLOR. These results are consistent with previous 343	  

studies of Murakami and Sugi (2010), Manganello et al. (2012), Strachan et al. (2013), and 344	  

Rathmann et al. (2013), who noted that increasing horizontal resolution yields higher skills in 345	  

simulating observed interannual variation of TC frequency. 346	  

Table 1 summarizes rank correlations between simulations and observations. Overall, 347	  

HiFLOR outperforms FLOR for both all storms (Table 1a) and hurricanes (Table 1b) except 348	  

for NIO and WNP. Significant improvements can be seen in the variation of hurricanes (Fig. 349	  

9b): HiFLOR reproduces the observed interannual variation and trend of hurricane count, 350	  

whereas FLOR does not reproduce them as skilfully. HiFLOR yields higher correlations for 351	  

hurricanes than those for all TCs in the ENP, NAT, and SIO (Table 1a, b). A number of 352	  

previous studies have shown similarly high correlations with observed TC numbers in the 353	  

NAT, using similar experimental settings (e.g., LaRow et al. 2008; Zhao et al. 2009; 354	  

Murakami and Wang et al. 2010; Strachan et al. 2013). Specifically, Knutson et al. (2008) 355	  

showed a high correlation of simulated and observed hurricane counts in the NAT, using a 356	  

regional model with restoring of both the SST and large-scale fields toward observations. 357	  

However, the present study with HiFLOR is the first to show such high correlations for C4 358	  

and C5 hurricanes with a global coupled model (Fig. 9c and Table 1c). These results highlight 359	  

potential predictability of extremely intense TCs if the SSTs can be predicted accurately. 360	  
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 Because the SST biases are much smaller in the restoring experiments, these 361	  

experiments allow us to assess the extent to which simulated biases in the control CGCM 362	  

simulations arise from biases in SST as opposed to the biases in the atmosphere component. 363	  

Figure 3c shows model biases in TCF in the restoring experiments in HiFLOR. Compared to 364	  

those in the control simulation (Fig. 3b), the restoring experiments reduce the biases in the 365	  

central Pacific, SPO, and NAT, indicating that these biases in climatological TC simulation in 366	  

the control simulation have a substantial element due to the SST biases. On the other hand, the 367	  

overestimation of TCF in the Indian Ocean remains and that in WNP becomes larger, 368	  

indicating these biases may be intrinsic to the atmospheric component. 369	  

Figure 8d, h shows composite anomalies of TCF for each phase of ENSO simulated by 370	  

the restoring experiments using HiFLOR. Compared to the control simulation (Fig. 8c, g), the 371	  

restoring experiments substantially improve the spatial patterns. The restoring experiments 372	  

simulate clear peaks of anomalies in WNP, which are closer to observations than for the 373	  

control experiment. Moreover, the restoring experiments reproduce the observed negative 374	  

anomaly during La Niña years in ENP (Fig. 8h), whereas the control simulation fails to 375	  

simulate the negative anomaly (Fig. 8g). Vecchi et al. (2014) and Krishnamurthy et al. (2015b) 376	  

reported similar improvements using the flux-adjusted version of FLOR, in which model’s 377	  

momentum, enthalpy and freshwater fluxes from atmosphere to ocean are adjusted to bring the 378	  

model’s long-term climatology of SST and surface wind stress closer to observations. They 379	  

concluded that this bias could be corrected by simulating the correct location of reduction in 380	  

vertical wind shear in ENP during La Niña years, which is related to the strength of ENSO.  381	  

Figure S1 in the supplemental material also compares simulated TC intensity between 382	  

the control simulation and the restoring experiments. Although the difference between the 383	  
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control simulation and restore experiments in FLOR (blue lines) is not clear, the restoring 384	  

experiments in HiFLOR (red line with rectangles) significantly increases TC intensity relative 385	  

to the control simulation (red line with circles). An additional experiment, for which the 386	  

simulated SSS and SST are restored to the simulated climatological mean of the HiFLOR 387	  

control simulation at 5-day timescale (green line with triangles), reveals a similar TC intensity 388	  

to that of the control simulation. The above results indicate that the more intense TCs in the 389	  

restoring experiments relative to the control simulation are connected to differences in the 390	  

mean state rather than to the nudging itself. 391	  

 392	  

e. Intraseasonal variations 393	  

 Intraseasonal variability in the atmosphere-ocean coupled system plays an important 394	  

role in modulating TC genesis, and represent a potential source of TC predictability on greater 395	  

than weekly time-scales (e.g., Xiang et al. 2015a,b). Maloney and Hartmann (2000) reported 396	  

that hurricanes in the Gulf of Mexico and western Caribbean are strongly modulated by wind 397	  

anomalies induced by the Madden-Julian oscillation (MJO). TC genesis frequency in the WNP 398	  

also experiences a significant intraseasonal variation (Yamazaki and Murakami 1989; 399	  

Hartmann et al. 1992; Liebmann et al. 1994; Fu et al. 2007). In particular, Li and Zhou (2013) 400	  

showed that in the WNP, northeastward-propagating MJO predominantly controls the basin-401	  

wide TC frequency. A number of numerical studies have showed that the MJO provides a 402	  

source of predictability for TC genesis (Fudeyasu et al. 2008; Fu and Hsu 2011; Vitart, 2009; 403	  

Belanger et al. 2010; Elsberry et al. 2010; Xiang et al. 2015a). Therefore, it is important to 404	  

evaluate whether models adequately simulate the MJO and its association with TC genesis. 405	  
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Fig.10 

Fig. 11 

Fig. 12 

 Figure 10 compares Wheeler-Kiladis diagrams (Wheeler and Kiladis 1999; Kim et al. 406	  

2009) which show observed and simulated zonal wavenumber-frequency power spectra of 407	  

meridionally symmetric and antisymmetric components of OLR, divided by the background 408	  

power. The simulated MJO signals in the period range of 30–80 days in both FLOR and 409	  

HiFLOR are strong and comparable to each other, although the simulated signals are slightly 410	  

weaker than observed. When the two models are compared, HiFLOR simulates stronger 411	  

atmospheric Kelvin waves and mixed Rossby-gravity waves (MRG), which are closer to 412	  

observations than for FLOR. 413	  

 Figure 11 represents composites of TC genesis locations superposed on anomalies of 414	  

OLR and wind vectors at 850 hPa for each MJO phase during boreal summer (May–October). 415	  

Figure S2 in the supplemental material shows these during boreal winter (November–April). 416	  

Note that these composites are made when the MJO index exceeds one standard deviation for 417	  

each phase (i.e., the active MJO phase). Following Wheeler and Hendon (2004), the MJO 418	  

index is obtained from the magnitude of first two principal components of the multivariate 419	  

empirical orthogonal functions (EOFs) using daily mean OLR, 850 hPa zonal wind, and 200-420	  

hPa zonal wind. Observations indicate that events of TC genesis are more frequent during the 421	  

MJO active phase for each basin, as reported in Maloney and Hartman (2000) and Li and 422	  

Zhou (2013). This modulation of TC genesis is also well simulated in the 300-yr control 423	  

simulations of FLOR and HiFLOR. Figure 12 illustrates the TC genesis rate for each MJO 424	  

phase in each basin. Overall, the MJO simulations of FLOR and HiFLOR are similar, and both 425	  

models reproduce the observed enhancement of TC genesis during the active MJO phase.  426	  

Although MJO is reasonably simulated in both HiFLOR and FLOR, both models 427	  

substantially overestimate (underestimate) TC genesis frequency in WNP (ENP and NAT). On 428	  
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Fig. 13 

the other hand, Murakami et al. (2012) reported that the 20-km-mesh MRI-AGCM yielded a 429	  

realistic simulation of the global TC distribution, although Yoshimura et al. (2015) reported 430	  

that the model’s MJO is much weaker than observed. Moreover, Yamada et al. (2010) showed 431	  

that NICAM substantially underestimated TC genesis frequency in ENP and NAT, while 432	  

Miura et al. (2007) showed that it simulated a strong MJO. These results, in combination with 433	  

present study, suggest that model performance in simulating the global TC distribution may be 434	  

only weakly related to performance in simulating the MJO. 435	  

 436	  

f. Retrospective seasonal forecast for 1997/1998  437	  

 To provide a preliminary assessment of the predictability of intense TCs in HiFLOR, 438	  

we conducted a couplet of 36-member ensemble retrospective seasonal forecasts initialized on 439	  

July 1st in 1997 and 1998. These start dates were chosen as they allow us to target the extreme 440	  

El Niño and La Niña events of 1997–98 and 1998–99, respectively. The boreal summer in 441	  

1997 was in sharp contrast to that in 1998 in terms of global TC activity (Pasch et al. 2001; Du 442	  

et al. 2011; Tao et al. 2012; Zhao et al. 2014). The 1997 TC season is characterized by more 443	  

frequent and intense TCs in WNP as well as less frequent and weaker TCs in NAT associated 444	  

with strong El Niño (Fig. 13a). Meanwhile, the 1998 TC anomalies largely oppose to those of 445	  

1997, arising from the strong La Niña (Fig. 13b). Of particular interest in this study is to 446	  

elucidate whether HiFLOR can predict above contrasts in the intense TCs of hurricanes and 447	  

C45 hurricanes. The contrast in large-scale climate and TCs between these two years provides 448	  

a useful benchmark for predictability, but the results reported here should not be interpreted as 449	  

applying broadly to predictive skill for all years. 450	  
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Fig. 14 

Fig. 15 

 Figure 13 shows predicted TC tracks in HiFLOR compared to observations. Note that 451	  

all TC tracks predicted in the 36-ensemble members are superposed in the figure. Figure 14 452	  

shows the differences in the mean TCF between 1997 and 1998 for each TC intensity category. 453	  

Figure 15 shows box plots for predicted TC numbers for each TC intensity category 454	  

superposed on the observed TC numbers (triangles). The predicted TC tracks in 1998 are 455	  

concentrated in the South China Sea (Fig. 13d, 14b), whereas those in 1997 expand further 456	  

east of the open ocean in WNP (Fig. 13c, 14b), which are consistent with observations (Fig. 457	  

13b, 14a). Moreover, the observed east-west contrasts in hurricanes and C45 hurricanes in 458	  

WNP are well predicted in HiFLOR (Fig. 14c–f). The observed contrast in the number of 459	  

intense TCs in WNP is also predicted in HiFLOR (Fig. 15d, g), although the HiFLOR test 460	  

forecasts systematically overestimate these numbers relative to observations – much like the 461	  

other HiFLOR experiments did (Figs. 3, 7). In NAT, predicted mean TC number for all storms 462	  

in 1998 is two-times larger than that in 1997, which is consistent with observations (Fig. 15c). 463	  

Moreover, HiFLOR was able to retrospectively predict the observed two-year contrasts in the 464	  

numbers of hurricanes (Fig. 15f) and C45 hurricanes (Fig. 15i). As for ENP, the observed two-465	  

year contrasts in the numbers of all storms and hurricanes are also predicted in HiFLOR (Fig. 466	  

15b,e), although HiFLOR underestimates C45 hurricanes (Fig. 15h). Generally, the observed 467	  

contrasts between 1997 and 1998 in the intense TCs are well retrospectively predicted in 468	  

HiFLOR, in both relative basin-wide frequency and in the spatial structure of TCF differences 469	  

between the two years. 470	  

 471	  

4. Summary 472	  
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 We have developed HiFLOR, a high-resolution version of the GFDL Forecaset-473	  

oriented Low Ocean Resolution model (FLOR). HiFLOR was developed from FLOR by 474	  

reducing the horizontal grid spacing of the atmosphere and land components from 50-km to 475	  

25-km mesh with only minor changes to the dynamical core physical parameterizations. Two 476	  

sets of simulations were conducted using HiFLOR: a 300-yr control climate simulation with 477	  

prescribed radiative forcing and land-use conditions representative of 1990; and restoring 478	  

experiments over 1971–2012 in which the simulated SSS and SST are restored to the 479	  

observations at 5-day or 10-day time scales. Simulated TCs are compared with those from 480	  

similar experiments conducted using FLOR. In addition, a couple of ensemble seasonal 481	  

predictions for 1997 and 1998 were performed with HiFLOR. 482	  

 In its control simulation, HiFLOR reproduces the climatological spatial distribution of 483	  

the global TCs more realistically than FLOR does. In particular, HiFLOR reduces biases in the 484	  

frequency of TC occurrence in the central Pacific, South Pacific, North Atlantic, and Indian 485	  

Ocean. The simulated distribution of TC intensity by HiFLOR is also comparable to 486	  

observations, whereas FLOR cannot simulate intense TCs. HiFLOR is able to simulate 487	  

extremely intense TCs (Categories 4 and 5) reasonably well compared to observations. The 488	  

simulated TC intensity in HiFLOR is of comparable skill to that in a high-resolution AGCM 489	  

reported in Murakami et al. (2012) and Manganello et al. (2012), and to that with double 490	  

dynamical downscaling reported in Bender et al. (2010) and Knutson et al. (2008, 2013, 2015). 491	  

However, this study represents the first global coupled climate model to successfully simulate 492	  

such intense TCs in a multi-century simulation. HiFLOR simulates reasonable structure for the 493	  

TCs, while also capturing the observed relationship between the maximum surface wind speed 494	  

and the minimum sea level pressure. The composite TC structure in HiFLOR was compared 495	  
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with FLOR and observations, and revealed that HiFLOR reasonably simulated the location of 496	  

maximum wind speed and the surface oceanic cold wake induced by the storm’s strong wind 497	  

stresses. 498	  

 Although HiFLOR appears to inherit model biases from FLOR and CM2.5 in terms of 499	  

the seasonal cycle of TC frequency, the simulated seasonal cycle has been considerably 500	  

improved in HiFLOR relative to FLOR. Comparisons between SST-restored versions of 501	  

FLOR and HiFLOR reveal that HiFLOR more skilfully simulates the interannual variation of 502	  

TC genesis frequency when compared to FLOR except for NIO and WNP. Specifically, the 503	  

SST-restored HiFLOR exhibited high correlation coefficients with the observed interannual 504	  

variations of hurricanes (r=0.77) and categories 4 and 5 hurricanes (r=0.63) in NAT. This is 505	  

the first time that a global climate model has successfully reproduced the observed year-by-506	  

year variations in category 4 and 5 hurricanes under restored-SST experiments. Both FLOR 507	  

and HiFLOR exhibit a strong 30–80-day Madden-Julian Oscillation, whose active phase 508	  

enhances TC genesis as observed, indicating potential skill in predicting TC genesis events at 509	  

intraseasonal time scales. The initial tests for retrospective seasonal forecasts for 1997/1998 510	  

TC seasons reveal that HiFLOR has substantial skills in predicting the observed contrasts 511	  

between 1997 and 1998 in terms of frequency of hurricanes and category 4 and 5 hurricanes 512	  

and their spatial distributions. 513	  

 In summary, the use of a higher-resolution atmospheric component appears to be 514	  

desirable for accurate simulation of TCs. HiFLOR can be also used for attribution studies 515	  

through idealized experiments to elucidate the contributions of anthropogenic forcing and 516	  

natural variability to the observed recent upward trend in the frequency of category 4 and 5 517	  

hurricanes (Murakami et al. 2014b). Although HiFLOR has a substantially improved TC 518	  
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climatology compared with FLOR, HiFLOR still has a substantial bias in TC frequency in the 519	  

WNP. Although, as Vecchi et al. (2014) reported, simulations of the TC climatology and 520	  

temporal variations can be substantially improved by correcting ocean biases via artificial flux 521	  

adjustments, it will ultimately be desirable to minimize these biases through continued 522	  

improvements in model formulation. 523	  
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domain in 6-hr intervals. The biases circled by dashed lines are above the 99% significance 792	  

level estimated by a bootstrap significance test (Murakami et al. 2013). 793	  
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FIG. 4 Comparisons of TC intensity. (a) Fractional ratio of annual mean TC number for the 795	  

life-time maximum surface wind speed (m s–1) simulated using FLOR (300 years, blue), 796	  

HiFLOR (300 years, red) along with observations (1979–2012, black). (b) Maximum surface 797	  

wind speed (MWS, m s–1) vs minimum SLP (MSLP, hPa) for TCs using all 6-hourly data. 798	  

Probability density functions [%] for MWS and MSLP are shown in histograms. The dashed 799	  

black curve is the observationally based regression line proposed by Atkinson and Holiday 800	  

(1977), based on observed data. Colors in (b) are same as in (a). 801	  

 802	  

FIG. 5 Composite structure for TCs. (a) and (b) Mean 10-m surface wind velocity [m s–1; 803	  

vectors], precipitation [mm day–1; shading], and sea level pressure [SLP; hPa; contours] for 804	  

the control simulations by FLOR and HiFLOR, respectively. (c) Azimuthal mean tangential 805	  

wind speed [m s–1] for FLOR (blue) and HiFLOR (red) as a function of distance from the 806	  

storm center [km]. (d)−(f) Composite daily mean SST anomaly 2 days after passages of storms 807	  

(>34 kt) relative to the average over days –12 to –2 simulated by (d) FLOR, (e) HiFLOR, and 808	  

(f) observations (SST: AVHRR, TC tracks: IBTrACS). The sample size (N), minimum SLP, 809	  

maximum precipitation (P), and maximum tangential wind speed (TW), and minimum value 810	  

in SST anomaly (MIN) in the composite are listed in each panel. Composites for (a)−(c) are 811	  

for the storms at their lifetime maximum intensity in the Northern Hemisphere, whereas those 812	  

for (d)−(f) are for the storms with V/f < 1 (i.e., slow moving or high latitude) in the all ocean 813	  

basins. 814	  
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 815	  

FIG. 6 Composite mean SST anomaly [K] for each day before and after storm passage. SST 816	  

anomaly is averaged over the domain of 100 km from the TC center relative to the average 817	  

over days –12 to –2 (i.e., center of the domain for average is fixed at the storm center at day 0). 818	  

Day 0 is when the storm reaches the track position, and positive (negative) days indicate the 819	  

day after (before) the storm has passed. Composites are made for all storms (>34 kt) with V/f 820	  

< 1 (i.e., slow moving or high latitude) in the all ocean basins. 821	  

 822	  

FIG. 7 Seasonal mean variation in TC genesis number according to observations (1979–2012, 823	  

grey bars) and simulation results by FLOR (300 years, blue lines) and HiFLOR (300 years, red 824	  

lines) for (a) NIO, (b) WNP, (c) ENP, (d) NAT, (e) SIO, and (f) SPO. Unit is mean TC 825	  

number per month. 826	  

 827	  

FIG. 8 Composites of anomaly of TC frequency of occurrence for (a)–(d) El Niño years and 828	  

(e)–(h) La Niña years during August–October yielded by (a), (e) observations (1979–2012), 829	  

(b), (f) FLOR control simulation (300 yr), (c), (g) HiFLOR control simulation (300 yr), and 830	  

(d), (h) HiFLOR restoring experiment (1971–2012, mean of 6 members). The anomalies 831	  

circled by dashed lines are above the 90% significance level estimated by a bootstrap 832	  

significance test (Murakami et al. 2013). Unit is 0.1 × number year–1. 833	  

 834	  

FIG. 9 (a) Interannual variations of annual TC genesis number in the North Atlantic according 835	  

to observations and results of ensemble SST-restored experiments with HiFLOR and FLOR 836	  

(1979–2012). The red (blue) line represents the mean of six ensemble experiments by 837	  
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HiFLOR (FLOR). Shading indicates the range of the minimum and maximum among the six 838	  

ensemble members. (b), (c) As in (a), but for TCs with hurricane intensity (>64 kt) and 839	  

categories 4 and 5 intensity (>114 kt), respectively. Dashed lines denote linear trend by the 840	  

Poisson regression. Only trends with statistical significance at 95% are shown [the Student t-841	  

test and modified Mann and Kendall test proposed by Hamed and Rao (1998)]. 842	  

 843	  

FIG. 10 Wheeler-Kiladis diagram showing zonal wavenumber-frequency power spectra of 844	  

symmetric (upper panels) and antisymmetric (bottom panels) components of OLR (shadings) 845	  

and phase derived from U850 (vectors) for (a) observations using AVHRR and NCEP1 846	  

(1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control 847	  

experiment). 848	  

 849	  

FIG. 11 Composites of TC genesis locations (red dots) superposed on anomalies of OLR 850	  

(shadings) and wind at 850hPa (vectors) during boreal summer (May–October) for each MJO 851	  

phase in (a) observations (1979–2005), (b) HiFLOR (300-yr control experiment), and (c) 852	  

FLOR (300-yr control experiment). Composites are made when the MJO index exceeds one 853	  

standard deviation. Number of days for each composite is shown in the bottom-right box. 854	  

 855	  

FIG. 12 TC genesis rate for each MJO phase for each basin. For each ocean basin, the TC 856	  

genesis rate is computed by dividing the number of generated TCs by the number of active-857	  

phase days of the MJO (as shown in Fig. 11). Then the fractional rate is normalized by the 858	  

total rates summed over all MJO phases. Black, red, and blue lines respectively show results 859	  

from observations, HiFLOR, and FLOR. 860	  
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 861	  

FIG. 13. Observed TC tracks during July–November for (a) 1997 and (b) 1998. (c), (d) As in 862	  

(a), (b), but for retrospective prediction results for the 36-ensemble member retrospective 863	  

forecast initialized on 1st July using HiFLOR. The numbers for each basin show the seasonal 864	  

mean number of TCs. TC tracks are colored according to the intensities of the TCs as 865	  

categorized by the Saffir-Simpson hurricane wind scale. Circles denote TC genesis locations. 866	  

 867	  

FIG. 14 Difference in TC frequency of occurrence between 1997 and 1998 for all storms from 868	  

(a) observations and (b) results from retrospective seasonal predictions by HiFLOR (mean of 869	  

36 members). (c), (d) As in (a), (b), but for TCs with hurricane intensity (>64 kt). (e), (f), As 870	  

in (a), (b), but for TCs with categories 4 and 5 intensity (>114 kt).  871	  

 872	  

FIG. 15 Box plots of the predicted number for all storms in (a) WNP, (b) ENP, and (c) NAT. 873	  

(d)–(f) As in (a)–(c), but for TCs with hurricane intensity (>64 kt). (g)–(i) As in (a)–(c), but 874	  

for TCs with categories 4 and 5 intensity (>114 kt). Each panel shows box plots for 1997 and 875	  

1998 using results from 36-member ensemble retrospective predictions superposed on the 876	  

observed number in triangles. The boxes represent the lower and upper quartiles, the 877	  

horizontal lines show the median value, and the dashed bars show the lowest datum still within 878	  

the 1.5 interquartile range (IQR) of the lower quartile and the highest datum still within the 1.5 879	  

IQR of the upper quartile. Outliers are denoted in circles.880	  
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Table 1 (a) Rank correlation coefficients between the observed and simulated interannual 

variability of TC genesis number in the SST restored experiments for each basin. (b, c) As in (a), 

but for TCs with hurricane maximum winds >64 kt, and intensity categories 4 and 5 (>114 kt), 

respectively. 6-member SST-restored ensemble experiments are conducted using 5-day and 10-day 

restoring timescales each for HiFLOR and FLOR. Statistical significance is highlighted according 

to the level of significance: 99%, 95%, and 90% (see footnotes). 
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FIG. 1. Simulated biases in climatological mean SST [K] relative to HadISST1.1 during all 

seasons for (a) FLOR and (b) HiFLOR. (c), (d) As in (a), (b), but for precipitation [mm day–1] 

relative to CMAP. 
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FIG. 2. Global distribution of TC tracks during all seasons for 300-year control simulation by (a) 

FLOR, (b) HiFLOR, and (d) observations from 1979 to 2012. The numbers for each basin show 

the annual mean number of TCs. TC tracks are colored according to the intensities of the TCs as 

categorized by the Saffir-Simpson hurricane wind scale [e.g., tropical depression (TD), tropical 

storms (TSs), and C1–C5. 
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FIG. 3 Model bias in TC frequency of occurrence in the 300-yr control experiments by (a) 

FLOR, (b) HiFLOR, and (c) restoring experiments by HiFLOR (1971–2012, mean of 6 

members). The TC frequency of occurrence is defined as a total count of TC position in each 

analyzed 2.5° × 2.5°degree grid cell with 9-point weighting smoothing within the global 

domain in 6-hr intervals. The biases circled by dashed lines are above the 99% significance 

level estimated by a bootstrap significance test (Murakami et al. 2013). 
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FIG. 4 Comparisons of TC intensity. (a) Fractional ratio of annual mean TC number for the life-time 

maximum surface wind speed (m s–1) simulated using FLOR (300 years, blue), HiFLOR (300 years, 

red) along with observations (1979–2012, black). (b) Maximum surface wind speed (MWS, m s–1) vs 

minimum SLP (MSLP, hPa) for TCs using all 6-hourly data. Probability density functions [%] for 

MWS and MSLP are shown in histograms. The dashed black curve is the observationally based 

regression line proposed by Atkinson and Holiday (1977), based on observed data. Colors in (b) are 

same as in (a).  
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FIG. 5 Composite structure for TCs. (a) and (b) Mean 10-m surface wind velocity [m s–1; vectors], 

precipitation [mm day–1; shading], and sea level pressure [SLP; hPa; contours] for the control 

simulations by FLOR and HiFLOR, respectively. (c) Azimuthal mean tangential wind speed [m s–1] 

for FLOR (blue) and HiFLOR (red) as a function of distance from the storm center [km]. (d)−(f) 

Composite daily mean SST anomaly 2 days after passages of storms (>34 kt) relative to the average 

over days –12 to –2 simulated by (d) FLOR, (e) HiFLOR, and (f) observations (SST: AVHRR, TC 

tracks: IBTrACS). The sample size (N), minimum SLP, maximum precipitation (P), and maximum 

tangential wind speed (TW), and minimum value in SST anomaly (MIN) in the composite are listed 

in each panel. Composites for (a)−(c) are for the storms at their lifetime maximum intensity in the 

Northern Hemisphere, whereas those for (d)−(f) are for the storms with V/f < 1 (i.e., slow moving 

or high latitude) in the all ocean basins.  
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FIG. 6 Composite mean SST anomaly [K] for each day before and after storm passage. SST anomaly 

is averaged over the domain of 100 km from the TC center relative to the average over days –12 to –2 

(i.e., center of the domain for average is fixed at the storm center at day 0). Day 0 is when the storm 

reaches the track position, and positive (negative) days indicate the day after (before) the storm has 

passed. Composites are made for all storms (>34 kt) with V/f < 1 (i.e., slow moving or high latitude) 

in the all ocean basins. 
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FIG. 7 Seasonal mean variation in TC genesis number according to observations (1979–2012, 

grey bars) and simulation results by FLOR (300 years, blue lines) and HiFLOR (300 years, 

red lines) for (a) NIO, (b) WNP, (c) ENP, (d) NAT, (e) SIO, and (f) SPO. Unit is mean TC 

number per month. 
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FIG. 8 Composites of anomaly of TC frequency of occurrence for (a)–(d) El Niño years and (e)–(h) 

La Niña years during August–October yielded by (a), (e) observations (1979–2012), (b), (f) FLOR 

control simulation (300 yr), (c), (g) HiFLOR control simulation (300 yr), and (d), (h) HiFLOR 

restoring experiment (1971–2012, mean of 6 members). The anomalies circled by dashed lines are 

above the 90% significance level estimated by a bootstrap significance test (Murakami et al. 2013). 

Unit is 0.1 × number year–1. 
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FIG. 9 (a) Interannual variations of annual TC genesis number in the North Atlantic 

according to observations and results of ensemble SST-restored experiments with HiFLOR 

and FLOR (1979–2012). The red (blue) line represents the mean of six ensemble experiments 

by HiFLOR (FLOR). Shading indicates the range of the minimum and maximum among the 

six ensemble members. (b), (c) As in (a), but for TCs with hurricane intensity (>64 kt) and 

categories 4 and 5 intensity (>114 kt), respectively. Dashed lines denote linear trend by the 

Poisson regression. Only trends with statistical significance at 95% are shown [the Student t-

test and modified Mann and Kendall test proposed by Hamed and Rao (1998)]. 
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FIG. 10 Wheeler-Kiladis diagram showing zonal wavenumber-frequency power spectra of 

symmetric (upper panels) and antisymmetric (bottom panels) components of OLR (shadings) 

and phase derived from U850 (vectors) for (a) observations using AVHRR and NCEP1 

(1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control 

experiment). 
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FIG. 11 Composites of TC genesis locations (red dots) superposed on anomalies of OLR (shadings) and 

wind at 850hPa (vectors) during boreal summer (May–October) for each MJO phase in (a) observations 

(1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control experiment). 

Composites are made when the MJO index exceeds one standard deviation. Number of days for each 

composite is shown in the bottom-right box. 
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FIG. 12 TC genesis rate for each MJO phase for each basin. For each ocean basin, the TC 

genesis rate is computed by dividing the number of generated TCs by the number of active-

phase days of the MJO (as shown in Fig. 11). Then the fractional rate is normalized by the 

total rates summed over all MJO phases. Black, red, and blue lines respectively show results 

from observations, HiFLOR, and FLOR. 
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FIG. 13. Observed TC tracks during July–November for (a) 1997 and (b) 1998. (c), (d) As in (a), 

(b), but for retrospective prediction results for the 36-ensemble member retrospective forecast 

initialized on 1st July using HiFLOR. The numbers for each basin show the seasonal mean number 

of TCs. TC tracks are colored according to the intensities of the TCs as categorized by the Saffir-

Simpson hurricane wind scale. Circles denote TC genesis locations. 
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FIG. 14 Difference in TC frequency of occurrence between 1997 and 1998 for all storms from 

(a) observations and (b) results from retrospective seasonal predictions by HiFLOR (mean of 

36 members). (c), (d) As in (a), (b), but for TCs with hurricane intensity (>64 kt). (e), (f), As 

in (a), (b), but for TCs with categories 4 and 5 intensity (>114 kt). 
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FIG. 15 Box plots of the predicted number for all storms in (a) WNP, (b) ENP, and (c) NAT. 

(d)–(f) As in (a)–(c), but for TCs with hurricane intensity (>64 kt). (g)–(i) As in (a)–(c), but 

for TCs with categories 4 and 5 intensity (>114 kt). Each panel shows box plots for 1997 and 

1998 using results from 36-member ensemble retrospective predictions superposed on the 

observed number in triangles. The boxes represent the lower and upper quartiles, the 

horizontal lines show the median value, and the dashed bars show the lowest datum still within 

the 1.5 interquartile range (IQR) of the lower quartile and the highest datum still within the 1.5 

IQR of the upper quartile. Outliers are denoted in circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 


