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ABSTRACT5

Seasonal climate predictions are of great potential societal value by enabling improved deci-6

sions, and are also of inherent scientific value by providing tests to the hypotheses underly-7

ing prediction methodologies. Skillful predictions over land are in particular demand due to8

their influences on such societal factors as agriculture and hydrology. Here we demonstrate9

skillful seasonal prediction of temperature and precipitation over land in a high-resolution10

global model using a new statistical optimization technique, and diagnose possible sources11

of the prediction skill. Specifically, we employ an optimization approach to identify the12

most predictable components of seasonal 2m air temperature and precipitation over land,13

and demonstrate the skill of these most predictable components. We then reconstruct new14

predictions based on the most predictable components, thus removing unpredictable compo-15

nents with the expectation of improving subsequent prediction skill. We find that the two16

most predictable components of 2m air temperature over global land are characterized by a17

spatially homogeneous component that is mostly due to changes in external radiative forcing18

in both boreal winter and summer, and a spatially heterogenous ENSO-related pattern in19

boreal winter. The most predictable components of precipitation over land in boreal winter20

and summer are also ENSO-related. These predictable components of temperature and pre-21

cipitation show significant correlation skill for all leads from 0 to 9 months. Importantly, the22

reconstructed predictions based only on the leading few predictable components from the23

model show considerably better skill relative to observations than raw model predictions.24

This study shows that the use of refined statistical analysis together with a high-resolution25

dynamical model leads to significant skill in seasonal predictions of 2m air temperature and26

precipitation over land.27
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1. Introduction28

Motivated by a desire to represent processes at more detailed scales, and enabled by devel-29

opments in supercomputing capabilities and advanced numerical techniques, high-resolution30

climate models have been developed at various modeling centers (Delworth and coauthors31

2012; Jung and Coauthors 2012; Kinter and Coauthors 2013; Shaffrey and Coauthors 2009).32

High-resolution climate models, with the ability to better represent small-scale processes,33

show advantages simulating many key aspects of climate such as El Niño and Southern34

Oscillation (ENSO), Indian monsoon (Delworth and coauthors 2012), tropical precipitation,35

atmospheric circulation, and extratropical cyclones (Jung and Coauthors 2012). At Geophys-36

ical Fluid Dynamics Laboratory (GFDL) a stream of model development aiming to assess37

the impact of resolution on simulation and prediction has led to the development of a family38

of coupled climate models with deferent resolutions. At one end of the spectrum is CM2.139

(Delworth and Coauthors 2006) with 1◦ oceanic resolution and approximately 200km atmo-40

spheric resolution. At the other extreme sits CM2.5 and CM2.6 (Delworth and coauthors41

2012), both with approximately 50km atmosphere and 0.25◦ and 0.1◦ ocean respectively.42

The simulated climate in the high-resolution CM2.5 showed marked improvements, includ-43

ing a reduction of double intertropical convergence zone, improved simulations of ENSO and44

Amazonian rainfall, over the coarser-resolution CM2.1 (Delworth and coauthors 2012).45

However, high-resolution coupled models are computationally expensive. It is worth46

exploring which elements of enhanced resolution are critical for each problem of interest.47

Motivated by the hypothesis that increased atmosphere and land resolution was critical for48

many of the improvements seen in CM2.5 simulations over its lower-resolution predeces-49

sor CM2.1, GFDL recently developed a forecast-oriented climate model based on the fully50

coupled high-resolution CM2.5 model: Forecast-oriented Low Ocean Resolution version of51

CM2.5 (CM2.5 FLOR, called FLOR hereafter). This FLOR model has a high resolution52

(∼50km) atmosphere and land as that in CM2.5, but a coarser resolution (1◦) ocean and sea53

ice as that of CM2.1. FLOR was designed to substantially reduce computing time relative to54
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CM2.5 to enable the running of large ensembles of simulations needed for climate predictions55

while still maintaining high-resolution land and atmosphere to allow exploration of regional56

climate and extremes. FLOR is one of the first high-resolution climate models in the world57

used for routine seasonal forecasts (Saha and Coauthors 2013; Arribas and Coauthors 2011).58

The hypothesis underlined the development of FLOR is that atmosphere and land resolution59

is crucial for seasonal forecasts.60

The objective of this paper is to investigate seasonal prediction skill of global 2m air61

temperature and precipitation over land in the new high-resolution FLOR model using a62

statistical optimization approach, called average predictability time (APT) (DelSole and63

Tippett 2009a,b; DelSole et al. 2011). Our hypothesis is that increasing atmosphere and64

land resolution in the dynamical model together with refined statistical methods can improve65

seasonal predictions.66

Unlike predictions on multi-year to decadal time scales that are characterized by com-67

bined signals from internal climate variations and changes in external radiative forcing (Meehl68

et al. 2009; Taylor et al. 2012), predictions on seasonal scales is generally about 12 months69

in length and thereby the externally-forced signals are often overlooked. However, the as-70

sessment period for seasonal predictions spans about 20 to 30 years (Saha and Coauthors71

2006), indicating the prominence of externally-forced climate signals in seasonal predictions72

in addition to internal climate variability. Hence, seasonal climate predcitions could be a73

joint initial-boundary value problem (Doblas-Reyes et al. 2013), similar to decadal predic-74

tions. Distinguishing the role of externally-forced changes from internal variability in decadal75

predictions has been well studied (Smith et al. 2008; Solomon and Coauthors 2011; Yang76

and Coauthors 2013), but has not been well documented in seasonal predictions. In this77

study, we employ the APT method to isolate predictable patterns on different time scales78

in the seasonal hindcasts and investigate the roles of external forcing and internal climate79

variability in seasonal predictions.80

The rest of the paper is organized as follows: The model and data are introduced in Sec.2.81
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The methodology is described in Sec.3. Our results are discussed in Sec.4, and summarized82

in Sec.5.83

2. Model and data84

The new high-resolution climate model FLOR is a combination of two previously de-85

scribed coupled model configurations. The atmosphere (AM2.5) and land models have an86

approximately 50km × 50km spatial resolution, and are those used in GFDL CM2.5 and87

CM2.6 (Delworth et al. 2012), which have ocean models at 0.25◦ × 0.25◦ and 0.1◦ × 0.1◦88

resolutions respectively. The ocean and sea ice component of the FLOR model are at 1◦x1◦89

resolution, based on those of CM2.1. CM2.1 model has atmospheric resolution of 2◦ lati-90

tude x 2.5◦ longitude, and has been used extensively for climate research, predictions and91

projections for close to a decade. In FLOR, the ocean component has been slightly altered92

from that of CM2.1 by incorporating a newer, higher order advection scheme; an updated93

parameterization for eddies (Ferrari et al. 2012); and having a more realistic representation94

of the solar absorption by the ocean. The initial conditions for the ocean and ice components95

in FLOR are taken from GFDL’s ensemble coupled data assimilation (ECDA) system devel-96

oped for CM2.1 specifically (Zhang et al. 2007; Zhang and Rosati 2010). The ECDA covers97

the period 1960 to present and is being updated monthly for GFDL’s seasonal-to-decadal98

experimental forecasts (Yang and Coauthors 2013; Vecchi and Coauthors 2013). A com-99

prehensive assessment of oceanic variability from the latest version of ECDA analyzed from100

1960 to 2010 can be found in Chang et al. (2013). The initial conditions for the atmosphere101

and land components are taken from AM2.5 simulations driven by observed SST. Additional102

description of aspects of the FLOR model will be described in a series of papers, including103

Vecchi and Coauthors (2014); Winton and Coauthors (2014) .104

Ensemble hindcasts were made from 1980 to present for FLOR and CM2.1. The hindcasts105

are initialized at the first day of each month, and are run for 12 months. There are 12106
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(10) ensemble members for each prediction in FLOR (CM2.1). We analyzed hindcasts of107

2m air temperature and precipitation over land and global sea surface temperature (SST)108

during the period of 1980-2012 (1982-2011) in FLOR (CM2.1). A three-month running109

mean was applied to hindcasts to remove sub-seasonal variability. We also analyzed 2m110

air temperature, precipitation, SST, meridional and zonal velocity at 925hPa, 850hPa and111

200hPa and sea level pressure in FLOR, CM2.1 and CM2.5 1990 control simulations, in112

which the atmospheric composition (greenhouse gases, aerosols) and external forcing (solar113

irradiance) are fixed at 1990 levels. The 2m air temperature (1980-2005) from 5-member114

historical runs of FLOR were used to diagnose externally-forced temperature patterns. The115

5 members of FLOR historical runs start from year 101, 141, 181, 221 and 261 of the 1860116

control simulation (i.e., the atmospheric composition and external forcing fixed at 1860117

levels) respectively.118

The observations used in this study are precipitation at 0.5◦ resolution from National119

Oceanic and Atmospheric Administration (NOAA)’s precipitation reconstruction over land120

(Chen et al. 2002); CPC Merged Analysis of Precipitation (CMAP) at 2.5◦ resolution;121

GHCN Gridded V2 2m air temperature over land at 0.5◦ resolution (Fan and van den122

Dool 2008); Hadley Centre sea ice and sea surface temperature data set (Rayner et al.123

2003); NCEP/NCAR Reanalysis-1 surface temperature and precipitation. Velocity and sea124

level pressure data are from Modern-era Retrospective Analysis for Research and Applica-125

tions (MERRA). The observed NINO3.4 index was downloaded from NOAA’s website at126

http://www.cpc.ncep.noaa.gov/data/indices/127

ersst3b.nino.mth.81-10.ascii.128
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3. Review of Methodology129

To identify predictable components, we employed the technique of average predictability130

time (APT). Following DelSole and Tippett (2009b), APT is defined as131

APT = 2
∞∑
τ=1

(
1− σ2

τ

σ2
clim

)
, (1)132

where σ2
τ denotes the forecast variance at lead time τ , and σ2

clim denotes the climatological133

variance. Let x(τ, t, e) be the state vector specifying the amplitudes of ensemble forecasts134

at fixed lead time τ , start time t, and ensemble member e. We seek linear combination of135

variables, qTx(τ, t, e), that maximizes APT. Let the weights of the linear combination be136

specified by vector q. The forecast variance of qTx(τ, t, e) at lead time τ is137

σ2
τ = qT (x(τ, t, e)− 〈x(τ, t, e)〉)(x(τ, t, e)− 〈x(τ, t, e)〉)Tq = qT Σ̂τq, (2)138

where the angle brackets denote the average over ensemble members. The overline denotes139

the average over start times, and Σ̂τ denotes an estimate of the forecast covariance matrix140

at lead time τ . The climatological variance is the variance of all ensemble forecasts, denoted141

as142

σ2
clim = qT

(
x(τ, t, e)− x(τ, t, e)

)(
x(τ, t, e)− x(τ, t, e)

)T
q = qT Σ̂climq, (3)143

where the overline denotes the average over all start times, lead times and ensemble members,144

Σ̂clim is the estimated climatological covariance matrix. Substituting (2) and (3) into (1)145

gives146

APT = 2
∞∑
τ=1

(
qT (Σ̂clim − Σ̂τ )q

qT Σ̂climq

)
. (4)147

It can be shown that maximizing (4) leads to a generalized eigenvalue problem148

2
∞∑
τ=1

(
Σ̂clim − Σ̂τ

)
q = λΣ̂climq. (5)149

The eigenvalue λ gives APT value, and each eigenvector q corresponds to a component.150

Each component is uncorrelated with one another due to the symmetry characteristic of Σ̂τ151

and Σ̂clim. We order the eigenvalues and their associated eigenvectors by decreasing order,152
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such that the first eigenvector maximizes APT, the second maximizes APT subject being153

uncorrelated with the first, and so on. More details of this APT technique is found in DelSole154

and Tippett (2009a,b), and the application of this technique can be found in Jia and DelSole155

(2011, 2012); Yang and Coauthors (2013).156

For typical global forecast data, the number of grid points exceeds the number of samples,157

so the above covariance matrixes are singular and the eigenvalue problem cannot be solved.158

A standard approach is to project the data onto the leading principal components (PCs) of159

the predictand, and then to maximize APT only in the subspace spanned by the leading PCs.160

In this paper, we chose 30 PCs for 2m air temperature and precipitation. The sensitivity161

of results to the number of PCs have been tested, and are not sensitive when using more162

than 20 PCs. Taking into account that leading PCs principally project on grids with large163

variances, we normalize original precipitation hindcasts by dividing the standard deviation at164

each grid. The normalized precipitation is able to capture large-scale precipitation structure.165

The squared error skill score (SESS) is used to measure skill, which is defined as166

SESS = 1−
∑

n(On − Pn)2∑
n(On −O)2

, (6)

where On is the observation at time n, Pn is the prediction of On, and O is the time mean of167

On for all years. The value of SESS is one for perfect forecast, and is negative if a prediction168

has a mean squared error larger than a prediction based on the climatological mean.169

4. Results170

a. Climate mean state, variability and prediction skill171

Fig. 1 shows annual mean precipitation and 2m air temperature in observations and 1990172

control simulations of FLOR and CM2.1, as well as the bias in FLOR and CM2.1. Compared173

to observed mean precipitation, FLOR and CM2.1 show a dry bias in most of South America,174

although FLOR shows less bias than CM2.1. FLOR also simulates mean precipitation better175
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than CM2.1 in tropical Africa, eastern China and the southeastern Unites States. As for176

annual mean 2m air temperature, the pattern is well simulated in FLOR and CM2.1, but177

CM2.1 shows a cold bias in most areas. FLOR shows less bias along the Andes and in178

equatorial Africa than does CM2.1.179

Besides annual mean temperature and precipitation, we also examined seasonal climate180

and variability of several important variables. Fig. 2 shows the scatter plot of pattern cor-181

relation of seasonal mean climate and standard deviation between observation and model182

simulations for FLOR vs. CM2.1 and FLOR vs. CM2.5. The pattern correlations be-183

tween model simulations and observations are higher in FLOR than in CM2.1 for nearly184

all variables and seasons, both in mean climate and standard deviation. In contrast, the185

pattern correlations in FLOR are comparable to those in CM2.5 for seasonal climate, and186

are slightly higher than CM2.5 for standard deviation, although the ocean resolution is in-187

creased in CM2.5. The fact that mean climate and climate variability improved considerably188

in FLOR over CM2.1, but moderately in CM2.5 over FLOR, supports the hypothesis that189

atmospheric and land resolution is critical to the improvements in these quantities, and this190

is the focus of our study.191

Another phenomenon worth examining is ENSO, and its teleconnections to remote re-192

gions. Fig. 3 shows the patterns of correlation between NINO3 sea surface temperature193

anomalies (SSTA) and the global anomalies of surface temperature and precipitation, for194

observations, a 280-yr control simulation of FLOR, CM2.1 and a 260-yr control simulation195

of CM2.5. In the observations, NINO3 SSTA is strongly correlated with both surface tem-196

perature and precipitation over the equatorial central and eastern Pacific. These strong197

correlations are well simulated in all three models. However, this zone of positive correlation198

extends farther west than observed in all three simulations, though the westward extent is199

somewhat reduced in FLOR and CM2.5 relative to CM2.1. Compared to CM2.1, FLOR and200

CM2.5 also show less extreme temperature correlations over Australia, the Amazon region,201

southern Africa, the tropical Atlantic and Indian Oceans, and the Southern Ocean, which are202
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more in line with observed values. In all three simulations, the negative temperature corre-203

lations over the contiguous United States, Argentina, China, the off-equatorial west Pacific,204

and southern Atlantic appear to be too strong, as are the positive temperature correlations205

over equatorial land areas. For precipitation, regions of both positive and negative correla-206

tions are generally stronger than estimated from observations. In particular, the negative207

precipitation correlations over the Maritime Continent and tropical Atlantic are too strong208

in all three simulations. The negative precipitation correlations over Australia, the Amazon,209

southern Africa and positive correlations over the equatorial Pacific and Indian Oceans, con-210

tiguous U.S., Argentina, and western Asia are also too strong in all three simulations, but211

these are somewhat reduced in FLOR and CM2.5. Consistent with our earlier results, the212

simulated temperature and precipitation correlation patterns appear to be influenced more213

by the increase in atmospheric resolution (going from CM2.1 to FLOR) than by the increase214

in ocean resolution (going from FLOR to CM2.5).215

To examine ENSO prediction skill, we show in Fig. 4 the SESS values and anomaly216

correlations of NINO3.4 index as a function of initial months and target months in FLOR217

and CM2.1. Both FLOR and CM2.1 show very high correlation skills. FLOR shows higher218

correlation than CM2.1 at short leads for initial months from August to December. The219

SESS values in FLOR are much larger (i.e., higher skill) than CM2.1 in boreal winter and220

spring of the target month. Such skill improvements in SESS are not seen in anomaly221

correlation, indicating that conditional bias are reduced in FLOR. We also found that the222

SESS values at long leads initialized in November, December, January are lower in FLOR223

than those in CM2.1. It will be shown shortly that the low SESS at long leads in FLOR224

might account for the low skill of the most predictable precipitation pattern at long leads in225

FLOR.226

We now identify predictable components of global precipitation over land in FLOR and227

CM2.1 hindcasts using APT analysis. The most predictable components of precipitation are228

shown in Fig. 5b, c, for FLOR and CM2.1 respectively. The most predictable components in229
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the two models are all significantly correlated with the NINO3.4 index. Thus, to evaluate the230

patterns emerging from the model, the predictable patterns are compared to the observed231

precipitation regression pattern with NINO3.4 index (Fig. 5a). The most predictable pattern232

in FLOR is much closer to the observed precipitation teleconnection pattern to ENSO than233

CM2.1, particularly in South America, southern United States, eastern China, Australia234

and southern Africa. A close comparison of the patterns in low latitudes of the Americas235

and Asia reveals that FLOR is able to capture small-scale structures near the Andes and in236

tropical Asian islands. The arc-shaped pattern in northern Australia is also well captured237

in FLOR. The wet areas in eastern China are weaker in CM2.1 than those in FLOR and238

observations, and CM2.1 predicts the east coast of equatorial Africa with the wrong sign.239

The improvements of retrospective prediction skill of the most predictable pattern in240

FLOR over CM2.1 are striking (Fig. 5e, f). The SESS values of ensemble mean prediction of241

the most predictable precipitation pattern are much larger in FLOR than CM2.1 in nearly all242

initial and target months, especially for target months from October to the following March.243

To gain insight into the skill difference between these two models, we compute the standard244

deviation of the time series of the most predictable pattern and normalize it relative to that245

from observation. A resulting value close to one implies that the predicted variability is close246

to observed variability, although the predictions and observations can be out of phase. But247

the out of phase case is penalized in the measure of SESS (i.e., leads to small SESS values).248

Fig. 5d shows the normalized standard deviation as a function of target month at different249

lead months in FLOR and CM2.1. At a specific target month, each dot in the figure denotes250

a particular lead month from 0 to 9. The normalized standard deviations in FLOR are closer251

to 1 than those of CM2.1 at target months from October to the following March, and the252

corresponding SESS values are much larger in FLOR compared to CM2.1, implying that253

the variability of the predictable pattern in those months is better predicted in FLOR than254

CM2.1. In other words, the conditional biases are considerably reduced in FLOR relative255

to CM2.1, which leads to higher SESS values. Skill improvements of FLOR over CM2.1 are256
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also found for predictable components of global 2m air temperature over land (not shown).257

As described in Sec. 2, the data assimilation used in FLOR was taken from the ECDA in258

CM2.1. We expect that skill can be further improved once the ECDA based on FLOR is259

available. Note that although skill improves in most cases in FLOR, we do find a few cases260

where the SESS values are lower than CM2.1, such as the long leads initialized in October,261

November, December and January. Such low skill in FLOR might be associated with the262

low skill in ENSO prediction after the spring barrier period as shown in Fig. 4.263

b. Predictable components of precipitation over land in FLOR on seasonal scales264

The improved predictions in FLOR motivate us to further explore prediction skill of265

precipitation and temperature over land in this high-resolution model on seasonal scales,266

considering that patterns of precipitation and temperature vary with seasons. Results for267

seasonal mean predictions in December-Feburary (DJF) and June-August (JJA) are dis-268

cussed in this section.269

The spatial patterns of the leading predictable component in DJF and the first two270

predictable components in JJA are show in Fig. 6 a, b, e, as these components are well sep-271

arated from the others. The first predictable pattern in DJF shows wet anomalies in eastern272

China, southern North and South America, southeast Africa, the Andes, and dry anomalies273

in northern Australia, southern Africa, northeastern South America. In JJA, the leading274

predictable component shows dry anomalies over India, eastern China, eastern Australia,275

the Sahel and central America. The second component in JJA shows dry conditions over276

India and northern South America, but wet conditions over large areas of the United States.277

The predictable patterns diagnosed here are in large agreement with the land precipitation278

teleconnection pattern to ENSO in previous studies (Ropelewski and Halpert 1996; Yang279

and DelSole 2012). In fact, the time series of these components are significantly correlated280

with NINO3.4 index, and the SST regression pattern on these components displays a classic281

ENSO structure (not shown). Therefore, these predictable components of precipitation over282
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land are likely ENSO-related.283

An important question is whether the components diagnosed in the dynamical model284

exist in the real world. We show in Fig. 6c, d, f the anomaly correlations between the time285

series of the predictable components and those from observations. The observed time series286

were derived by projecting predictable components on observations. The correlations are287

statistically significant at 5% significance level at all initial months in both seasons based288

on Student’s t-test. However, the SESS values, that take into account conditional bias,289

drop below zero at March initial condition in both seasons for the first component. The290

negative skill of predictions initialized in March is presumably due to the spring barrier of291

ENSO prediction (Barnston et al. 2012). The SESS values of the second component in JJA292

are positive for all initial months. We emphasize that our statistical optimization method293

is able to identify components that are physically meaningful (e.g., ENSO-related). Also,294

it is impressive that the predictable components diagnosed in a dynamical model can be295

predicted with significant skill in the real world.296

c. Predictable components of air temperature over land in FLOR on seasonal scales297

The spatial patterns of the first two predictable components of 2m air temperature in298

DJF and JJA and their associated correlation skill and SESS are shown in Fig. 7. The299

leading predictable components in both seasons show positive amplitudes nearly everywhere300

except for a few limited areas in DJF. Areas with maximum amplitudes vary with seasons. In301

DJF, large loadings in high latitudes of North America, central South America, South Africa302

and Australia. In JJA, maximum loadings are located in central North America, Greenland,303

northern Africa and central Eurasia. As the associated time series of the leading predictable304

component exhibits an increasing trend in both seasons (not shown), the leading predictable305

component indicates a multi-decadal warming signal. To explore the mechanism of the306

most predictable component, we diagnosed externally-forced patterns of 2m air temperature307

over land in DJF and JJA from FLOR historical runs, using signal-to-total maximizing308
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EOF method (Ting et al. 2009). As shown in Fig. 8, the externally-forced patterns in two309

seasons bear great similarity with the most predictable patterns, which implies that the most310

predictable components are the responses to external forcings.311

The spatial pattern of the second predictable component in DJF (Fig. 7e) shows dipole312

structures in North America, South America, Africa and positive sign in Australia and313

southern Asia, negative sign in mid to high latitudes of Eurasia. Again, the time series314

of the second component in DJF is significantly correlated with NINO3.4 index (cc=0.7)315

and the regressed SST pattern on this component reveals a classic ENSO pattern (not316

shown), implying that this component is associated with ENSO. The spatial structure of317

this component is consistent with the findings of a temperature teleconnection pattern with318

ENSO (Yang and DelSole 2012; Zhang et al. 2011). In JJA, relatively weak amplitudes of319

the second component are found compared to those in DJF (Fig. 7f). Unlike in DJF, the320

correlation between the time series of the second predictable component and NINO3.4 index321

is not statistically significant in JJA, suggesting that other processes than ENSO contribute322

to the predictability of JJA temperature. The mechanism of this component remains to be323

studied.324

The anomaly correlations of the first two predictable components, shown in Fig.7 c,325

d, g, h, demonstrate very high correlations in both seasons. The correlations are nearly326

unchanged with initial months. The SESS values are higher than 0.8 in most cases for327

the first component in both seasons. As for the second component, the SESS values are328

smaller, and are negative in JJA. A close scrutiny of the associated time series of the second329

component in JJA reveals that the negative SESS values are due to the overestimation of330

the predictable pattern in model compared to observations (not shown).331

The above analysis based upon APT isolated predictable components with different time332

scales and mechanisms, i.e. the externally-forced trend component on multi-decadal scales333

and the ENSO-related component on interannual scales. The trend component explains 7%334

(6.4%) of total variance in DJF (JJA), and the ENSO-related component in DJF explains335
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4.8% of total variance. It is noteworthy that both forced and unforced (i.e., ENSO) internal336

variability contribute to seasonal predictions of temperature.337

d. Reconstructing predictions from predictable components338

Having identified predictable components of seasonal temperature and precipitation over339

land, and demonstrated prediction skill of these components, it is compelling to reconstruct340

predictions based upon the leading few predictable components. We hypothesize that since341

the reconstructed predictions filter out unpredictable components in the model, they will be342

more likely to yield higher skill when compared with observations than the raw predictions343

directly from model. Thus, by ignoring unpredictable elements of the model predictions,344

we expect improvements in skill, even though we are “throwing out” some elements of the345

model predictions.346

The geographic distribution of SESS averaged over initial months are computed for pre-347

dictions constructed from the leading few predictable components (as those shown in Figs. 6348

and 7) of temperature and precipitation respectively, and are compared with raw predictions349

from FLOR in DJF and JJA (Fig. 9). The reason for averaging SESS over initial months350

is that the geographical distribution of SESS among different initial months are very close.351

Overall, the actual SESS values of reconstructed and raw predictions are larger in temper-352

ature than precipitation. The map of SESS difference (Fig. 9 far right column), defined353

as SESS of reconstructed predictions minus SESS of raw predictions, shows positive values354

nearly everywhere over the globe in both air temperature and precipitation and for both355

seasons, indicating improved skill in reconstructed predictions for temperature and precipi-356

tation in both seasons. These results are impressive in that reconstructed predictions using357

only 1-2 predictable components beat raw predictions. The improvements in precipitation358

predictions are generally higher than those in temperature as indicated by the darker color359

in the difference map of precipitation. Note that the skill improvements in precipitation360

are mostly over areas with negative SESS values in raw predictions. And, a large amount361
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of those areas with negative SESS show positive SESS in reconstructed predictions. Simi-362

lar geographic distribution of anomaly correlation skill shows that the correlation difference363

between reconstructed and raw predictions are small (Fig. 10). Only moderate improve-364

ments are found, and even decreases in correlation skill are seen in certain areas. The fact365

that moderate to no improvements in correlation skill but significant improvements in SESS366

over nearly the whole globe reveals that reconstructing predictions based on predictable367

components substantially reduces conditional biases.368

To further compare reconstructed and raw predictions, we show in Fig. 11 the percentage369

of grid points in each bin (interval of 0.04) for SESS and anomaly correlation of reconstructed370

vs. raw predictions. For example, a value of 0.5 indicate 0.5% of total grid points in that bin.371

Values above the diagonal line imply that SESS/correlation of reconstructed predictions is372

higher than that from raw predictions. Nearly all values for SESS are above the diagonal lines373

in temperature and precipitation. The improvements in SESS are considerable, particularly374

for precipitation grids with negative SESS in raw predictions, consistent with the results from375

geographical distribution maps shown in Fig. 9. The improvements in correlation are smaller376

than those in SESS. As SESS takes into account conditional biases, the higher improvements377

in SESS than correlation again implies reduced conditional bias in reconstructed predictions.378

5. Summary and discussion379

This study investigated seasonal prediction skill of 2m air temperature and precipita-380

tion over land in a new high-resolution climate model (FLOR) using a statistical opti-381

mization technique – APT. We first showed that this model, with high-resolution in the382

atmosphere and land, simulates mean climate and variability (including ENSO teleconnec-383

tion patterns) better than the lower resolution model CM2.1. A further increase in ocean384

resolution (CM2.5) does not385

In addition, FLOR exhibits higher skill in predicting the NINO3.4 index and the most386
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predictable component of temperature and precipitation than CM2.1 even with ocean initial387

conditions that are optimized to CM2.1 and without atmospheric data assimilation in the388

FLOR experiments.389

The improvements in FLOR motivated us to further examine the skill of temperature and390

precipitation over land in FLOR for DJF and JJA separately. It is shown that the two most391

predictable components for 2m air temperature over land are characterized by an externally-392

forced multi-decadal warming component in DJF and JJA, and an ENSO-related pattern in393

DJF. We emphasize that our technique is able to isolate components on different time scales,394

that are associated with different physical mechanisms. The most predictable components395

of precipitation over land are ENSO-related in both seasons. These predictable components396

of temperature and precipitation show significant correlation skill for all leads from 0 to397

9 months. The negative SESS values of the most predictable component of precipitation398

in both seasons at March initial condition might be related to the spring barrier of ENSO399

prediction.400

The reconstructed predictions based on the first few predictable components were com-401

pared to raw predictions directly from the model in both temperature and precipitation and402

for both seasons. The results showed considerable improvements in SESS nearly everywhere403

over the globe, but moderate to no improvements in correlation. This reveals that condi-404

tional bias is significantly reduced in reconstructed predictions. A question might be raised405

as whether the higher skill in reconstructed predictions versus raw predictions is a result406

of optimal filtering of unpredictable components or merely a result of filtering of PCs with407

small variances (leading 30PCs were used in APT analysis). To address this question, we408

examined the SESS of predictions that were reconstructed based on the leading 30PCs and409

without any optimal filtering. The resulting SESS values were lower than the reconstructed410

predictions from the first few predictable components (not shown). Therefore, optimal filter-411

ing of unpredictable components does contribute to the skill improvements of temperature412

and precipitation over land.413
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Our results suggest that a high-resolution dynamical model and refined statistical opti-414

mization techniques improve seasonal predictions of 2m air temperature and precipitation415

over land. The increased resolution in FLOR leads to better simulation of mean climate416

and variability, and improved predictions of ENSO, 2m air temperature and precipitation417

over land. Further improvements in skill are expected when the data assimilation system is418

available for FLOR. The statistical optimization method (APT) is able to isolate predictable419

components on different time scales that associated with different physical mechanisms. It420

is noteworthy that both externally-forced multi-decadal trend component and the internal421

ENSO-related component contribute to seasonal predictions of 2m air temperature. Re-422

constructing predictions based on predictable components provides a strategy to improve423

seasonal predictions. Our results are based on the specific FLOR model, so they could be424

model dependent.425
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Figure 1: Annual mean precipitation (a,b,c) and 2m air temperature (d,e,f) in observations
(1981-2010), FLOR (601-1200) and CM2.1 (101-300) control simulations; and the bias of
annual mean precipitation (g,h) and 2m air temperature (i,j) in FLOR and CM2.1. The
units of precipitation is mmday−1. The units of temperature is Kelvin.
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Figure 2: Scatter plot of pattern correlation between CM2.1(101-300) and observation(1982-
2000) (x-axis) and FLOR (601-1200) and observation (y-axis) for seasonal mean climate
(a) and standard deviation (c); and between CM2.5 (1-100) and observation (x-axis) and
FLOR and observation (y-axis) for seasonal mean climate (b) and standard deviation (d)
for precipitation, sea surface temperature, sea level pressure, zonal and meridional velocity
at 925hPa, 850hPa and 200hPa. Different colors indicate different seasons. Each symbol
represents a particular variable.
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Figure 3: Correlation between local surface temperature (left) and precipitation(right)
anomalies and NINO3 (150W-90W, 5S-5N) SST anomalies, for annual (June-May) means
from (a,e) NCEP/NCAR Reanalysis-1 (1951-2001) observations, and 1990 control runs from
(b,f) CM2.1 (11-290); (c,g) FLOR (11-290) and (d,h) CM2.5 (11-270). Anomalies are com-
puted by subtracting a 20-yr running mean from the original June-May annual-mean tem-
perature time series, which in addition to removing (25,50,75)% of the amplitude at periods
of (25, 33, 49) yr, also truncates the initial and final decades from the anomaly time series.
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Figure 4: Squared error skill score (a,b) and anomaly correlation (c,d) of NINO3.4 index in
FLOR and CM2.1 for each initial month and target month during 1981-2010 (1983-2010)
in FLOR (CM2.1). Each target month indicates a 3-month mean (e.g., target month Jan.
denotes Jan.-Mar. mean.)
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Figure 5: Observed precipitation teleconnection pattern to ENSO (in mmday−1 per unit
variate) (a); Spatial structure of the most predictable component of precipitation over land
(in mmday−1 per unit variate) from FLOR (b) and CM2.1 (c); Standard deviation of time
series of the most predictable pattern for different target months and initial months, nor-
malized relative to the observations (d). The squared error skill score for each initial month
and target month in FLOR (e) and CM2.1(f).
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Figure 6: Spatial structure of the most predictable component of precipitation over land (in
mmday−1 per unit variate) in DJF (a) and the first two predictable components in JJA (b, e);
The corresponding SESS (black solid), anomaly correlation (red solid) skill as a function of
initial month. The red dash lines indicate the 5% significance level for anomaly correlation.
The black dash lines indicate zero SESS.
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Figure 7: Spatial structure of the first two predictable components of 2m air temperature
(in degree kelvin per unit variate) in DJF (a, e) and JJA (b, f) and the corresponding SESS
(black solid) and anomaly correlation (red solid) skill as a function of initial month. The red
dash lines indicate the 5% significance level for anomaly correlation. The black dash lines
indicate zero SESS.
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Figure 8: Externally-forced pattern of 2m air temperature (in degree kelvin per unit variate)
over land in DJF (left) and JJA (right) derived from 5-member historical runs of FLOR
from 1980 to 2005.
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Figure 9: SESS of reconstructed predictions of 2m air temperature and precipitation from the
leading predictable components(far left column), raw predictions directly from FLOR(middle
column), and SESS of reconstructed predictions minus SESS of raw predictions (far right
column). The SESS is averaged over lead times from 0 to 9 months.
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Figure 10: Correlation of reconstructed predictions of 2m air temperature and precipitation
from the leading predictable components(far left column), raw predictions directly from
FLOR(middle column), and correlation of reconstructed predictions minus correlation of
raw predictions (far right column). The correlation is averaged over lead times from 0 to 9
months
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Figure 11: Percentage of grid points in each bin from -1 to 1 (interval of 0.04) for recon-
structed vs. raw SESS and anomaly correlation of 2m air temperature and precipitation in
DJF (left), JJA (right).
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