# Simulation and Prediction of Category 4 and 5 Hurricanes in the High-Resolution GFDL HiFLOR Coupled Climate Model

H. Murakami<sup>1,2</sup>, G. A. Vecchi<sup>1,2</sup>, S. Underwood<sup>3</sup>, T. Delworth<sup>1,2</sup>, A.T. Wittenberg<sup>1</sup>, W. Anderson<sup>1</sup>, J. -H. Chen<sup>1</sup>, R. Gudgel<sup>1</sup>, L. Harris<sup>1</sup>, S. -J. Lin<sup>1</sup>, and F. Zeng<sup>1</sup>

<sup>1</sup>National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

<sup>2</sup>Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA

<sup>3</sup>Engility, NOAA/GFDL, Princeton, NJ, USA

Submitted to the Journal of Climate on 20 March 2015

Abstract

| 1<br>2 | A new high-resolution Geophysical Fluid Dynamics Laboratory (GFDL) coupled model                  |
|--------|---------------------------------------------------------------------------------------------------|
| 3      | (HiFLOR) has been developed and used to investigate potential skill in simulation and             |
| 4      | prediction of tropical cyclone (TC) activity. HiFLOR comprises of high-resolution (~25-km         |
| 5      | mesh) atmosphere and land components and a more moderate-resolution (~100-km mesh) sea            |
| 6      | ice and ocean components. HiFLOR was developed from the Forecast Oriented Low                     |
| 7      | Resolution Ocean model (FLOR) by decreasing the horizontal grid spacing of the atmospheric        |
| 8      | component from 50-km to 25-km, while leaving most of the sub-gridscale physical                   |
| 9      | parameterizations unchanged. Compared with FLOR, HiFLOR yields a more realistic                   |
| 10     | simulation of the structure, global distribution, and seasonal and interannual variations of TCs, |
| 11     | and a comparable simulation of storm-induced cold wakes and TC-genesis modulation                 |
| 12     | induced by the Madden Julian Oscillation (MJO). Moreover, HiFLOR is able to simulate and          |
| 13     | predict extremely intense TCs (categories 4 and 5) and their interannual variations, which        |
| 14     | represents the first time a global coupled model has been able to simulate such extremely         |
| 15     | intense TCs in a multi-century simulation, sea surface temperature restoring simulations, and     |
| 16     | retrospective seasonal predictions.                                                               |

## 17 **1. Introduction**

18 Recent advances in dynamical modeling and computational resources have enabled 19 climate simulation, prediction, and projection using high-resolution atmospheric general 20 circulation models (AGCMs: e.g., Walsh et al. 2015). A number of numerical modeling 21 studies have reported that increasing resolution in an atmospheric model leads to improved 22 simulation of intense tropical cyclones (TCs). For example, Oouchi et al. (2006) and 23 Murakami et al. (2012) demonstrated a realistic global distribution of intense TCs in multi-24 decadal simulations using a 20-km-mesh Meteorological Research Institute (MRI) AGCM. 25 Zhao et al. (2009) also showed a realistic simulation of TCs in multi-decadal simulations using 26 a 50-km mesh Geophysical Fluid Dynamics Laboratory (GFDL) High-Resolution 27 Atmospheric Model (HiRAM). Zhao et al. (2010) showed skill in retrospective seasonal 28 predictions of TC frequency in a number of basins using the 50-km version of HiRAM. Chen 29 and Lin (2011, 2013) conducted retrospective seasonal forecasts for hurricanes using a 25-km 30 mesh HiRAM, revealing a remarkable correlation of 0.96 between observed and the simulated TC counts over the 1991–2010 period. Manganello et al. (2012) reported realistic simulations 31 32 of global TC frequency and intensity with the European Center for Medium-Range Weather 33 Forecasts (ECMWF) Integrated Forecast System (IFS) at 10-km horizontal resolution. 34 Rathmann et al. (2013) reported that a 25-km-mesh EC-earth model outperformed lower-35 resolution models, in terms of global TC distribution and the interannual variation of TC 36 genesis frequency. Yamada (2010) conducted future projections using a 14-km-mesh 37 atmospheric model (NICAM), representing the first time that a nonhydrostatic global 38 atmospheric model had been used for climate projections. While the atmospheric resolution 39 required for reliable future climate projections of TCs has not yet been determined, a number

40 of studies have reported that a 60-km mesh may be suitable for such projections (Murakami
41 and Sugi 2010; Walsh et al. 2013).

On the other hand, AGCMs lack in physical accuracy at the air-sea interface that is 42 43 known to be crucial for TC intensity and development (Emanuel 2003; Hasegawa et al. 2007; Knutson et al. 2001). Sea surface temperature (SST) generally decreases along TC tracks due 44 45 to cold-water wakes induced by wind-induced ocean mixing (Lloyd and Vecchi 2011), which 46 serves to weaken TC intensity and suppress subsequent TC genesis (Schade and Emanuel 47 1999; Bender and Ginis 2000; Knutson et al. 2001). Because this negative feedback is neglected in AGCMs, atmosphere and ocean coupled models (CGCMs) are preferable to be 48 49 used for sensitivity studies, predictions, and climate projections of TC activity. However, 50 because a high-resolution CGCM is still computationally expensive, most state-of-the-art 51 CGCMs incorporate a 50-200-km mesh atmosphere component, which is unable to simulate 52 the most intense TCs. A relatively smaller number of studies (Gualdi et al. 2008, Bell et al. 53 2013, Kim et al. 2014) have used CGCMs to explore the sensitivity of tropical cyclone activity 54 to changes in greenhouse gases. Therefore, the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (IPCC 2013) relied on principally on results from high-55 resolution AGCMs (regional and global) rather than CGCMs for future projections of changes 56 57 in TC statistics [see Table 14.SM.4a in IPCC (2013)]. High-resolution CGCMs have been 58 shown to be potentially useful tools for the subseasonal to seasonal prediction of hurricane 59 activity (Vitart 2007; Vecchi et al. 2014; Camp et al. 2015; Xiang et al. 2015.a, b); though 60 these results have focused principally on tropical cyclone or hurricane frequency, rather than intense tropical cyclones. Dynamical (e.g., Knutson et al. 2015) or statistical (e.g., Zhao and 61 62 Held 2010; Villarini and Vecchi 2013) refinements are potential mechanisms to extract

63 intensity information from GCMs that do not explicitly simulate the most intense hurricanes.

64 We here focus, however, on a global CGCM that is able to explicitly simulate intense tropical65 cyclones.

66 In this study, we develop a high-resolution CGCM (HiFLOR), with an atmospheric horizontal grid spacing of ~25 km and oceanic horizontal grid spacing of ~100 km. This high-67 68 resolution CGCM is developed from a more modest (~50 km) high-resolution CGCM (FLOR) 69 (Vecchi et al. 2014) by reducing the horizontal grid spacing of the atmosphere and land components to  $\sim 25$  km. The main objective of this study is to elucidate how much influence 70 71 the horizontal resolution of the atmospheric component exerts on the simulation and seasonal 72 prediction of TCs, with a particular focus on the most intense (Category 4–5) TCs. 73 The remainder of this paper is organized as follows. Section 2 describes the models, 74 experimental design, and data used in this study. Section 3 assesses the performance of

simulations and predictions by the high-resolution CGCM compared with the moderate-

resolution CGCM. Finally, Section 4 provides a summary of the results.

77

### 78 **2. Methods**

#### 79 *a. Models and simulation settings*

80 The models used in this study comprise the GFDL Forecast-oriented Low Ocean

81 Resolution model (FLOR; Vecchi et al. 2014; Jia et al. 2015) and a high atmospheric-

82 resolution version of FLOR (HiFLOR). FLOR is comprises 50-km mesh atmosphere and land

- components, and 100-km mesh sea ice and ocean components. The atmosphere and land
- components of FLOR are taken from the Coupled Model version 2.5 (CM2.5; Delworth et al.
- 85 2012) developed at GFDL, whereas the ocean and sea ice components are based on the GFDL

86 Coupled Model version 2.1 (CM2.1; Delworth et al. 2006; Wittenberg et al. 2006; 87 Gnanadesikan et al. 2006). CM2.5 substantially improves near-surface and atmospheric 88 climate simulation relative to CM2.1 (Delworth et al. 2012; Doi et al. 2012; Delworth and 89 Zeng 2012) as well as tropical cyclones (Kim et al. 2014). The details of FLOR and its 90 simulation performance are documented in Vecchi et al. (2014), Jia et al. (2015), and 91 Krishnamurthy et al. (2015a). FLOR has been used to understand the change, variability and 92 predictability of global and regional climate, and extremes (Vecchi et al. 2014; Msadek et al. 2014; Winton et al. 2014; Jia et al. 2015; Yang et al. 2015; Krishnamurthy et al. 2015.a,b; 93 94 Delworth et al. 2015; Zhang and Delworth 2015); real-time seasonal predictions with FLOR 95 are made every month through the North American Multi-Model Experiment for seasonal 96 prediction (NMME; Kirtman et al. 2014). 97 HiFLOR was developed from FLOR by reducing the horizontal grid spacing of the cubed sphere (Putnam and Lin 2007) atmosphere and land components to a 25-km mesh 98 99 (Chen and Lin 2011, 2013); physical processes and ocean component were inherited from

100 FLOR with only minor changes to the dynamical core and physical parameterizations. In

102 the model, but kept the "physics" time-step (time-step of the convection, cloud an radiation

increasing the dynamical core atmospheric resolution, we halved the dynamical time-step of

schemes in the model) the same as FLOR. Among the adjustments, HiFLOR applies a

104 reduction in ocean roughness under the intense wind speeds such as TCs (Moon et al. 2004),

as implemented in Chen and Lin (2013), which is primarily relevant to the simulation of

106 intense TC that are not present in the FLOR model. However, we have performed a

107 preliminary investigation of dependency of this parameterization on TC intensity, revealing

that the effect is small.

101

109 We generate 300-year control climate simulations using both FLOR and HiFLOR by prescribing radiative forcing and land-use conditions representative of the year 1990. The 110 control simulations are so-called "free runs" in which flux adjustments (Magnusson et al. 111 112 2013; Vecchi et al. 2014) are not applied. Therefor the FLOR and HiFLOR simulations have biases in their sea surface temperature (SST) climatology; as noted in Vecchi et al. (2014), 113 114 these SST biases can be a large contributor to biases in the TC climatology and interannual 115 variability. Note that because the control runs are free runs, simulated interannual climate (and 116 TC) variations will not be in phase with those in observations. 117 We also conducted additional experiments in which simulated sea surface salinity 118 (SSS) and SST are restored to the observational estimates over 1971–2012. The simulated SSS 119 was restored to the monthly climatology from the World Ocean Atlas 2005 (Antonov et al. 120 2006), while SST was restored to the interannually-varying monthly mean value derived from 121 the UK Met Office Hadley Centre SST product (HadISST1.1; Rayner et al. 2003). To test 122 sensitivity of restoring timescale, the restoring experiments are performed with either a 5-day 123 or a 10-day restoring time scale with three different initial conditions, thereby yielding 6 124 ensemble simulations each for FLOR and HiFLOR. The restoring experiments, by bringing model SST into closer alignment with that observed, should have their climate variations 125 126 phased with those observed.

To provide a preliminary assessment of the predictability of intense TCs in HiFLOR, we conducted a pair of 36-member ensemble retrospective seasonal forecasts initialized on July 1<sup>st</sup> 1997 and 1998. Following Vecchi et al. (2014), 10-month duration predictions are performed after initializing the climate model to observationally constrained conditions. The 36-member initial conditions for ocean and sea ice components were taken from a twelve-

132 member coupled ensemble Kalman filter (EnKF) data assimilation system with CM2.1. 133 Meanwhile, initial conditions for atmosphere and land components were taken from three arbitrary years in the 1990 control simulations with HiFLOR. Therefore, the predictability in 134 135 these experiments comes entirely from the ocean and sea ice, and may be thought of as a lower bound on the potential prediction skill of a model, because predictability could also arise from 136 137 atmospheric (particularly stratospheric) and land initialization. Combining the twelve 138 ocean/sea ice initial conditions with the three land/atmosphere initial conditions yields 36 139 ensemble members.

140

141 b. Observational datasets

142 The observed TC "best-track" data were obtained from the International Best Track 143 Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010) and used to evaluate the TC 144 simulations in the control and restoring experiments, and seasonal predictions. The dataset, 145 which consists of best-track data compiled by the National Hurricane Center (NHC) and the Joint Typhoon Warning Center (JTWC), contains historical TC information regarding the 146 147 locations of the centers of cyclones, cyclone intensities (maximum 1-minute surface wind speeds), and sea level pressures at 6-hourly intervals. We only used TCs with tropical storm 148 149 strength or stronger (i.e., TCs possessing 1-min sustained surface winds of 35 kt or greater) 150 during the period 1965–2013. To compare simulated cold wakes induced by TCs with 151 observations (Section 3.b), we used the high resolution SST analysis product of National 152 Oceanic and Atmospheric Administration (NOAA) Optimal Interpolation (OI) 1/4 Degree Daily Sea Surface Temperature Analysis (OISST Version 2; Reynolds et al. 2007) for the 153 154 period 1982–2012. For evaluation of simulated intraseasonal variations (Section 3.d), we used

155 daily Outgoing Longwave Radiation (OLR) data from the Advanced Very High Resolution 156 Radiometer (AVHRR) (Liebmann and Smith 1996) and upper- (200 hPa) and lower- (850 157 hPa) tropospheric zonal winds from the National Centers for Environmental Prediction/ 158 National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996) for the period 1979–2005. To evaluate simulated mean SSTs, HadISST1.1 is used during the 159 160 period 1979–2013. For the evaluation of simulated mean precipitation, the Climate Prediction Center Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997) is used for the period 161 162 1979-2013. 163 164 c. Detection algorithm for tropical cyclones

Model-generated TCs were detected directly from 6-hourly output using the following tracking scheme in which sea level pressure (SLP) and the temperature anomaly ( $t_a$ ) averaged between 300 and 500 hPa are mainly used.

168 (1) Local minima in a smoothed SLP field are detected. The location of the center is169 fine-tuned by fitting a biquadratic to the SLP field and placing the center at its minimum.

170 (2) Closed contours of some specified interval dp (here 2 hPa) are found about each 171 center. The  $N^{\text{th}}$  contour is identified as the contiguous region surrounding a low of central 172 pressure P, with pressures less than  $dp \times N + P$ , as found by a "flood fill" algorithm. Hence, 173 the contours need not be circular; however, there is a maximum distance of 3,000 km that the 174 algorithm will search away from the candidate low center.

(3) If the above closed contours are found, the low is counted as a storm center at that
time. The tracker then tries to find as many closed contours about that low that it can find
without going too far from the low center or running into contours claimed by another low.

178 The maximum 10-m wind inside the set of closed contours is considered to be the maximum179 wind speed for the storm at that time.

180 (4) Warm cores are found through a process similar to the above: closed 2K contours 181 for HiFLOR (1K for FLOR) are sought out about the maximum  $t_a$  within a storm's identified 182 contours, not more than 1° apart from the low center. This contour must have a radius less 183 than 3° in distance. If no such core is found, the center is not rejected, but is simply marked as 184 not being a warm-core low.

185 (5) Storm centers are connected into a track by taking a low center at time T - dt, 186 extrapolating its motion forward dt, and then looking for storms within 750 km. Deeper lows 187 get first choice of track.

(6) Final TCs are selected by considering satisfactions of duration conditions asfollows.

a. At least 72 hours of total detection lifetime.

b. At least 48 cumulative (not necessarily consecutive) hours of having a warm core.

192 c. At least 36 consecutive hours of a warm core plus winds greater than  $17.5 \text{ m s}^{-1}$ .

d. The start (last) time of 24 consecutive hours of a warm core plus winds is assigned

to genesis (cyclolysis) time. Location of TC genesis should be equatorward of 40°N.

- As a sensitivity test, we also applied different tracking schemes from Zhao et al. (2009)and Murakami et al. (2012), and found similar results.
- 197 TC positions are counted for each  $2.5^{\circ} \times 2.5^{\circ}$  grid box within the global domain at 6-198 hour intervals. The total count for each grid box is defined as the frequency of occurrence of 199 TCs (TCF). The frequency fields are smoothed using a 9-point moving average weighted by 200 distance from the center of the grid box.

201 The analyses considered total global (GL) results, and results for seven ocean basins: 202 North Indian Ocean (NIO); western North Pacific (WNP); eastern North Pacific (ENP); North 203 Atlantic (NAT); South Indian Ocean (SIO); and South Pacific Ocean (SPO) (see Fig. 2 for 204 regional boundaries).

205

#### **3. Results** 206

207 a. Tropical cyclone distributions

Fig.1 208 Figure 1a, b compares simulated biases (relative to HadISST1.1) of climatological 209 mean SST for 300-yr simulations of FLOR and HiFLOR. Simulated biases of FLOR are also documented in Vecchi et al. (2014). Overall, the spatial patterns of SST biases in HiFLOR are 210 211 similar to those in FLOR: both models show substantial cold biases in the NAT and WNP, 212 although HiFLOR shows slightly larger cold biases in the tropics and SIO. However, HiFLOR 213 improves warm bias in ENP and eastern tropical Atlantic. The models also share similar bias 214 patterns in the mean precipitation field (Fig. 1c, d), although the amplitude of the biases is 215 slightly reduced in HiFLOR relative to FLOR, especially in the central Pacific. However, 216 HiFLOR appears to have an increase wet bias over the equatorial Atlantic. Overall, the large-217 scale climate in HiFLOR and FLOR are relatively comparable. 218 Figure 2 compares observed and simulated distributions of TC tracks during all 219 seasons. The annual mean TC number for each basin is also shown in Fig. 2. Compared with 220 observations (Fig. 2c), HiFLOR (Fig. 2b) reproduces extremely intense TCs of categories 4 221 and 5 (C4 and C5, respectively) more realistically than FLOR (Fig. 2a). For example, HiFLOR 222 simulates concentrated C5 storms in the Philippine Sea as seen in observations. Although 223 FLOR also captures the concentrated location of intense TCs, FLOR critically underestimates

Fig.2

224 TC intensity due to low horizontal resolution: simulated maximum TC intensity around the 225 Philippine Sea is at most category 2. The simulated annual mean TC number in HiFLOR is improved in the NAT (SIO) in which FLOR critically underestimates (overestimates) TC 226 227 number. However, the simulated TC numbers in WNP and ENP by FLOR are much closer to 228 observations than HiFLOR. 229 Figure 3a, b compares the spatial distributions of model biases in TCF for the control Fig.3 230 simulations. Both models generally show similarities in their biases: overestimates in the WNP, central Pacific, and SIO, and underestimates in the eastern ENP and NAT. Note that 231 232 HiFLOR shows a larger positive bias in WNP than FLOR, as indicated by the overestimation of TC genesis number (Fig. 2). However, HiFLOR reduces the biases in NIO, SIO, SPO, 233 234 central Pacific, and NAT, leading to improved simulation of the global distribution of TCs by 235 HiFLOR. This result indicates that the high-resolution model is desirable for accurate 236 simulations of the TC spatial distributions, which is also consistent with previous studies 237 (Murakami and Sugi 2010; Manganello et al. 2012; Walsh et al. 2013; and Murakami et al. 238 2014a).

239

240 *b. Tropical cyclone intensity and composite structure* 

As indicated in Section 3a, HiFLOR can simulate intense TCs of C4 and C5. Figure 4
shows more detailed comparisons of TC intensity between FLOR and HiFLOR, revealing that

Fig.4

243 HiFLOR improves lifetime maximum intensity (Fig. 4a) significantly relative to FLOR.

Although HiFLOR still underestimates C5 TCs (i.e.,  $>69 \text{ m s}^{-1}$ ) compared with observations,

the probability distribution in HiFLOR is closer to observations than in FLOR. The simulated

relationship between maximum wind speed (MWS) and minimum SLP (MSLP) using all the

| 247 | 6-hr TC data is also investigated in Fig. 4b. Also shown in the figure is Atkinson and                               |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 248 | Holiday's (1977) nonlinear regression curve derived from observations in the WNP (dashed                             |
| 249 | black curve). HiFLOR can simulate more intense TCs than FLOR while keeping the observed                              |
| 250 | MWS-MSLP relationship, indicating that the simulated TC structure by HiFLOR is reasonable.                           |
| 251 | Figure 5a–c compares composite TC structure between FLOR and HiFLOR simulated Fig.5                                  |
| 252 | through the 300-yr control simulations. Composite structures are made for the TCs at their                           |
| 253 | lifetime maximum intensity in the Northern Hemisphere. HiFLOR simulates more intense SLP                             |
| 254 | minima, and more intense wind speeds and precipitation than in FLOR. Both models show                                |
| 255 | that the maximum tangential wind speed is located less than 100 km from the storm center                             |
| 256 | (Fig. 5c), which is consistent with observations (Frank 1984; Murakami et al. 2008).                                 |
| 257 | Figure 5d-f compares composite structures of SST cooling in the wake of TCs.                                         |
| 258 | Following Lloyd and Vecchi (2011), we used daily mean SST anomaly relative to monthly                                |
| 259 | climatology. SST anomalies at 2 days after storm passages relative to the average over 2 to 12                       |
| 260 | days before the storm passages were used for the input data. As discussed in Lloyd and Vecchi                        |
| 261 | (2011), surface cooling depends on translation speed and latitude. Thus, we consider                                 |
| 262 | nondimensional parameter of V/f where V is translation speed $[m s^{-1}]$ and f is the Coriolis                      |
| 263 | parameter [s <sup><math>-1</math></sup> ]. V/f is normalized with 100 km (i.e., 1 unit is 100 km). V/f=1 divides all |
| 264 | storms equally. Lloyd and Vecchi (2011) found that surface cooling is larger in V/f <1 (i.e.,                        |
| 265 | slow-moving or high-latitude) storms than in V/f >1 (i.e., fast-moving or low-latitude) storms.                      |
| 266 | Thus, composites are made for all storms (>34 kt) with $V/f < 1$ in this study.                                      |
| 267 | Both FLOR (Fig. 5d) and HiFLOR (Fig. 5e) recover the structure of the observed cold                                  |
| 268 | SST wake (Fig. 5f). The cold wake is similar between HiFLOR and FLOR, despite the                                    |
| 269 | stronger wind speeds in HiFLOR (e.g., Fig. 4). This may be because most of the samples used                          |

| 270 | for the composites are from relatively weaker phases of the storm lifetime. When composites  |
|-----|----------------------------------------------------------------------------------------------|
| 271 | are made for each TC intensity category, both FLOR and HiFLOR simulate larger surface        |
| 272 | cooling as TC intensity increases (figure not shown). Lloyd and Vecchi (2011) reported that  |
| 273 | the observed cold-wake is nonmonotonic: stronger cyclones produces more cooling up to C2     |
| 274 | but less or approximately equal cooling for C3–5 TCs. Although Lloyd et al. (2011) reported  |
| 275 | that this nonmonotonicity is well reproduced by GFDL Hurricane Forecast Model (GHM;          |
| 276 | Kurihara et al., 1998; Bender et al., 2007), HiFLOR could not reproduce this nonmonotonicity |
| 277 | (i.e., the HiFLOR cold-wake is stronger in C3–5 TCs than in C2 TCs). The reason for this     |
| 278 | discrepancy is under investigation.                                                          |
| 279 | Figure 6 shows the composite mean SST anomaly for each day before and after storm            |
| 280 | passage, indicating that simulated cold wake is generally restored to a steady condition 30  |
| 281 | days after storm passage, which is consistent with observations (black line). Figure 6 also  |
| 282 | indicates that the observed SST does not return to the pre-cyclone condition: SST anomaly    |
| 283 | remains -0.2K at 30 days after storm passage, which is consistent with the previous study    |
| 284 | (Lloyd and Vecchi 2011). This irreversible surface cooling is also well simulated by both    |
| 285 | models.                                                                                      |

Fig.6

Fig.7

286

### 287 c. Seasonal variations

Figure 7 compares seasonal variation of TC genesis frequency between FLOR and HiFLOR. Although simulated biases in both models are similar to those for CM2.5 as shown in Kim et al. (2014), HiFLOR simulates a more reasonable seasonal cycle of TC genesis frequency. For example, the peak month of TC genesis frequency is improved in the WNP and ENP compared with FLOR. Over the NIO (Fig. 7a), FLOR underestimates (overestimates) TC

| 293 | in pre-monsoon (post-monsoon) season, whereas HiFLOR improves these biases. Although             |
|-----|--------------------------------------------------------------------------------------------------|
| 294 | simulated annual mean TC number in WNP appears to be better in FLOR than in HiFLOR               |
| 295 | (Fig. 2), FLOR underestimates TC number during July-September, whereas HiFLOR                    |
| 296 | simulates reasonable frequency in August and September. Simulated seasonal variations of TC      |
| 297 | genesis frequency in the Southern Hemisphere are mostly identical between the models. The        |
| 298 | above improvements in HiFLOR relative to FLOR (or CM2.5) are consistent with the previous        |
| 299 | work of Murakami and Sugi (2010), who noted that increasing horizontal resolution leads to       |
| 300 | improved seasonal variation of TC frequency for most ocean basins.                               |
| 301 |                                                                                                  |
| 302 | d. Interannual variation                                                                         |
| 303 | The El Niño-Southern Oscillation (ENSO) is one of the primary drivers of interannual             |
| 304 | variations in TC activity (Lander 1994; Chen et al. 1998; Wang and Chan 2002; Wu et al.          |
| 305 | 2004; Camargo and Sobel 2005), and a fundamental source of interannual TC predictability         |
| 306 | (Vecchi et al. 2014). Figure 8 compares simulated composite anomalies of TCF for each warm Fig.8 |
| 307 | (El Niño) and cold (La Niña) phase of ENSO during August-October (ASO). Here, we                 |
| 308 | computed SST averaged over the Niño-3 region (5°S-5°N, 90°W -150°W) and Niño-4 region            |
| 309 | (5°S–5°N, 160°E–150°W) for each year, and the anomaly is computed by subtracting the             |
| 310 | climatological mean value. El Niño (La Niña) years correspond to years in which the Niño-3       |
| 311 | or Niño-4 SST anomalies exceed one (minus one) standard deviation.                               |
| 312 | The observations (Fig. 8a, e) reveal marked southeast-northwest contrast in TCF in the           |
| 313 | WNP as reported in Wang and Chan (2002). Overall, both FLOR (Fig. 8b, f) and HiFLOR              |
| 314 | (Fig. 8c, g) faithfully reproduce the contrasting features. However, during El Niño (La Niña)    |
| 315 | years, the simulated peak of positive (negative) anomalies in FLOR extends further east of the   |
|     |                                                                                                  |

316 dateline in the Pacific relative to observations. Simulated location of peak in positive anomaly 317 in WNP during El Niño years is also closer to observations in HiFLOR (Fig. 8c) than in FLOR 318 (Fig. 8b). In addition, during El Niño years, the inhabitation of TCF in ENP is more 319 pronounced in FLOR than HiFLOR. The above discrepancies between FLOR and observations are documented in Vecchi et al. (2014) and Krishnamurthy et al. (2015b). They 320 321 attribute those inconsistencies to a stronger ENSO in FLOR than observed. Indeed, the 322 simulated standard deviation of the Niño-3.4 index is 1.5K, 1.0K and 0.8K in FLOR, HiFLOR, 323 and observations, respectively, revealing that the biases in ENSO amplitude are reduced in 324 HiFLOR. 325 During La Niña years, both models show positive anomalies in the ENP (Fig. 8f, g), 326 whereas observations show negative anomalies (Fig. 8e). Krishnamurthy et al. (2015b) 327 reported that in FLOR, La Niña reduces the number of days with strong vertical wind shear 328 and the location of the reduction is co-located with the main TC genesis region in ENP, 329 leading to opposite relation between La Niña and TCF anomaly in FLOR compared to 330 observations. Although sign of anomaly is different from observations, the bias of positive 331 anomaly in ENP during La Niña years is reduced in HiFLOR. Because the control simulations by FLOR and HiFLOR are free CGCM runs, their 332 333 simulated year-by-year TC variations are independent of the variations in observations. Here, 334 we conducted additional SSS and SST restoring ensemble experiments, in which the simulated 335 SST is restored to interannually-varing observations at 5-day timescale with three different 336 initial conditions. To test sensitivity of restoring timescale and increase ensemble size, a 337 parallel set of experiments with 10-day restoring time-scale is also applied, thereby yielding 6 338 ensemble members in total for each model (see Methods section). The difference in TC

339 simulation between 5-day and 10-day restoring time scales was small for both FLOR and 340 HiFLOR (figure not shown), so we treat all six members as a single population from each 341 model. Figure 9a compares interannual variation of TC genesis number in the NAT between Fig.9 342 FLOR (blue) and HiFLOR (red). HiFLOR simulates the observed interannual variations, as well as the long-term linear trend better than FLOR. These results are consistent with previous 343 344 studies of Murakami and Sugi (2010), Manganello et al. (2012), Strachan et al. (2013), and 345 Rathmann et al. (2013), who noted that increasing horizontal resolution yields higher skills in 346 simulating observed interannual variation of TC frequency. 347 Table 1 summarizes rank correlations between simulations and observations. Overall, Tab.1 348 HiFLOR outperforms FLOR for both all storms (Table 1a) and hurricanes (Table 1b) except 349 for NIO and WNP. Significant improvements can be seen in the variation of hurricanes (Fig. 350 9b): HiFLOR reproduces the observed interannual variation and trend of hurricane count, whereas FLOR does not reproduce them as skilfully. HiFLOR yields higher correlations for 351 352 hurricanes than those for all TCs in the ENP, NAT, and SIO (Table 1a, b). A number of 353 previous studies have shown similarly high correlations with observed TC numbers in the 354 NAT, using similar experimental settings (e.g., LaRow et al. 2008; Zhao et al. 2009; 355 Murakami and Wang et al. 2010; Strachan et al. 2013). Specifically, Knutson et al. (2008) 356 showed a high correlation of simulated and observed hurricane counts in the NAT, using a 357 regional model with restoring of both the SST and large-scale fields toward observations. 358 However, the present study with HiFLOR is the first to show such high correlations for C4 359 and C5 hurricanes with a global coupled model (Fig. 9c and Table 1c). These results highlight potential predictability of extremely intense TCs if the SSTs can be predicted accurately. 360

| 361 | Because the SST biases are much smaller in the restoring experiments, these                     |
|-----|-------------------------------------------------------------------------------------------------|
| 362 | experiments allow us to assess the extent to which simulated biases in the control CGCM         |
| 363 | simulations arise from biases in SST as opposed to the biases in the atmosphere component.      |
| 364 | Figure 3c shows model biases in TCF in the restoring experiments in HiFLOR. Compared to         |
| 365 | those in the control simulation (Fig. 3b), the restoring experiments reduce the biases in the   |
| 366 | central Pacific, SPO, and NAT, indicating that these biases in climatological TC simulation in  |
| 367 | the control simulation have a substantial element due to the SST biases. On the other hand, the |
| 368 | overestimation of TCF in the Indian Ocean remains and that in WNP becomes larger,               |
| 369 | indicating these biases may be intrinsic to the atmospheric component.                          |
| 370 | Figure 8d, h shows composite anomalies of TCF for each phase of ENSO simulated by               |
| 371 | the restoring experiments using HiFLOR. Compared to the control simulation (Fig. 8c, g), the    |
| 372 | restoring experiments substantially improve the spatial patterns. The restoring experiments     |
| 373 | simulate clear peaks of anomalies in WNP, which are closer to observations than for the         |
| 374 | control experiment. Moreover, the restoring experiments reproduce the observed negative         |
| 375 | anomaly during La Niña years in ENP (Fig. 8h), whereas the control simulation fails to          |
| 376 | simulate the negative anomaly (Fig. 8g). Vecchi et al. (2014) and Krishnamurthy et al. (2015b)  |
| 377 | reported similar improvements using the flux-adjusted version of FLOR, in which model's         |
| 378 | momentum, enthalpy and freshwater fluxes from atmosphere to ocean are adjusted to bring the     |
| 379 | model's long-term climatology of SST and surface wind stress closer to observations. They       |
| 380 | concluded that this bias could be corrected by simulating the correct location of reduction in  |
| 381 | vertical wind shear in ENP during La Niña years, which is related to the strength of ENSO.      |
| 382 | Figure S1 in the supplemental material also compares simulated TC intensity between             |
| 383 | the control simulation and the restoring experiments. Although the difference between the       |
|     |                                                                                                 |

384 control simulation and restore experiments in FLOR (blue lines) is not clear, the restoring 385 experiments in HiFLOR (red line with rectangles) significantly increases TC intensity relative 386 to the control simulation (red line with circles). An additional experiment, for which the 387 simulated SSS and SST are restored to the simulated climatological mean of the HiFLOR control simulation at 5-day timescale (green line with triangles), reveals a similar TC intensity 388 389 to that of the control simulation. The above results indicate that the more intense TCs in the 390 restoring experiments relative to the control simulation are connected to differences in the 391 mean state rather than to the nudging itself.

392

#### 393 e. Intraseasonal variations

394 Intraseasonal variability in the atmosphere-ocean coupled system plays an important 395 role in modulating TC genesis, and represent a potential source of TC predictability on greater 396 than weekly time-scales (e.g., Xiang et al. 2015a,b). Maloney and Hartmann (2000) reported 397 that hurricanes in the Gulf of Mexico and western Caribbean are strongly modulated by wind 398 anomalies induced by the Madden-Julian oscillation (MJO). TC genesis frequency in the WNP 399 also experiences a significant intraseasonal variation (Yamazaki and Murakami 1989; 400 Hartmann et al. 1992; Liebmann et al. 1994; Fu et al. 2007). In particular, Li and Zhou (2013) 401 showed that in the WNP, northeastward-propagating MJO predominantly controls the basin-402 wide TC frequency. A number of numerical studies have showed that the MJO provides a 403 source of predictability for TC genesis (Fudeyasu et al. 2008; Fu and Hsu 2011; Vitart, 2009; Belanger et al. 2010; Elsberry et al. 2010; Xiang et al. 2015a). Therefore, it is important to 404 405 evaluate whether models adequately simulate the MJO and its association with TC genesis.

406 Figure 10 compares Wheeler-Kiladis diagrams (Wheeler and Kiladis 1999; Kim et al. Fig.10 407 2009) which show observed and simulated zonal wavenumber-frequency power spectra of 408 meridionally symmetric and antisymmetric components of OLR, divided by the background 409 power. The simulated MJO signals in the period range of 30–80 days in both FLOR and 410 HiFLOR are strong and comparable to each other, although the simulated signals are slightly 411 weaker than observed. When the two models are compared, HiFLOR simulates stronger 412 atmospheric Kelvin waves and mixed Rossby-gravity waves (MRG), which are closer to 413 observations than for FLOR. Fig. 11 Figure 11 represents composites of TC genesis locations superposed on anomalies of 414 415 OLR and wind vectors at 850 hPa for each MJO phase during boreal summer (May-October). 416 Figure S2 in the supplemental material shows these during boreal winter (November–April). 417 Note that these composites are made when the MJO index exceeds one standard deviation for 418 each phase (i.e., the active MJO phase). Following Wheeler and Hendon (2004), the MJO index is obtained from the magnitude of first two principal components of the multivariate 419 420 empirical orthogonal functions (EOFs) using daily mean OLR, 850 hPa zonal wind, and 200-421 hPa zonal wind. Observations indicate that events of TC genesis are more frequent during the 422 MJO active phase for each basin, as reported in Maloney and Hartman (2000) and Li and 423 Zhou (2013). This modulation of TC genesis is also well simulated in the 300-yr control Fig. 12 424 simulations of FLOR and HiFLOR. Figure 12 illustrates the TC genesis rate for each MJO 425 phase in each basin. Overall, the MJO simulations of FLOR and HiFLOR are similar, and both 426 models reproduce the observed enhancement of TC genesis during the active MJO phase. 427 Although MJO is reasonably simulated in both HiFLOR and FLOR, both models 428 substantially overestimate (underestimate) TC genesis frequency in WNP (ENP and NAT). On

429 the other hand, Murakami et al. (2012) reported that the 20-km-mesh MRI-AGCM yielded a

430 realistic simulation of the global TC distribution, although Yoshimura et al. (2015) reported

that the model's MJO is much weaker than observed. Moreover, Yamada et al. (2010) showed

that NICAM substantially underestimated TC genesis frequency in ENP and NAT, while

433 Miura et al. (2007) showed that it simulated a strong MJO. These results, in combination with

434 present study, suggest that model performance in simulating the global TC distribution may be

435 only weakly related to performance in simulating the MJO.

436

#### 437 f. Retrospective seasonal forecast for 1997/1998

To provide a preliminary assessment of the predictability of intense TCs in HiFLOR, 438 439 we conducted a couplet of 36-member ensemble retrospective seasonal forecasts initialized on July 1<sup>st</sup> in 1997 and 1998. These start dates were chosen as they allow us to target the extreme 440 441 El Niño and La Niña events of 1997-98 and 1998-99, respectively. The boreal summer in 1997 was in sharp contrast to that in 1998 in terms of global TC activity (Pasch et al. 2001; Du 442 443 et al. 2011; Tao et al. 2012; Zhao et al. 2014). The 1997 TC season is characterized by more frequent and intense TCs in WNP as well as less frequent and weaker TCs in NAT associated 444 with strong El Niño (Fig. 13a). Meanwhile, the 1998 TC anomalies largely oppose to those of Fig. 13 445 446 1997, arising from the strong La Niña (Fig. 13b). Of particular interest in this study is to 447 elucidate whether HiFLOR can predict above contrasts in the intense TCs of hurricanes and 448 C45 hurricanes. The contrast in large-scale climate and TCs between these two years provides a useful benchmark for predictability, but the results reported here should not be interpreted as 449 applying broadly to predictive skill for all years. 450

| 451 | Figure 13 shows predicted TC tracks in HiFLOR compared to observations. Note that                  |
|-----|----------------------------------------------------------------------------------------------------|
| 452 | all TC tracks predicted in the 36-ensemble members are superposed in the figure. Figure 14 Fig. 14 |
| 453 | shows the differences in the mean TCF between 1997 and 1998 for each TC intensity category.        |
| 454 | Figure 15 shows box plots for predicted TC numbers for each TC intensity category Fig. 15          |
| 455 | superposed on the observed TC numbers (triangles). The predicted TC tracks in 1998 are             |
| 456 | concentrated in the South China Sea (Fig. 13d, 14b), whereas those in 1997 expand further          |
| 457 | east of the open ocean in WNP (Fig. 13c, 14b), which are consistent with observations (Fig.        |
| 458 | 13b, 14a). Moreover, the observed east-west contrasts in hurricanes and C45 hurricanes in          |
| 459 | WNP are well predicted in HiFLOR (Fig. 14c-f). The observed contrast in the number of              |
| 460 | intense TCs in WNP is also predicted in HiFLOR (Fig. 15d, g), although the HiFLOR test             |
| 461 | forecasts systematically overestimate these numbers relative to observations - much like the       |
| 462 | other HiFLOR experiments did (Figs. 3, 7). In NAT, predicted mean TC number for all storms         |
| 463 | in 1998 is two-times larger than that in 1997, which is consistent with observations (Fig. 15c).   |
| 464 | Moreover, HiFLOR was able to retrospectively predict the observed two-year contrasts in the        |
| 465 | numbers of hurricanes (Fig. 15f) and C45 hurricanes (Fig. 15i). As for ENP, the observed two-      |
| 466 | year contrasts in the numbers of all storms and hurricanes are also predicted in HiFLOR (Fig.      |
| 467 | 15b,e), although HiFLOR underestimates C45 hurricanes (Fig. 15h). Generally, the observed          |
| 468 | contrasts between 1997 and 1998 in the intense TCs are well retrospectively predicted in           |
| 469 | HiFLOR, in both relative basin-wide frequency and in the spatial structure of TCF differences      |
| 470 | between the two years.                                                                             |

# **4. Summary**

| 473 | We have developed HiFLOR, a high-resolution version of the GFDL Forecaset-                     |
|-----|------------------------------------------------------------------------------------------------|
| 474 | oriented Low Ocean Resolution model (FLOR). HiFLOR was developed from FLOR by                  |
| 475 | reducing the horizontal grid spacing of the atmosphere and land components from 50-km to       |
| 476 | 25-km mesh with only minor changes to the dynamical core physical parameterizations. Two       |
| 477 | sets of simulations were conducted using HiFLOR: a 300-yr control climate simulation with      |
| 478 | prescribed radiative forcing and land-use conditions representative of 1990; and restoring     |
| 479 | experiments over 1971–2012 in which the simulated SSS and SST are restored to the              |
| 480 | observations at 5-day or 10-day time scales. Simulated TCs are compared with those from        |
| 481 | similar experiments conducted using FLOR. In addition, a couple of ensemble seasonal           |
| 482 | predictions for 1997 and 1998 were performed with HiFLOR.                                      |
| 483 | In its control simulation, HiFLOR reproduces the climatological spatial distribution of        |
| 484 | the global TCs more realistically than FLOR does. In particular, HiFLOR reduces biases in the  |
| 485 | frequency of TC occurrence in the central Pacific, South Pacific, North Atlantic, and Indian   |
| 486 | Ocean. The simulated distribution of TC intensity by HiFLOR is also comparable to              |
| 487 | observations, whereas FLOR cannot simulate intense TCs. HiFLOR is able to simulate             |
| 488 | extremely intense TCs (Categories 4 and 5) reasonably well compared to observations. The       |
| 489 | simulated TC intensity in HiFLOR is of comparable skill to that in a high-resolution AGCM      |
| 490 | reported in Murakami et al. (2012) and Manganello et al. (2012), and to that with double       |
| 491 | dynamical downscaling reported in Bender et al. (2010) and Knutson et al. (2008, 2013, 2015).  |
| 492 | However, this study represents the first global coupled climate model to successfully simulate |
| 493 | such intense TCs in a multi-century simulation. HiFLOR simulates reasonable structure for the  |
| 494 | TCs, while also capturing the observed relationship between the maximum surface wind speed     |
| 495 | and the minimum sea level pressure. The composite TC structure in HiFLOR was compared          |

with FLOR and observations, and revealed that HiFLOR reasonably simulated the location of
maximum wind speed and the surface oceanic cold wake induced by the storm's strong wind
stresses.

499 Although HiFLOR appears to inherit model biases from FLOR and CM2.5 in terms of 500 the seasonal cycle of TC frequency, the simulated seasonal cycle has been considerably 501 improved in HiFLOR relative to FLOR. Comparisons between SST-restored versions of 502 FLOR and HiFLOR reveal that HiFLOR more skilfully simulates the interannual variation of 503 TC genesis frequency when compared to FLOR except for NIO and WNP. Specifically, the SST-restored HiFLOR exhibited high correlation coefficients with the observed interannual 504 variations of hurricanes (r=0.77) and categories 4 and 5 hurricanes (r=0.63) in NAT. This is 505 506 the first time that a global climate model has successfully reproduced the observed year-by-507 year variations in category 4 and 5 hurricanes under restored-SST experiments. Both FLOR 508 and HiFLOR exhibit a strong 30-80-day Madden-Julian Oscillation, whose active phase 509 enhances TC genesis as observed, indicating potential skill in predicting TC genesis events at 510 intraseasonal time scales. The initial tests for retrospective seasonal forecasts for 1997/1998 511 TC seasons reveal that HiFLOR has substantial skills in predicting the observed contrasts between 1997 and 1998 in terms of frequency of hurricanes and category 4 and 5 hurricanes 512 513 and their spatial distributions.

In summary, the use of a higher-resolution atmospheric component appears to be desirable for accurate simulation of TCs. HiFLOR can be also used for attribution studies through idealized experiments to elucidate the contributions of anthropogenic forcing and natural variability to the observed recent upward trend in the frequency of category 4 and 5 hurricanes (Murakami et al. 2014b). Although HiFLOR has a substantially improved TC

| 519 | climatology compared with FLOR, HiFLOR still has a substantial bias in TC frequency in the       |
|-----|--------------------------------------------------------------------------------------------------|
| 520 | WNP. Although, as Vecchi et al. (2014) reported, simulations of the TC climatology and           |
| 521 | temporal variations can be substantially improved by correcting ocean biases via artificial flux |
| 522 | adjustments, it will ultimately be desirable to minimize these biases through continued          |
| 523 | improvements in model formulation.                                                               |
| 524 |                                                                                                  |
| 525 | Acknowledgments The authors thank Dr. Baoqiang Xiang and Dr. Wei Zhang for their                 |
| 526 | suggestions and comments.                                                                        |

## 527 **References**

528 Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity.

529 Vol. 2, *World Ocean Atlas 2005*, NOAA Atlas NESDIS 62, 182 pp.

- 530 Atkinson, G. D., and C. R. Holiday, 1977: Tropical cyclone minimum sea level
- 531 pressure/maximum sustained wind relationship for the western North Pacific. *Mon. Wea.*

532 *Rev.*, **105**, 421–427.

- 533 Belenger, J. I., J. A. Curry, and P. J. Webster, 2010: Predictability of North Atlantic tropical
- 534 cyclone activity on intraseasonal time scales. *Mon. Wea. Rev.*, **138**, 4362–4374.
- 535 Bell, R., J. Strachan, P.L. Vidale, K. Hodges, M. Roberts, 2013: Response of tropical cyclones
- to idealized climate change experiments in a global high-resolution coupled general

537 circulation model. J. Climate, **20**, 7966–7980.

- 538 Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using
- a high-resolution coupled model: Effects on hurricane intensity. *Mon. Wea. Rev.*, **128**,
- **540** 917–946.
- 541 Bender, M. A., I. Ginis, R. E. Tuleya, B. Thomas, and T. Marchok, 2007: Real-case
- 542 simulations of hurricane-ocean interaction using a high-resolution coupled model: Effects
- on hurricane intensity. *Mon. Wea. Rev.*, **128**, 917–946.
- Bender, M. A., T. R. Knutson, R. E. Tuleya, J. J. Sirutis, G. A. Vecchi, S. T. Garner, and I. M.
- 545 Held, 2010: Modeled impact of anthropogenic warming on the frequency of intense
- 546 Atlantic hurricanes. *Science*, 327, 454–458.
- 547 Camargo, S. J. and A.H. Sobel, 2005: Western North Pacific tropical cyclone intensity and
- 548 ENSO. J. Climate, 18, 2996–3006.

- 549 Camp, J., M. Roberts, C. MacLachlan, E. Wallace, L. Hermanson, A. Brookshaw, A. Arribas,
- and A.A. Scaife, 2015: Seasonal forecasting of tropical storms using the Met Office
- 551 GloSea5 seasonal forecast system. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2516.
- 552 Chen, J.-H. and S.-J. Lin, 2011: The remarkable predictability of inter-annual variability of
- 553 Atlantic hurricanes during the past decade. *Geophys. Res. Lett.*, **38**, L11804.
- 554 Chen, J.-H. and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-
- resolution general circulation model. J. Climate, **26**, 380–398.
- 556 Chen, T.-C., S. P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the
- tropical cyclone formation over the western North Pacific. *Mon. Wea. Rev.*, **126**, 1080–
  1090.
- 559 Delworth, T. L., and co-authors, 2006: GFDL's CM2 global coupled climate models. Part I:
  560 Formulation and simulation characteristics. *J. Climate*, **19**, 643–674.
- 561 Delworth, T. L., and co-authors, 2012: Simulated climate and climate change in the GFDL
- 562 CM2.5 high-resolution coupled climate model. J. Climate, 25, 2755–2781.
- 563 Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional
- overturning circulation and its climatic influence in a 4000 year simulation of the GFDL
- 565 CM2.1 climate model. *Geophys. Res. Lett.*, **39**, L13702.
- 566 Delworth, T. L., F. Zeng, A. Rosati, G. Vecchi, and A. Wittenberg, 2015: A link between the
- 567 hiatus in global warming and North American drought. J. Climate, In press.
- 568 Doi, T., G. A. Vecchi, A. J. Rosati, and T. L. Delworth, 2012: Biases in the Atlantic ITCZ in
- seasonal-interannual variations for a corse- and a high-resolution coupled climate model. J.
- 570 *Climate*, **25**, 5494–5511.

- 571 Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on Northwest Pacific
- tropical cyclones in summer following strong El Nino. J. Climate, 24, 315–322.
- 573 Elsberry, R. L., M. S. Jordan, and F. Vitart, 2010: Predictability of tropical cyclone events on
- 574 intraseasonal timescales with the ECMWF monthly forecast model. *Asia-Paficic J. Atmos.*
- 575 *Sci.*, **46**, 135–153.
- 576 Emanuel, K, 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75–104.
- 577 Frank W. M., 1984: A composite analysis of the core of a mature hurricane. *Mon. Wea.*
- 578 *Rev.*,112, 2401–2420.
- 579 Fu, B., T. Li, M. S. Peng, and F. Weng, 2007: Analysis of tropical cyclogenesis in the western
- 580 North Pacific for 2000 and 2001. *Wea. Forecasting*, **22**, 763–780.
- 581 Fu, X., and P.-C. Hsu, 2011: Extended-range ensemble forecasting of trpical cyclogenesis in
- the northern Indian Ocean: Modulation of Madden-Julian Oscillation. *Geophys. Res. Lett.*,
  38, L15803.
- 584 Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2008: The global
- cloud-system-resolving model NICAM successfully simulated the lifecycloes of two real
- tropical cyclones. *Geophys. Res. Lett.*, **35**, L22808.
- 587 Gnanadesikan, A., and co-authors, 2006: GFDL's CM2 global coupled climate models. Part
- 588 II: The baseline ocean simulation. J. Climate, **19**, 675–697.
- 589 Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to
- 590 global warming: Results from a high-resolution coupled general circulation model. J.
- 591 *Climate*, **20**, 5204–5228.
- 592 Hamed, K. H., and A. R. Rao, 1998: A modified Mann-Kendall trend test for autocorrelated
- 593 data. J. Hydrol., **204**, 182–196.

| 594 | Hartmann, | D. I | L., M. | L. Michelsen | , and S. A | A. Klein. | , 1992: | Seasona | l variations | of tr | opical |
|-----|-----------|------|--------|--------------|------------|-----------|---------|---------|--------------|-------|--------|
|-----|-----------|------|--------|--------------|------------|-----------|---------|---------|--------------|-------|--------|

- 595 intraseasonal oscillations: A 20-25-day oscillation in the Western North Pacific. J. Atmos.
- *Sci.*, **49**, 1277–1289.
- Hasegawa A., and S. Emori, 2007: Effect of air-sea coupling in the assessment of CO<sub>2</sub>-
- induced intensification of tropical cyclone activity. *Geophys. Res. Lett.*, **34**, L05701.
- 599 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working
- Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate
- 601 Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.
- 602 Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge,
- 603 United Kingdom and New York, NY, USA, 1535 pp.
- Jia, L., and co-authors, 2015: Improved seasonal prediction of temperature and precipitation
- over land in a high-resolution GFDL climate model. J. Climate, 28, 2044–2062.
- Kalnay, E., and co-authors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. *Bull. Amer.*
- 607 *Meteor. Soc.*, **77**, 437–471.
- 608 Kirtman, B. P, and co-authors, 2014: The North American Multimodel Ensemble: Phase-1
- seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction.
- 610 Bull. Amer. Meteor. Soc., 95, 585–601.
- 611 Kim, D., and co-authors, 2009: Application of MJO simulation diagnostics to climate models.
- 612 *J. Climate*, **22**, 6413–6436.
- 613 Kim, H.-S., and co-authors, 2014: Tropical cyclone simulation and response to CO<sub>2</sub> doubling
- 614 in the GFDL CM2.5 high-resolution Coupled climate model. J. Climate, 27, 8034–8054.

- 615 Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neuman, 2010: The
- 616 international best track archive for climate stewardship (IBTrACS): Unifying tropical
- 617 cyclone best track data, *Bull. Amer. Meteor. Soc.*, **91**, 363–376.
- 618 Knutson, T. R., R. E. Tuleya, W. Shen, I. Ginis, 2001: Impact of CO<sub>2</sub>-induced warming on
- hurricane intensities as simulated in a hurricane model with ocean coupling. *J. Climate*, 14,
  2458–2468.
- 621 Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated
- 622 reduction in Atlantic hurricane frequency under twenty-first-century warming condition.
- 623 *Nature Geocience*, **1**, 359–364.
- 624 Knutson, T. R., and co-authors, 2013: Dynamical downscaling projections of twenty-first-
- century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. *J. Climate*,
  26, 6591–6617.
- 627 Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G.A. Vecchi, G. Villarini, and
- D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late 21<sup>st</sup>
- 629 century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, submitted.
- 630 Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL Hurricane Prediction System
- and its performance in the 1995 hurricane season. *Mon. Wea. Rev.*, **126**, 1306–1322.
- 632 Krishnamurthy, L., G. A. Vecchi, R. Msadek, A. Wittenberg, T. Delworth, and F. Zeng,
- 633 2015a: The seasonality of the Great Plains low-level jet and ENSO relationship. *J. Climate*,634 In press.
- 635 Krishnamurthy, L,, and co-authors, 2015b: Effect of extreme ENSO events on regional
- tropical cyclone activity in high-resolution model. J. Climate, submitted.

- 637 Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm
- formation in the western North Pacific and ENSO. *Mon. Wea. Rev.*, **122**, 636-651.
- 639 LaRow, T. E., Y.-K. Lim, D. W. Shin, E. P. Chassignet, and S. Cocke, 2008: Atlantic basin
- seasonal hurricane simulations. J. Climate, **21**, 3191–3206.
- 641 Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone
- activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918.
- 643 Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical
- 644 cyclones of the Western Pacific and Indian Oceans and the Madden-Julian oscillation. J.
- 645 *Meteor. Soc. Japan*, **72**, 401–412.
- Liebmann B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing
- 647 longwave radiation dataset. *Bull. Amer. Meteor. Soc.*, 77, 1275–1277.
- 648 Lloyd, I. D., and G. A. Vecchi, 2011: Observational evidence for oceanic controls on
- 649 hurricane intensity. J. Climate, 24, 1138–1153.
- 650 Lloyd, I. D., T. Marchok, and G. A. Vecchi, 2011: Diagnostics comparing sea surface
- 651 temperature feedbacks from operational hurricane forecasts to observations. J. Adv. Model.
- 652 *Earth Syst.*, **3**, M11002.
- Manganello, and co-authors, 2012: Tropical cyclone climatology in a 10-km global
- atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 24, 3867–
- **655 3893**.
- 656 Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and T. Stockdale, 2013:
- 657 Evaluation of forecast strategies for seasonal and decadal forecasts in presence of
- 658 systematic model errors. *Climate Dyn.* **41**, 2393–2409.

- 659 Maloney, E. D., and D. L. Hartmann, 2000: Modulation of hurricane activity in the Gulf of
- 660 Mexico by the Madden-Julian oscillation. *Science*, **287**, 2002–2004.
- 661 Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian
- oscillation event simulated using a global cloud-resolving model, *Science*, **318**, 1763–1765.
- 663 Moon, I.-J., I. Ginis, and T. Hara, 2004: Effect of surface waves on air-sea momentum
- exchange. Part II: Behavior of drag coefficient under tropical cycloens. *J. Atmos. Sci.*, 61,
  2334–2348.
- 666 Msadek, R., G.A. Vecchi, M. Winton, R.G. Gudgel, 2014: Importance of initial conditions in
- sseasonal predictions of Arctic sea ice extent. *Geophys. Res. Lett.*, **41**, 5208–5215.
- 668 Murakami, H., T. Matsumura, R. Sakai, A. Noda, and S. Kusunoki, 2008: Verification
- typhoon forecasts for a 20km-mesh high-resolution global model. *J. Meteor. Soc. Japan*,
  86, 669–698.
- Murakami, H., and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate
  projections. *SOLA*, 6, 73–76.
- 673 Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks:
- Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699–2721.
- 675 Murakami, H., and co-authors, 2012: Future changes in tropical cyclone activity projected by
- the new high-resolution MRI-AGCM. J. Climate, 25, 3237–3260, doi: 10.1175/JCLI-D-
- 677 11-00415.1.
- 678 Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013: Projected increase in tropical cyclones
- 679 near Hawaii. *Nat. Climate Change*, **3**, 749-754.

- 680 Murakami, H., P. -C. Hsu, O. Arakawa, and T. Li, 2014a: Influence of model biases on
- projected future changes in tropical cyclone frequency of occurrence. *J. Climate*, 27,
  2159–2181.
- 683 Murakami, H., T. Li, and P. –C. Hsu, 2014b: Contributing factors to the recent high level of
- 684 Accumulated Cyclone Energy (ACE) and Power Dissipation Index (PDI) in the North
- 685 Atlantic. J. Climate, 27, 3023–3034.
- 686 Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006:
- 687 Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh
- global atmospheric model: Frequency and wind intensity analysis. J. Meteor. Soc. Japan,
- **84,** 259–276.
- Pasch, R. J., L.A. Avila, and J. L. Guiney, 2001: Atlantic Hurricane season of 1998. *Mon. Wea. Rev.*, 129, 3085–3123.
- Putman, W.M., and S.-J. Lin, 2007: Fineite-volume transport on various cubed-sphere grids. *J. Comput. Phys.* 227(1), 55–78.
- 694 Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, and D. P. Rowell,
- 695 2003: Global analysis of sea surface temperature, sea ice, and night marine air temperature
- since the late nineteenth century. J. Geophys. Res., **108**, 4407.
- 697 Rathmann, N. M., S. Yang, and E. Kaas, 2013: Tropical cyclones in enhanced resolution
- 698 CMIP5 experiments. *Climate Dyn.* **42**, 665–681.
- 699 Raynolds, R., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily
- high-resolution blended analyses for sea surface temperature. J. Climate, **20**, 5473–5496.
- 701 Shade, L., and K. Emanuel, 1999: The ocean's effect on the intensity of tropical cyclones:
- Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642–651.

- 703 Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M. E. Demory, 2013: Investigating
- global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution.
- 705 *J. Climate*, **26**, 133–152.
- Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of tropical indian ocean warming and
- 707ENSO on tropical cyclone activity over the Wstern North Pacific. J. Meteor. Soc. Japan,
- **90**, 127–144.
- Vecchi, G. A., and co-authors, 2014: On the seasonal forecasting of regional tropical cyclone
  activity. *J. Climate*, 27, 7994–8016.
- 711 Villarini, G., and G. A. Vecchi, 2013: Projected increases in North Atlantic tropical cyclone
- intensity from CMIP5 models. J. Climate, **26**, 3231–3240.
- 713 Vitart, F., and co-authors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical
- storm activity issued in June by EUROSIP. *Geophys. Res. Lett.*, **34**, L16815.
- 715 Vitart, F., 2009: Impact of the Madden Julian Oscillation on tropical cyclones and risk of
- landfall in the ECMWF forecasting system. *Geophys. Res. Lett.*, **36**, L15802.
- 717 Walsh, K., S. Lavender, E. Scoccimarro, and H. Murakami, 2013: Resolution dependence of
- tropical cyclone formation in CMIP3 and finer resolution models. *Clim. Dyn.* **40**, 585–599.
- 719 Walsh, K. J. E., and co-authors, 2015: Hurricanes and climate: The U.S. CLIVAR working
- group on hurricanes. , *Bull. Amer. Meteor. Soc.*, In press.
- Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity
- over the western North Pacific. J. Climate, 15, 1643–1658.
- 723 Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of
- clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

- 725 Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index:
- Development of an index for monitoring and prediction. *Mon. Wea. Rev.*, **132**, 1917–1932.
- 727 Winton, M., W.G. Anderson, T. L. Delworth, S.M. Griffies, W. J. Hurlin, and A. Rosati, 2014:
- Has coarse ocean resolution biased simulations of transient climate sensitivity? *Geophys.*
- 729 *Res. Lett.*, **41**, 8522–8529.
- 730 Wittenberg, A. T., A. Rosati, N. -C. Lau, and J. J. Ploshay, 2006: GFDL's CM2 global
- coupled climate models. Part III: Tropical pacific climate and ENSO. *J. Climate*, 19, 698–
  722.
- 733 Wu, L., and B. Wang, 2004: Assessing impact of global warming on tropical cyclone tracks. J.
- 734 *Climate*, **17**, 1686–1698.
- 735 Xiang, B., S.-J. Lin, M. Zhao, S. Zhang, G. Vecchi, T. Li, X. Jiang, L. Harris, J.-H. Chen,
- 736 2015a: Beyond weather time scale prediction for Hurricane Sandy and super typhoon
- Haiyan in a global climate model. *Mon. Wea. Rev.*, **143**, 524–535.
- 738 Xiang, B., M. Zhao, X. Jiang, S.-J. Lin, T. Li, X. Fu, G. Vecchi, A. Sobel, I.-S. Kang, P.-C.
- Hsu, E. Maloney, D. Kim, 2015b: 3-4 week MJO prediction skill in a GFDL coupled
- 740 model. Mon. Wea. Rev., submitted.
- Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on
- gauge observations, satellite estimates, and numerical model outputs. *Bull. Amer. Meteor.*
- 743 Soc., 78, 2539–2558.
- Yang, X., and co-authors, 2015: Seasonal predictability of extratropical storm tracks in
- GFDL's high-resolution climate prediction model. J. Climate, In press.

- 746 Yamada, Y., K. Oouchi, M. Satoh, H. Tomita, and W. Yanase, 2010: Projection of changes in
- tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-
- system-resolving approach. *Geophys. Res. Lett.*, **37**, L07709.
- 749 Yamazaki, N. and M. Murakami, 1989: An intraseasonal amplitude modulation of the short-
- term tropical disturbances over the Western Pacific. J. Meteor. Soc. Japan, 67, 791–807.
- 751 Yoshimura, H, R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization
- scheme interpolating between two convective updrafts with semi-Lagrangian calculation
- of transport by compensatory subsidence. *Wea. Rev.*, In press.
- Zhang, L., and T.L. Delworth, 2015: Analysis of the characteristics and mechanisms of the
- 755 Pacific Decadal Oscillation in a suite of coupled models from the Geophysical Fluid
- 756 Dynamics Laboratory. J. Climate, submitted.
- 757 Zhao, H., P.-S. Chu, P.-C. Hsu, and H. Murakami, 2014: Exploratory analysis of extremely
- low tropical cyclone activity during the late-season of 2010 and 1998 over the Western
- 759 North Pacific and South China Sea. J. Adv. Model. Earth Syst. 06.
- 760 Zhao, M., I. M. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane
- climatology, interannual variability, and response to global warming using a 50km
- resolution GCM. J. Climate, **22**, 333–363.
- 763 Zhao, M., and I.M. Held, 2010: An analysis of the effect of global warming on the intensity of
- Atlantic hurricanes using a GCM with statistical refinement. J. Climate, 23, 6382–6393.
- 765 Zhao, M., I.M. Held, and G.A. Vecchi, 2010: Retrospective forecasts of the hurricane season
- using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea.
- 767 Rev., 138, 3858–3868.

## 769 List of Tables

**Table 1** (a) Rank correlation coefficients between the observed and simulated interannual

- variability of TC genesis number in the SST restored experiments for each basin. (b, c) As in
- (a), but for TCs with hurricane maximum winds >64 kt, and intensity categories 4 and 5 (>114
- kt), respectively. 6-member SST-restored ensemble experiments are conducted using 5-day
- and 10-day restoring timescales each for HiFLOR and FLOR. Statistical significance is
- highlighted according to the level of significance: 99%, 95%, and 90% (see footnotes).
- 776

## 777 List of Figures

FIG. 1. Simulated biases in climatological mean SST [K] relative to HadISST1.1 during all
seasons for (a) FLOR and (b) HiFLOR. (c), (d) As in (a), (b), but for precipitation [mm day<sup>-1</sup>]
relative to CMAP.

781

FIG. 2. Global distribution of TC tracks during all seasons for 300-year control simulation by
(a) FLOR, (b) HiFLOR, and (d) observations from 1979 to 2012. The numbers for each basin
show the annual mean number of TCs. TC tracks are colored according to the intensities of the
TCs as categorized by the Saffir-Simpson hurricane wind scale [e.g., tropical depression (TD),
tropical storms (TSs), and C1–C5.

787

**FIG. 3** Model bias in TC frequency of occurrence in the 300-yr control experiments by (a)

- FLOR, (b) HiFLOR, and (c) restoring experiments by HiFLOR (1971–2012, mean of 6
- members). The TC frequency of occurrence is defined as a total count of TC position in each
- analyzed  $2.5^{\circ} \times 2.5^{\circ}$  degree grid cell with 9-point weighting smoothing within the global

domain in 6-hr intervals. The biases circled by dashed lines are above the 99% significancelevel estimated by a bootstrap significance test (Murakami et al. 2013).

794

795 FIG. 4 Comparisons of TC intensity. (a) Fractional ratio of annual mean TC number for the life-time maximum surface wind speed (m s<sup>-1</sup>) simulated using FLOR (300 years, blue). 796 HiFLOR (300 years, red) along with observations (1979–2012, black). (b) Maximum surface 797 wind speed (MWS,  $m s^{-1}$ ) vs minimum SLP (MSLP, hPa) for TCs using all 6-hourly data. 798 Probability density functions [%] for MWS and MSLP are shown in histograms. The dashed 799 black curve is the observationally based regression line proposed by Atkinson and Holiday 800 (1977), based on observed data. Colors in (b) are same as in (a). 801 802 **FIG. 5** Composite structure for TCs. (a) and (b) Mean 10-m surface wind velocity  $[m s^{-1}]$ ; 803 vectors], precipitation [mm day<sup>-1</sup>; shading], and sea level pressure [SLP; hPa; contours] for 804 805 the control simulations by FLOR and HiFLOR, respectively. (c) Azimuthal mean tangential wind speed  $[m s^{-1}]$  for FLOR (blue) and HiFLOR (red) as a function of distance from the 806 807 storm center [km]. (d)–(f) Composite daily mean SST anomaly 2 days after passages of storms 808 (>34 kt) relative to the average over days -12 to -2 simulated by (d) FLOR, (e) HiFLOR, and 809 (f) observations (SST: AVHRR, TC tracks: IBTrACS). The sample size (N), minimum SLP, maximum precipitation (P), and maximum tangential wind speed (TW), and minimum value 810 811 in SST anomaly (MIN) in the composite are listed in each panel. Composites for (a)-(c) are for the storms at their lifetime maximum intensity in the Northern Hemisphere, whereas those 812 813 for (d)–(f) are for the storms with V/f < 1 (i.e., slow moving or high latitude) in the all ocean 814 basins.

| 816 | FIG. 6 Composite mean SST anomaly [K] for each day before and after storm passage. SST                  |
|-----|---------------------------------------------------------------------------------------------------------|
| 817 | anomaly is averaged over the domain of 100 km from the TC center relative to the average                |
| 818 | over days $-12$ to $-2$ (i.e., center of the domain for average is fixed at the storm center at day 0). |
| 819 | Day 0 is when the storm reaches the track position, and positive (negative) days indicate the           |
| 820 | day after (before) the storm has passed. Composites are made for all storms (>34 kt) with V/f $$        |
| 821 | < 1 (i.e., slow moving or high latitude) in the all ocean basins.                                       |
| 822 |                                                                                                         |
| 823 | FIG. 7 Seasonal mean variation in TC genesis number according to observations (1979–2012,               |
| 824 | grey bars) and simulation results by FLOR (300 years, blue lines) and HiFLOR (300 years, red            |
| 825 | lines) for (a) NIO, (b) WNP, (c) ENP, (d) NAT, (e) SIO, and (f) SPO. Unit is mean TC                    |
| 826 | number per month.                                                                                       |
| 827 |                                                                                                         |
| 828 | FIG. 8 Composites of anomaly of TC frequency of occurrence for (a)–(d) El Niño years and                |
| 829 | (e)–(h) La Niña years during August–October yielded by (a), (e) observations (1979–2012),               |
| 830 | (b), (f) FLOR control simulation (300 yr), (c), (g) HiFLOR control simulation (300 yr), and             |
| 831 | (d), (h) HiFLOR restoring experiment (1971–2012, mean of 6 members). The anomalies                      |
| 832 | circled by dashed lines are above the 90% significance level estimated by a bootstrap                   |
| 833 | significance test (Murakami et al. 2013). Unit is $0.1 \times \text{number year}^{-1}$ .                |
| 834 |                                                                                                         |
| 835 | FIG. 9 (a) Interannual variations of annual TC genesis number in the North Atlantic according           |
| 836 | to observations and results of ensemble SST-restored experiments with HiFLOR and FLOR                   |
| 837 | (1979–2012). The red (blue) line represents the mean of six ensemble experiments by                     |
|     |                                                                                                         |

| 838 | HiFLOR (FLOR). Shading indicates the range of the minimum and maximum among the six            |
|-----|------------------------------------------------------------------------------------------------|
| 839 | ensemble members. (b), (c) As in (a), but for TCs with hurricane intensity (>64 kt) and        |
| 840 | categories 4 and 5 intensity (>114 kt), respectively. Dashed lines denote linear trend by the  |
| 841 | Poisson regression. Only trends with statistical significance at 95% are shown [the Student t- |
| 842 | test and modified Mann and Kendall test proposed by Hamed and Rao (1998)].                     |
| 843 |                                                                                                |
| 844 | FIG. 10 Wheeler-Kiladis diagram showing zonal wavenumber-frequency power spectra of            |
| 845 | symmetric (upper panels) and antisymmetric (bottom panels) components of OLR (shadings)        |
| 846 | and phase derived from U850 (vectors) for (a) observations using AVHRR and NCEP1               |
| 847 | (1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control              |
| 848 | experiment).                                                                                   |
| 849 |                                                                                                |
|     |                                                                                                |

**FIG. 11** Composites of TC genesis locations (red dots) superposed on anomalies of OLR

851 (shadings) and wind at 850hPa (vectors) during boreal summer (May–October) for each MJO

phase in (a) observations (1979–2005), (b) HiFLOR (300-yr control experiment), and (c)

853 FLOR (300-yr control experiment). Composites are made when the MJO index exceeds one

standard deviation. Number of days for each composite is shown in the bottom-right box.

855

**FIG. 12** TC genesis rate for each MJO phase for each basin. For each ocean basin, the TC

857 genesis rate is computed by dividing the number of generated TCs by the number of active-

phase days of the MJO (as shown in Fig. 11). Then the fractional rate is normalized by the

total rates summed over all MJO phases. Black, red, and blue lines respectively show results

860 from observations, HiFLOR, and FLOR.

| 862 | FIG. 13. Observed TC tracks during July–November for (a) 1997 and (b) 1998. (c), (d) As in              |
|-----|---------------------------------------------------------------------------------------------------------|
| 863 | (a), (b), but for retrospective prediction results for the 36-ensemble member retrospective             |
| 864 | forecast initialized on 1 <sup>st</sup> July using HiFLOR. The numbers for each basin show the seasonal |
| 865 | mean number of TCs. TC tracks are colored according to the intensities of the TCs as                    |
| 866 | categorized by the Saffir-Simpson hurricane wind scale. Circles denote TC genesis locations.            |
| 867 |                                                                                                         |
| 868 | FIG. 14 Difference in TC frequency of occurrence between 1997 and 1998 for all storms from              |
| 869 | (a) observations and (b) results from retrospective seasonal predictions by HiFLOR (mean of             |
| 870 | 36 members). (c), (d) As in (a), (b), but for TCs with hurricane intensity (>64 kt). (e), (f), As       |
| 871 | in (a), (b), but for TCs with categories 4 and 5 intensity (>114 kt).                                   |
| 872 |                                                                                                         |
| 873 | FIG. 15 Box plots of the predicted number for all storms in (a) WNP, (b) ENP, and (c) NAT.              |
| 874 | (d)–(f) As in (a)–(c), but for TCs with hurricane intensity (>64 kt). (g)–(i) As in (a)–(c), but        |
| 875 | for TCs with categories 4 and 5 intensity (>114 kt). Each panel shows box plots for 1997 and            |
| 876 | 1998 using results from 36-member ensemble retrospective predictions superposed on the                  |
| 877 | observed number in triangles. The boxes represent the lower and upper quartiles, the                    |
| 878 | horizontal lines show the median value, and the dashed bars show the lowest datum still within          |
| 879 | the 1.5 interquartile range (IQR) of the lower quartile and the highest datum still within the 1.5      |
| 880 | IQR of the upper quartile. Outliers are denoted in circles.                                             |
|     |                                                                                                         |

Table 1 (a) Rank correlation coefficients between the observed and simulated interannual variability of TC genesis number in the SST restored experiments for each basin. (b, c) As in (a), but for TCs with hurricane maximum winds >64 kt, and intensity categories 4 and 5 (>114 kt), respectively. 6-member SST-restored ensemble experiments are conducted using 5-day and 10-day restoring timescales each for HiFLOR and FLOR. Statistical significance is highlighted according to the level of significance: 99%, 95%, and 90% (see footnotes).

| Model                             | NIO         | WNP           | ENP           | NAT           | SIO           | SPO          |
|-----------------------------------|-------------|---------------|---------------|---------------|---------------|--------------|
| (a) All TCs                       |             |               |               |               |               |              |
| HiFLOR                            | $-0.30^{*}$ | $+0.35^{**}$  | $+0.49^{***}$ | $+0.68^{***}$ | $+0.38^{**}$  | $+0.31^{**}$ |
| FLOR                              | -0.01       | $+0.55^{***}$ | $+0.41^{***}$ | $+0.59^{***}$ | +0.02         | +0.22        |
| (b) Hurricanes $(>64kt)$          |             |               |               |               |               |              |
| HiFLOR                            | +0.02       | +0.17         | $+0.51^{***}$ | $+0.77^{***}$ | $+0.51^{***}$ | +0.23        |
| FLOR                              | -0.02       | $+0.55^{***}$ | +0.25         | $+0.68^{***}$ | +0.10         | +0.01        |
| (c) Categories 4 and 5 $(>114kt)$ |             |               |               |               |               |              |
| HiFLOR                            | -0.08       | +0.23         | +0.18         | $+0.63^{***}$ | $+0.31^{**}$  | +0.12        |
| FLOR                              | N/A         | N/A           | N/A           | N/A           | N/A           | N/A          |

\*\*\* Statistically significant at 99% level \*\* Statistically significant at 95% level

\* Statistically significant at 90% level



**FIG. 1.** Simulated biases in climatological mean SST [K] relative to HadISST1.1 during all seasons for (a) FLOR and (b) HiFLOR. (c), (d) As in (a), (b), but for precipitation [mm day<sup>-1</sup>] relative to CMAP.



**FIG. 2.** Global distribution of TC tracks during all seasons for 300-year control simulation by (a) FLOR, (b) HiFLOR, and (d) observations from 1979 to 2012. The numbers for each basin show the annual mean number of TCs. TC tracks are colored according to the intensities of the TCs as categorized by the Saffir-Simpson hurricane wind scale [e.g., tropical depression (TD), tropical storms (TSs), and C1–C5.



**FIG. 3** Model bias in TC frequency of occurrence in the 300-yr control experiments by (a) FLOR, (b) HiFLOR, and (c) restoring experiments by HiFLOR (1971–2012, mean of 6 members). The TC frequency of occurrence is defined as a total count of TC position in each analyzed  $2.5^{\circ} \times 2.5^{\circ}$  degree grid cell with 9-point weighting smoothing within the global domain in 6-hr intervals. The biases circled by dashed lines are above the 99% significance level estimated by a bootstrap significance test (Murakami et al. 2013).



**FIG. 4** Comparisons of TC intensity. (a) Fractional ratio of annual mean TC number for the life-time maximum surface wind speed (m s<sup>-1</sup>) simulated using FLOR (300 years, blue), HiFLOR (300 years, red) along with observations (1979–2012, black). (b) Maximum surface wind speed (MWS, m s<sup>-1</sup>) vs minimum SLP (MSLP, hPa) for TCs using all 6-hourly data. Probability density functions [%] for MWS and MSLP are shown in histograms. The dashed black curve is the observationally based regression line proposed by Atkinson and Holiday (1977), based on observed data. Colors in (b) are same as in (a).



**FIG. 5** Composite structure for TCs. (a) and (b) Mean 10-m surface wind velocity  $[m s^{-1}; vectors]$ , precipitation  $[mm day^{-1}; shading]$ , and sea level pressure [SLP; hPa; contours] for the control simulations by FLOR and HiFLOR, respectively. (c) Azimuthal mean tangential wind speed  $[m s^{-1}]$  for FLOR (blue) and HiFLOR (red) as a function of distance from the storm center [km]. (d)–(f) Composite daily mean SST anomaly 2 days after passages of storms (>34 kt) relative to the average over days –12 to –2 simulated by (d) FLOR, (e) HiFLOR, and (f) observations (SST: AVHRR, TC tracks: IBTrACS). The sample size (N), minimum SLP, maximum precipitation (P), and maximum tangential wind speed (TW), and minimum value in SST anomaly (MIN) in the composite are listed in each panel. Composites for (a)–(c) are for the storms at their lifetime maximum intensity in the Northern Hemisphere, whereas those for (d)–(f) are for the storms with V/f < 1 (i.e., slow moving or high latitude) in the all ocean basins.



**FIG. 6** Composite mean SST anomaly [K] for each day before and after storm passage. SST anomaly is averaged over the domain of 100 km from the TC center relative to the average over days -12 to -2 (i.e., center of the domain for average is fixed at the storm center at day 0). Day 0 is when the storm reaches the track position, and positive (negative) days indicate the day after (before) the storm has passed. Composites are made for all storms (>34 kt) with V/f < 1 (i.e., slow moving or high latitude) in the all ocean basins.



**FIG. 7** Seasonal mean variation in TC genesis number according to observations (1979–2012, grey bars) and simulation results by FLOR (300 years, blue lines) and HiFLOR (300 years, red lines) for (a) NIO, (b) WNP, (c) ENP, (d) NAT, (e) SIO, and (f) SPO. Unit is mean TC number per month.



**FIG. 8** Composites of anomaly of TC frequency of occurrence for (a)–(d) El Niño years and (e)–(h) La Niña years during August–October yielded by (a), (e) observations (1979–2012), (b), (f) FLOR control simulation (300 yr), (c), (g) HiFLOR control simulation (300 yr), and (d), (h) HiFLOR restoring experiment (1971–2012, mean of 6 members). The anomalies circled by dashed lines are above the 90% significance level estimated by a bootstrap significance test (Murakami et al. 2013). Unit is  $0.1 \times$  number year<sup>-1</sup>.



**FIG. 9** (a) Interannual variations of annual TC genesis number in the North Atlantic according to observations and results of ensemble SST-restored experiments with HiFLOR and FLOR (1979–2012). The red (blue) line represents the mean of six ensemble experiments by HiFLOR (FLOR). Shading indicates the range of the minimum and maximum among the six ensemble members. (b), (c) As in (a), but for TCs with hurricane intensity (>64 kt) and categories 4 and 5 intensity (>114 kt), respectively. Dashed lines denote linear trend by the Poisson regression. Only trends with statistical significance at 95% are shown [the Student t-test and modified Mann and Kendall test proposed by Hamed and Rao (1998)].



**FIG. 10** Wheeler-Kiladis diagram showing zonal wavenumber-frequency power spectra of symmetric (upper panels) and antisymmetric (bottom panels) components of OLR (shadings) and phase derived from U850 (vectors) for (a) observations using AVHRR and NCEP1 (1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control experiment).



**FIG. 11** Composites of TC genesis locations (red dots) superposed on anomalies of OLR (shadings) and wind at 850hPa (vectors) during boreal summer (May–October) for each MJO phase in (a) observations (1979–2005), (b) HiFLOR (300-yr control experiment), and (c) FLOR (300-yr control experiment). Composites are made when the MJO index exceeds one standard deviation. Number of days for each composite is shown in the bottom-right box.



**FIG. 12** TC genesis rate for each MJO phase for each basin. For each ocean basin, the TC genesis rate is computed by dividing the number of generated TCs by the number of active-phase days of the MJO (as shown in Fig. 11). Then the fractional rate is normalized by the total rates summed over all MJO phases. Black, red, and blue lines respectively show results from observations, HiFLOR, and FLOR.



**FIG. 13.** Observed TC tracks during July–November for (a) 1997 and (b) 1998. (c), (d) As in (a), (b), but for retrospective prediction results for the 36-ensemble member retrospective forecast initialized on 1<sup>st</sup> July using HiFLOR. The numbers for each basin show the seasonal mean number of TCs. TC tracks are colored according to the intensities of the TCs as categorized by the Saffir-Simpson hurricane wind scale. Circles denote TC genesis locations.



**FIG. 14** Difference in TC frequency of occurrence between 1997 and 1998 for all storms from (a) observations and (b) results from retrospective seasonal predictions by HiFLOR (mean of 36 members). (c), (d) As in (a), (b), but for TCs with hurricane intensity (>64 kt). (e), (f), As in (a), (b), but for TCs with categories 4 and 5 intensity (>114 kt).



**FIG. 15** Box plots of the predicted number for all storms in (a) WNP, (b) ENP, and (c) NAT. (d)–(f) As in (a)–(c), but for TCs with hurricane intensity (>64 kt). (g)–(i) As in (a)–(c), but for TCs with categories 4 and 5 intensity (>114 kt). Each panel shows box plots for 1997 and 1998 using results from 36-member ensemble retrospective predictions superposed on the observed number in triangles. The boxes represent the lower and upper quartiles, the horizontal lines show the median value, and the dashed bars show the lowest datum still within the 1.5 interquartile range (IQR) of the lower quartile and the highest datum still within the 1.5 IQR of the upper quartile. Outliers are denoted in circles.