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ABSTRACT9

The seasonal predictability of extratropical storm tracks in Geophysical Fluid Dynamics10

Laboratory (GFDL)’s high-resolution climate model has been investigated using an aver-11

age predictability time analysis. The leading predictable components of extratropical storm12

tracks are ENSO-related spatial pattern for both boreal winter and summer, and the sec-13

ond predictable components are mostly due to changes in external radiative forcing and14

multidecadal oceanic variability. These two predictable components for both seasons show15

significant correlation skill for all leads from 0 to 9 months, while the skill of predicting16

the boreal winter storm track is consistently higher than that of the austral winter. The17

predictable components of extratropical storm tracks are dynamically consistent with the18

predictable components of the upper troposphere jet flow for the both seasons. Over the19

region with strong storm track signals in North America, the model is able to predict the20

changes in statistics of extremes connected to storm track changes (e.g., extreme low and21

high sea level pressure and extreme 2m air temperature) in response to different ENSO22

phases. These results point towards the possibility of providing skillful seasonal predictions23

of the statistics of extratropical extremes over land using high-resolution coupled models.24
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1. Introduction25

The midlatitude storm tracks are regions of frequent baroclinic waves and associated sur-26

face cyclones and anticyclones. These storms are characterized by strong winds and heavy27

precipitation, and all are thus a source of extreme regional weather and climate events.28

Additionally, the poleward transport of heat, momentum and moisture associated with mid-29

latitude storms is a prominent part of the global circulation system. Thus, predicting and30

projecting future changes of storm tracks is of huge societal and scientific interest.31

Mid-latitude storm tracks vary on seasonal, interannual and decadal-to-centennial time32

scales (Chang et al. 2002, 2013a; Stockdale et al. 2011). On interannual timescales, storm33

tracks change in response to the El Niño-Southern Oscillation (ENSO) cycle. During El34

Niño years, the Pacific storm track shifts equatorward and downstream (Straus and Shukla35

1997; Zhang and Held 1999; Eichler and Higgins 2006), while La Niña events drive a shift36

in the opposite direction. The dynamics of the midlatitude storm tracks’ response to ENSO37

involve extratropical response to local enhancement of the Hadley circulation over the east-38

ern Pacific (Bjerknes 1969), and there are feebacks from ENSO-induced storm track changes39

that play an important role in controlling the extratropical response to ENSO (Held et al.40

1989). The Northern Hemisphere winter storm tracks also exhibit interdecadal variations41

(Chang and Fu 2002). On centennial timescales, the CMIP3 and CMIP5 models, project42

poleward migration and intensification of the Southern Hemisphere storm tracks in the 21th
43

century in response to green house gas changes (Chang et al. 2013a, 2012). The observa-44

tional, theoretical and modeling aspects of the midlatitude storm tracks on multiple time45

scales have been extensively studied in the literature (see the review paper by Chang et al.46

(2002)), but, what has not been assessed as broadly is the extent to which the dynamical47

prediction system can predict seasonal storm track variations.48

State-of-the-art dynamical seasonal prediction systems have demonstrated skill in fore-49

casting oceanic, land surface temperature and precipitation in the retrospective forecasts50

(e.g., (Saha et al. 2006; Jia et al. 2014)), and the routine seasonal forecasts using dynam-51
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ical climate models have been provided to society and policy makers among the world-52

wide operational forecasting centers (Saha et al. 2006, 2014; Merryfield and Coauthors 2013;53

Stockdale et al. 2011). The useful products derived from the seasonal forecasts have been54

limited to the first moment of variables of interest, such as the seasonal mean land surface55

temperature and precipitation, but the predictability of the second moment of variables of56

interest, such as the variance statistics of extratropical storm tracks, has not been explored.57

The second moment of a variable contains detailed distribution beyond the simple mean,58

especially for the information related to extreme climate and weather events. Assessment59

of the predictability of the second moment statistics would potentially enrich the seasonal60

forecast information from a single mean to higher order and therefore provide more detailed61

information for the users. In addition, examining the storm track predictability is a mea-62

sure of model fidelity, since storm tracks are symbiotically linked to the planetary-scale flow63

(Cai and Mak 1990). In this study, we evaluate the predictability of extratropical storm64

tracks in GFDL’s high-resolution seasonal prediction system, which has been shown to pro-65

vide skillful seasonal forecasts of land surface temperature and precipitation (Jia et al. 2014),66

tropical cyclones (Vecchi et al. 2014), and Arctic sea-ice extent (Msadek et al. 2014a).67

In this study, we employ a method, called the average predictability time (APT) optimiza-68

tion (DelSole and Tippett 2009a,b; DelSole et al. 2011), to identify the predictable patterns69

of storm tracks in the seasonal hindcasts. The APT has been used for identifying an internal70

interdecadal predictable pattern of sea surface temperature in GFDL’s decadal hindcasts71

(Yang et al. 2013), and is capable of distinguishing the ENSO-driven seasonal signals from72

anthropogenic forced response of land surface temperature in GFDL’s seasonal hindcasts73

(Jia et al. 2014). Our main goals are to identify the predictable patterns of storm tracks in74

the hindcasts using APT, assess the prediction skill of those patterns and to understand the75

mechanisms responsible for that predictability. Details of the hindcasts and observational76

datasets are discussed in section 2. The methodology is reviewed in section 3. In section 4,77

the predictable patterns for storm tracks are identified by APT analysis, the retrospective78
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prediction skill is assessed using observations, and the role of mean flow predictability in79

storm track prediction is investigated. Conclusions and discussions are given in section 5.80

2. Model, Hindcast experiments and Observations81

The high-resolution climate model explored here, GFDL-FLOR (Forecast-oriented Low82

Resolution version of GFDL-CM2.5), is a combination of two previously described GFDL83

coupled model configurations, namely CM2.1 (Delworth et al. 2006) and CM2.5 (Delworth et al.84

2012). The atmosphere and land models have an approximately 50km by 50km spatial reso-85

lution, and are those used in GFDL-CM2.5 (Delworth et al. 2012), which have ocean models86

at a 0.25◦ × 0.25◦ resolution. The ocean and sea ice components of the model are at 1◦ × 1◦87

resolution, based on those of GFDL-CM2.1, which has been used extensively for climate88

research, predictions and projections for close to a decade. In this climate model, the ocean89

component has been slightly altered from that of CM2.1 by incorporating a newer, higher90

order advection scheme; an updated parameterization for eddies (Farneti et al. 2010); and91

a more realistic representation of the solar absorption by the ocean. The resulting model,92

FLOR, has most of its computational expense and resolution concentrated in the atmo-93

sphere and land components. A detailed description of the FLOR model can be found in94

Vecchi et al. (2014) and Jia et al. (2014).95

The seasonal hindcasts were initialized using the GFDL’s ensemble coupled data as-96

similation (ECDA) system. The ECDA employs an ensemble-based filtering algorithm ap-97

plied to the GFDL-CM2.1. More details of ECDA can be found in Zhang et al. (2007)98

and Zhang and Rosati (2010). The ECDA covers the period 1960 to present and is being99

updated monthly for GFDL’s seasonal-to-decadal experimental forecasts (Yang et al. 2013;100

Vecchi et al. 2013; Msadek et al. 2014b). A comprehensive assessment of the 1960-2010101

oceanic variability in the latest version of the ECDA can be found in Chang et al. (2013b).102

As the data assimilation system for FLOR is under development, the initial conditions for the103
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ocean and ice components of the FLOR hindcasts are taken from the ECDA, while the initial104

conditions for the atmosphere and land components are taken from FLOR atmosphere-only105

simulations driven by observed SSTs. The 12-member ensemble seasonal hindcasts were106

initialized on the 1st day every month from 1982 to 2014 and integrated for 12 months with107

temporally varying anthropogenic and natural forcing. The seasonal hindcast anomalies for108

each variable were obtained by subtracting out the lead-time dependent climotology from109

hindcasts. For the historical forcing simulations, the 5 ensemble members using FLOR were110

integrated using temporally varying anthropogenic and natural forcing from 1860 to 2013.111

Note that the temporally varying anthropogenic and natural forcings between 1982 to 2014112

are exactly the same for the historical forcing simulations and seasonal hindcasts.113

The observational data used in this study are the sea level pressure (SLP), 2-meter air114

temperature, 10-meter wind speeds, 300-hPa zonal winds and precipitation from the ERA-115

Interim reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF)116

(Dee et al. 2011). The NINO3.4 index, the average SST anomaly in the region bounded117

by 5◦N to 5◦S and from 170◦W to 120◦W, is calculated from the United Kingdom Mete-118

orological Office Hadley Centre’s Global sea-Ice coverage and SST (HadISST 1.1) analyses119

(Rayner et al. 2003). A rainy day is defined as a day with the daily precipitation exceeding120

1 mm per day based on the WMO recommendation (Klein Tank et al. 2009).121

The statistical significance test of the anomaly correlation coefficients (ACC) between122

observations and hinscasts is formed by the null hypothesis that ACC is 0, and we perform123

this test by determining whether the confidence interval for ACC contains 0. If the 95%124

confidence interval for ACC does not contain 0, we conclude that ACC is significant at 5%125

significant level.126
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3. Review of Methodology127

a. Storm track statistics128

To highlight synoptic time-scale variability, seasonal standard deviation statistics are129

computed using a 24-hour difference filter (Wallace et al. 1988), as follows:130

std =

√√√√ 1

N

N∑
t=1

[v(t + 24hr) − v(t)]2, (1)

where N is the sample size of each season, and v is a variable representing the storm track131

activity. As discussed in previous studies (Chang and Fu 2002), this filter has half power132

point at periods of 1.2 and 6 days, and results obtained based on this filter are very similar133

to those obtained using other commonly used band-pass filters. Many different variables134

are commonly used to measure storm-track activity, e.g., the meridional winds in different135

vertical levels, 500-hPa geopotential height and SLP (Chang et al. 2002, 2012). Here we136

use SLP for computing the storm track statistics, since our interest is in the surface storm137

tracks. We compute the seasonal storm track indices using (1) from 6-hourly SLP for both138

model hindcasts and ERA-Interim reanalysis. We only focus on the winter seasons of De-139

cember, January and February (DJF) for the northern hemisphere and July, August and140

September (JAS) for the southern hemisphere. Instead of using conventional June, July141

and August (JJA) months representing the southern hemisphere winter, JAS is used due142

to its stronger split jet mean flow than JJA (Yang and Chang 2006) and its stronger field143

significance of ENSO-teleconnected global temperature and precipitation patterns than JJA144

(Yang and DelSole 2012).145

b. The average predictability time analysis146

We employ the average predictability time (APT) optimization method to identify char-147

acteristic patterns of predictable components in the seasonal hindcasts. Complete details of148
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APT can be found in DelSole and Tippett (2009a,b). Briefly, the method is to maximize149

APT, which is defined as the integral over lead time of the “signal to total” variance ratio150

of a forecast model151

APT = 2

∫ ∞

0

σ2
signal(τ)

σ2
total

dτ, (2)152

where σ2
signal(τ) is the variance of the ensemble mean at fixed lead time τ , and σ2

total is153

the corresponding total variance of the forecast ensemble. For the ensemble forecasts, the154

signal and total covariance can be approximated by the corresponding ensemble covariances.155

Following DelSole and Tippett (2009a), maximizing APT in ensemble forecasts leads to the156

generalized eigenvalue problem157 (
2

L∑
τ=1

Σsignal(τ)

)
q = λΣtotalq, (3)158

where L is the maximum forecast lead time, q is the desired projection vector, Σsignal(τ)159

is the ensemble mean covariance matrix at the forecast lead time τ , and Σtotal is the total160

ensemble covariance matrix. The eigenvectors q provide the basis for decomposing the161

multivariate time series into a complete, uncorrelated set of components ordered such that162

the first maximizes APT, the second maximizes APT subject to being uncorrelated with the163

first, and so on. The eigenvalues of (3) correspond to the APT values of each component.164

This decomposition based on APT is analogous to Empirical Orthogonal Function (EOF)165

analysis, except that we decompose predictability instead of decomposing variance.166

For solving the APT optimization problem (3) in practice, the data are first projected167

onto the leading principal components (PCs) (DelSole et al. 2011). We have a relatively long168

sample size of 3960 (i.e., 33 initial conditions, 12 ensemble members and 10 lead times), so169

the time series and patterns from APT are virtually independent of the number of PCs in170

the range of 20-40 PCs (not shown). We choose 30 PCs for displaying results for both SLP171

and 300-hPa zonal wind in the following.172

Following DelSole et al. (2011), the statistical significance test of APT was estimated173

by Monte Carlo methods. The null hypothesis for the test is that the data are drawn174
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from a white noise process. Accordingly, we generated a 30 × 3960 data matrix by drawing175

independent random numbers from a normal distribution with zero mean and unit variance.176

The time dimension of the data was grouped as a set of 30 separate 10-season forecasts177

with 12 ensemble members each. 30 APT values were then determined. This procedure was178

repeated 1000 times to generate 1000× 30 APT values. The 95th percentile of the 1000× 30179

APT values was then determined as the threshold values for statistical significance.180

4. Results181

a. Mean flow and storm track climatology182

Since mid-latitude storm tracks interact with the large-scale mean flow through the wave-183

mean flow interactions, we first examine the model’s capability of reproducing the observed184

climatological mean flow and storm tracks. Fig. 1 shows mean 300-hPa zonal winds for185

DJF and JAS in observation and FLOR hindcasts. The pattern anomaly correlation coef-186

ficent and root mean square error between hindcasts and observation are 0.98 and 2.6 m187

s-1 respectively for DJF, and 0.98 and 2.8 m s-1 respectively for JAS. The high spatial cor-188

relation coefficients indicate that the model is able to reproduce the geographic feafures of189

the observed climatological storm tracks in both seasons. Compared to observations, the190

hindcasts reasonably simulate the location and intensity of the North Africa-East Asia jet,191

the North Pacific jet, and the North Atlantic jet in the DJF season. The remarkable zonal192

asymmetry of the DJF jet intensity in the Southern Ocean (i.e., the weaker jet stream in193

the South Pacific and the stronger jet in the South Indian and South Atlantic Ocean), is194

well reproduced in the hindcasts. In the JAS season, the model reproduces the observed195

location and intensity of jets in the North Pacific and the North Atlantic. It is worth noting196

that the split structure of the Southern Hemisphere winter jet is faithfully reproduced by197

the model (i.e., the model reproduces the strong subtropical jet extending from the central198

South Indian Ocean across Australia to the east-central South Pacific Ocean between 20◦S199
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and 40◦S the polar front jet concentrated along 60◦S in the South Pacific and a zone of weak200

westerlies centered in the New Zealand).201

Fig. 2 shows mean storm tracks for DJF and JAS in observation and FLOR hindcasts.202

The spatial root mean square errors between hindcasts and observation are 0.5 and 0.9203

hPa for DJF and JAS respectively. The spatial anomaly correlation coefficents between204

hindcasts and observation are 0.99 and 0.98 for DJF and JAS respectively, suggesting the205

high agreement between these two climatological fields. In the DJF season, the location,206

orientation and intensity of the North Pacific, the North American, the North Atlantic,207

Eurasia continent as well as Southern Hemisphere storm tracks are well simulated by the208

model, although the maxima of the North Pacific, the North Atlantic and the South Pacific209

storm tracks in the model are generally weaker than those in observations. In the JAS season,210

consistent with reproducing the split jet seen in Fig. 1, the model is capable of reproducing211

the observed location and intensity of the South Atlantic and southern Indian Ocean storm212

tracks and the poleward migration of the South Pacific storm tracks.213

b. Predictable patterns of Storm tracks214

We first apply APT analysis to the storm tracks for the DJF and JAS seasons. The APT215

values for the two seasons are shown in Fig. 3. Based on the Monte Carlo statistical test216

described in Section 3b, the first 3 components have statistically significant APT values for217

DJF and JAS respectively. However, only the two leading components have multi-season218

predictive skill verified against observations, so we only focus on the two leading components219

in this study.220

1) The DJF season221

The component with the maximum APT for the DJF season is shown in Fig 4a. The222

pattern generally shows an equatorward shift of the north Pacific and north Atlantic storm223
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tracks, the south Atlantic and Indian ocean storm tracks, weakening of the north America224

and the south Pacific storm tracks. Note that the amplitudes of the pattern are considerably225

large in the North America (over 0.7 hPa). The APT value for this component is 14.7 months,226

and the fraction of global variance explained by this component is about 7.8% (Fig. 3). The227

spatial distribution of the fraction of variance explained by the leading component is shown228

in Fig. 4b. We see that the leading predictable component explains as much as 35% of the229

variance in the North America, and 15% of the variance in the Southern Atlantic and Pacific230

Oceans. These results show that the leading predictable components explain a significant231

amount of variance in certain geographic locations.232

The time series of the leading APT as a function of initialized years from 1982 to 2014233

are shown in Fig. 4c for lead times 1-5 and 6-10 respectively. To assess the forecast skill234

of the component, we project the ERA-Interim data onto the eigenvector q with maximum235

APT from (3) to obtain the observed time series, which are indicated by the solid black236

line in Fig. 4c. The observed time series is highly correlated with the observed NINO3.4237

index with the correlation coefficient of 0.79, suggesting this pattern is ENSO-related. The238

anomaly correlation coefficients (ACC) between forecasts and observations as a function of239

initial months, shown in Fig. 4d, generally decrease with the lead time, but are statistically240

significant up to 9 months of lead time at 5% significance level. The skill of predicting this241

storm track pattern is generally lower than the skill of predicting ENSO itself (Fig. 4c),242

but they have a similar pattern over the initial months, i.e., the sharp decrease of ACC243

starting from early summer (June) to early Spring (March) initial conditions. The decrease244

in predictability over the summer is consistent with the known “spring barrier” of predicting245

ENSO and ENSO-related land temperature and precipitation patterns (Barnston et al. 2012;246

Jia et al. 2014).247

The leading predictable pattern of the storm track variability is consistent with the248

ENSO-teleconnected storm track patterns reported in previous modeling and observational249

studies (Straus and Shukla 1997; Zhang and Held 1999; Eichler and Higgins 2006). The ad-250

10



vance of this study is that the ENSO-related pattern is not only successfully identified in251

seasonal hindcasts using APT analysis, but this pattern as a whole may be retrospectively252

predictable up to 9 months in advance at the 5% significance level in GFDL’s fully-coupled253

high-resolution seasonal forecasting system.254

The second predictable component (PrC2) for the DJF seasonal hindcasts, shown in255

Fig 5a, generally shows a poleward shift and strengthening of the Southern Hemisphere (SH)256

storm tracks and weakening of the North Atlantic storm tracks. The APT value for this257

component is 6.4 months, and the fraction of global variance explained by this component258

is about 2.8%. The spatial distribution of the fraction of variance explained by PrC2 is259

shown in Fig. 5b. We see that PrC2 explains as much as 12.5% of the variance in the middle260

and high latitudes of Southern Oceans. These results show that PrC2 explains comparable261

amount of variance in certain geographic locations with that of PrC1. The time series of this262

component as a function of initialized years from 1982 to 2014 are shown in Fig. 5c for lead263

times 1-5 and 6-10 respectively. The ACC between forecasts and observations as a function264

of initial months, shown in Fig. 5d, are statistically significant up to 10 month of lead time265

at 5% significance level, but independent of the lead time.266

The time series of the PrC2 in the DJF season exhibits a multi-decadal increasing trend267

in the hindcasts as well as observations (Fig. 5c), and the associated pattern in the SH bears268

remarkable similarity with the linear trend pattern in FLOR’s historical forcing experiment269

(Fig. 6a), suggesting the signal in the SH is mostly the response to the changes in exter-270

nal radiative forcings. The pattern is also consistent with CMIP5 models’ projections of271

poleward expansion and strengthening of the SH storm track at the surface (Chang et al.272

2012). However, the weakening of the North Atlantic storm track is opposite to the linear273

trend pattern in the historical forcing experiment, and we speculate that it may be linked274

to the Atlantic Multidecadal Oscillation (AMO) phase transition from cold to warm in the275

last 30 years, since the warm phase of AMO tends to weaken the North Atlantic storm track276

(Zhang and Delworth 2007). Thus, both the radiative forcing and multidecadal oceanic277
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variability could contribute to the seasonal predictability of the DJF storm tracks.278

2) The JAS season279

The pattern of the PrC1 for the JAS seasonal hindcasts, shown in Fig 7a, generally shows280

a poleward shift of the South Atlantic storm tracks, a tripole structure with weakening of281

storm track activity between 40◦S and 60◦S and strengthening between 30◦S and 40◦S in the282

South Pacific, and strengthening of storm tracks in the west Antarctic continent. The APT283

value for this component is 10.5 months, and the fraction of global JAS variance explained284

by this component is about 5.5%. This component explains as much as 25% of the variance285

in the South Pacific Ocean (Fig. 7b), suggesting its significant contribution of predictability286

in certain geographic locations.287

The time series of the leading APT mode as a function of initialized years from 1982 to288

2014 are shown in Fig. 7c for lead times 1-5 and 6-10 respectively. Like the DJF PrC1, the289

observed time series of the JAS PrC1 is highly correlated with the observed NINO3.4 index290

with the correlation coefficient of 0.82, suggesting this pattern is ENSO-related. The ACC291

between forecasts and observations as a function of lead time, shown in Fig. 7d, generally292

shows a sharp decrease from June to February initial conditions for both PrC1 and NINO34293

index, although they are significant at 5% significance level over all the lead times. Again, it294

is likely related to the spring barrier of ENSO prediction. Compared with the DJF season,295

the skill of predicting the PrC1 and ENSO in JAS is consistently lower at each lead time.296

The ENSO-related storm track pattern is consistent with the observed Antarctic Dipole297

mode associated with ENSO (Yuan 2004). Note that the maximum amplitude center of the298

pattern locates in the zone where the climatological jet and storm tracks are weaker than the299

surrounding area in the South Pacific (see Fig. 1 and 2), so the leading predictable pattern300

of the JAS storm track in the SH is distinct from the storm track pattern associated with301

the leading atmosphere internal mode - the southern annular mode (Yang and Chang 2007).302

The second predictable component (PrC2) for the JAS season, shown in Fig. 8a, generally303
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shows a band of increase between 30◦S and 70◦S in the South Atlantic, South India Ocean304

and western South Pacific. The APT value for this component is 8.1 months, and the fraction305

of explained variance by this component is about 4.3%. The time series of this component as306

a function of initialized years from 1982 to 2014 are shown in Fig. 8b for lead times 1-5 and307

6-10 respectively. The time series of the PrC2 in the JAS season exhibits a multi-decadal308

increasing trend in the hindcasts as well as in the observations. The ACC between hindcasts309

and observations as a function of initial months, shown in Fig. 8c, are statistically significant310

at 5% significance level for 6 out of 10 initial months.311

The storm track pattern of the JAS PrC2 bears similarity with the linear trend pattern312

in the historical forcing experiment (Fig. 6b), but the amplitude is much stronger in the313

hindcasts than the historical forcing experiment, implying that this component is partly the314

response to the changes in external radiative forcings. In addition, the linear trend in the315

observed time series of the JAS PrC2 with a slope of 0.3 unit variate per decade is much316

weaker than the counterpart of the DJF PrC2 with a slope of 0.8 unit variate per decade317

(Fig. 5b and 8b), resulting in the lower skill of predicting the trend pattern in JAS than318

DJF.319

The above analysis based on APT decomposed predictable components with different320

time scales and mechanisms for the storm track, i.e., the ENSO-related component on inter-321

annual scales and the externally-forced trend component on multi-decadal scales, suggesting322

that both the forced component and the unforced internal variability contribute to seasonal323

predictions of mid-latitude storm tracks. This is consistent with the fact that seasonal pre-324

dictions of land 2m air temperature can be attributed to both the forced component and the325

unforced (i.e., ENSO) component relating to internal variability (Jia et al. 2014).326

3) Hindcast for 2013-2014 DJF season327

The APT analysis finds features that systematically maximize the average predictability328

over all lead times, so the identified predictable components (e.g., the ENSO-related compo-329
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nent and the multidecadal trend component) tend to persist over multiple seasons. However,330

there can be years that exhibit skill, even though the drivers of the APT features are not331

the principal sources of skill, e.g., in non-ENSO years. The 2013-2014 DJF season provides332

an example of this, as it was not a classic ENSO year and the observed storm tracks over333

the North America were enhanced (Fig. 9a). In 2013-2014 DJF, there was a pronounced334

reduction of storm track activity over the North Pacific ocean and the west coast of the335

United States, and a substantial increase of storm track activity extending from central336

Canada down to the Midwestern United States. This pattern differs from the classical cold337

ENSO pattern, and though the nominal NIÑO3 anomalies in 2013-14 winter were cold, it338

did not exhibit canonical ENSO anomalies in the eastern tropical Pacific. Nevertheless, the339

FLOR hindcasts initialized on 1st November, 2013 reproduce the principal aspects of the340

observed storm track anomalies (Fig. 9b), although the ensemble mean amplitudes are much341

weaker than the observations. The ensemble-mean forecast is compromised of some ensem-342

ble members that bear more and others less similarity to observations, with the ensemble343

mean showing the largest correlation with observation (Fig. 10). However, we show a “best”344

ensemble member which looks similar to observation by visual inspection in Fig. 9c. This345

member was able to reproduce the location and extreme amplitudes of the observed storm346

track anomalies, indicating that the observed extreme anomalies were in the forecast spread.347

The ability of the ensemble mean to recover the large observed correlation indicates a pre-348

dictable element to this particular winter’s storm tracks, but the ensemble spread indicates349

that the extreme values involved a stochastic element. To further examine the relationship350

among forecast ensembles and observation, we plot the anomalies of each member, ensem-351

ble mean and observations for one center of positive anomalies over the midwestern North352

America and the other center of negative anomalies in the North Pacific in Fig. 10. For353

both locations, the ensemble spreads are quite large while the observed anomalies are within354

the ensemble spread, suggesting that the uncertainty to the initial conditions is large and a355

sufficient mount of ensemble size is required for retrieving the signal for this case.356
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We note that the hindcasts initialized on 1st October 2013 show less agreement with357

observations, and there is almost no skill for the hindcasts initialized on 1st September 2013358

and earlier (not shown). Therefore, the skill for this year was limited to one to two months359

lead. A more detailed exploration of the mechanisms and sources of the predictability for360

this case is underway, and including additional experiments will be described in the future.361

c. Roles of mean flow in storm track predictability362

Mid-latitude storm track variations are symbiotically linked to the planetary-scale flow363

changes and their associated eddy-mean flow interactions (Cai and Mak 1990; Branstator364

1995). The dynamical processes governing ENSO-induced storm track predictability include365

representing the the planetary-scale flow associated with anomalous tropical heating and366

the eddy-mean flow interactions (Held et al. 1989). In general, a corresponding shift in the367

storm track structure will accompany an anomaly in the mean jet flow. We have shown that368

the ENSO-induced storm track pattern is predictable up to multiple seasons in advance in369

the GFDL high-resolution prediction system. To further confirm that the predictive skill370

arises from the consistent dynamical processes associated with the ENSO-induced forcing,371

we examine the predictable patterns for the 300 hPa zonal winds.372

Fig 11a shows the leading predictable pattern of DJF 300 hPa zonal winds. In the trop-373

ics, the pattern shows easterly anomalies in the eastern tropical Pacific Ocean and westerly374

anomalies in the tropical Atlantic Ocean, resembling a Gill-type response to ENSO-induced375

heating anomalies (Gill 1980; Jin and Hoskins 1995). In the NH subtropics and midlat-376

itudes, the pattern shows a strong dipole with strengthening of the subtropical jet and377

weakening of the mid-latitude jet extending from the North Pacific across North America to378

the North Atlantic, reminiscent of the Pacific-North American teleconnection pattern (PNA)379

(Wallace and Gutzler 1981) in the upper troposphere jet field. The pattern in the South Pa-380

cific also shows a strong dipole with strengthening of the subtropical jet and weakening of381

the mid-latitude jet, while a weak dipole shifting jet equatorward extends from the South382
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Atlantic to the South India. The APT value for this component is 17.9 months, and the383

fraction of global variance explained by this component is about 23.8%. The spatial distri-384

bution of the fraction of variance explained by this component also shows strong geographic385

locations, e.g., the fraction is as much as 50% in tropics and subtropics, and 30% in the386

extropics of North America (Fig. 11b).387

The observed and hindcasted time series of the leading APT as a function of initialized388

years from 1982 to 2014 are shown in Fig. 11c for lead times 1-5 and 6-10 respectively. The389

observed time series is very strongly correlated with the observed NINO3.4 index with the390

correlation coefficient 0.96, suggesting this pattern is ENSO-related. The skill of predicting391

this 300 hPa zonal wind pattern is almost tantamount to the skill of predicting ENSO itself.392

The second predictable pattern of the DJF 300-hPa zonal wind also exhibits a poleward shift393

and strengthening of the SH mid-latitude jet (not shown), which is consistent with the PrC2394

of the SH storm track.395

Fig 12a shows the leading predictable pattern of the JAS 300-hPa zonal winds. In the396

tropics, the pattern also shows a similar Gill-type response wind pattern to ENSO-induced397

heating anomalies as the DJF pattern. In the subtropics and midlatitudes,the maximum398

loadings of the pattern locate in the South Pacific with strengthening of the subtropical399

jet and the weakening of mid-latitude jet. The patterns in the South Atlantic and South400

Indian Oceans are generally of opposite signs to that in the South Pacific, although the401

associated amplitudes are much weaker. The zonal wind pattern is consistent with the402

observed wavetrain pattern associated with ENSO in the SH winter (Karoly 1989) and the403

observed Antarctic Dipole mode associated with ENSO (Yuan 2004). The APT value for this404

component is 15.7 months, and the fraction of global variance explained by this component is405

about 15.3%. This component explains as much as 50% in certain tropical and subtropical406

areas, and 30% in the South Pacific (Fig. 12b). Compared to the DJF season, the APT407

value and the fraction of global variance explained by PrC1 are consistently lower in JAS,408

suggesting the strong seasonal variations of the ENSO-teleconnected 300-hPa zonal wind409
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predictability.410

The observed and hindcasted time series of the leading APT as a function of initialized411

years from 1982 to 2014 are shown in Fig. 12b for lead times 1-5 and 6-10 respectively. Again,412

the observed time series is very strongly correlated with the observed NINO3.4 index with413

the correlation coefficient of 0.91 (Fig. 12b), suggesting this pattern is also strongly ENSO-414

related. The skill of predicting this 300 hPa zonal wind pattern is generally comparable with415

the skill of predicting ENSO itself.416

In summary, the leading predictable 300-hPa zonal wind patterns are dynamically con-417

sistent with the leading storm track patterns reported in Section 4b for both DJF and JAS418

seasons, and they are all related to ENSO. For instance, in DJF, the equatorward jet shift is419

accompanied by its storm track shift in the North Pacific, and the jet weakening is associated420

with a storm reduction in the mid and high latitudes of North America; in JAS season, the421

jet weakening is consistent with a storm reduction in the zone between subtropical and polar422

front jets in the South Pacific.423

d. Impact on extreme events424

The increase (reduction) of seasonal storm tracks enhances (reduces) the weather distur-425

bances (both cyclones and anticyclones), so the storm track changes associated with ENSO426

are characterized by changes in second-moment statistics (e.g., width of distribution) of427

weather-relevant variables (e.g., SLP, temperature, surface winds and precipitation). Since428

the ENSO-related storm track patterns are to some extent predictable in the model, we429

expect the corresponding second-moment statistics changes to be predictable. We use the430

percentile statistics as a measure of the distribution. Here, we examine the 1st, 50th and431

99th percentile values of SLP, temperature, wind and precipitation in the DJF season for 5432

year composites of El Niño (1982,1986, 1991, 1997 and 2009) and La Niña (1988, 1999, 2000,433

2007 and 2010) respectively. The year here refers to the year of the January.434

We focus on the crossline with maximum storm track predictable signals which extends435
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from northwestern Canada to the midwestern USA (Fig. 13a). The 1st, 50th and 99th per-436

centile values of SLP, calculated from the 6-hourly model and ERA-Interim data during the437

composite El Niño years and La Niña years along the crossline are shown in Fig 13. The438

model predicts more (less) extreme 99th and 1st percentile values of SLP during La Niña (El439

Niño) years. The 99th percentile SLP values changing with the ENSO phases are in good440

agreement between observations and model simulations. The predicted 50th percentile values441

changing with ENSO agree with observations only in the western half of the crossline, while442

the predicted 1th percentile values agree with observations only in the eastern half of the443

crossline. The distribution width changes of SLP associated with ENSO tend to skew to the444

anticyclone extremes in both the ERA-Interim reanalysis and model hindcasts, especially in445

the western half of the crossline. Note that the similar changes of extreme percentile values446

associated with ENSO phases were found in other short lead hindcasts (e.g., initialized later447

than 1st June of the composite years), and the changes are virtually indistinguishable for the448

hindcasts initialized earlier than 1st July of the composite years (not shown).449

The similar percentile values for the 2-m air temperature (T2m), 10-m wind speed450

(W10m) and the daily precipitation are shown in Fig 14. The model and observation agree451

well on the decreased (increased) 50th and 1st percentile values of T2m during La Niña (El452

Niño) years, while there is no agreement between the model and observation for the 99th
453

percentile values changing with the ENSO phases. For W10m, there is a general agreement454

between model and observation on the increased (decreased) 50th and 99th percentile values455

during La Niña (El Niño) years, although the contrast between the two phases of ENSO456

for 99th percentile values is weaker in observations. The daily precipitation’s 99th percentile457

value changes associated with ENSO phases are in low agreement between model and ob-458

servation, although the simulated daily precipitation shows a very slight coherent increased459

(decreased) 99th percentile values during La Niña (El Niño) years. Interestingly, model and460

observations generally agree on more rainy days during La Niña years than El Niño years461

(Fig. 15).462
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The percentile value changes of the meteorological variables associated with the ENSO463

phases are dynamically consistent with the corresponding predictable storm track changes464

over North America. During La Niña (El Niño) years, enhanced (reduced) storm tracks465

correspond to increased (decreased) anticyclones and cyclones over North America, leading466

to a broader (narrower) distribution width of SLP, i.e., the larger (smaller) 99th percentile467

values and smaller (larger) 1st percentile values. The distribution width changes of SLP tend468

to skew to the anticyclone extremes in both the ERA-Interim reanalysis and model hindcasts.469

Consequently, the distribution width changes of T2m skew to the cold temperature extremes,470

since an extreme cold event is generally linked to an extreme anticyclone with a cold front471

on its leading edge. The model also predicts coherent 10-m wind speed, daily precipitation472

extremes and rainy day ratio changes associated with ENSO. Thus, the high-resolution model473

is capable of providing the extreme-related second-order statistical information beyond a474

single mean for seasonal forecasts.475

5. Conclusions476

The seasonal predictability of extratropical storm tracks in GFDL’s high-resolution sea-477

sonal hindcasts has been investigated using APT analysis. For both DJF and JAS seasons,478

the leading predictable storm track patterns are ENSO-related. The positive phase of the479

DJF pattern generally shows an equatorward shift of the North Pacific and North Atlantic480

storm tracks, as well as of the South Atlantic and Indian ocean storm tracks, and weakening481

of the North America and the South Pacific storm tracks. Over 1980-2013, the whole pattern482

is retrospectively predictable up to 9 months in advance at the 5% significance level. The483

positive phase of the JAS pattern is characterized by a poleward shift of the South Atlantic484

storm tracks, a dipole structure with weakening of storm track activity between 40◦S and485

60◦S and strengthening between 30◦S and 40◦S in the South Pacific, and strengthening of486

storm tracks in the western Antarctic continent. The retrospective predictive skill of the487
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JAS pattern is generally lower than that of the DJF pattern.488

The positive phase of the second predictable component for the DJF seasonal hindcasts489

generally shows a poleward shift and strengthening of the Southern Hemisphere storm tracks490

and weakening of the North Atlantic storm tracks. The second mode’s time series is dom-491

inated by a multi-decadal trend in both hindcasts and observations, corresponding to the492

response to changes in external forcing and AMO phases. The second predictable component493

for the JAS season generally shows a band of increased storm activity between 30◦S and 70◦S494

in the South Atlantic, South India Ocean and the western part of the South Pacific, and the495

associated time series is trend-like, although the trend signal is weaker than during the DJF496

season. The significant role of radiative forcing to the seasonal prediction is also seen in the497

land surface temperature predictability using the same model (Jia et al. 2014), suggesting498

seasonal climate prediction is a joint initial-boundary value problem.499

The ENSO-related leading predictable storm track component is dynamically consistent500

with the leading predictable component of the 300-hPa zonal wind during both DJF and JAS501

seasons. For example, the equatorward jet shift in the DJF predictable mode is accompanied502

by a similar storm track shift in the North Pacific, while the jet weakening is associated503

with the storm reduction in the mid and high latitudes of North America; in JAS, the jet504

weakening has a storm reduction in the zone between the subtropical and polar front jets in505

the South Pacific.506

The fraction of global variance explained by each predictable component for both sea-507

sons is generally lower than about 10%, however, the predictable components can explain508

a substantially large amount of the variance over broad geographic regions. For example,509

the leading predictable compoment of storm tracks in DJF explains as much as 35% of the510

variance over much of North America.511

The FLOR model was able to retrospectively predict the meteorological variable extreme512

changes associated with ENSO over the region with the maximum predictable storm track513

signals in North America (Section 4d). During La Niña (El Niño) years, enhanced (reduced)514
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storm tracks correspond to increased (decreased) anticyclones and cyclones, which lead to515

a broader (narrower) distribution width of SLP, i.e., the larger (smaller) 99th percentile516

values and smaller (larger)1st percentile values. The changes in distribution width of SLP517

tend to skew to the anticyclone extremes in both the ERA-Interim reanalysis and model518

hindcasts. Consequently, the shape of the probability density of T2m changes so as towards519

skew to cold temperature extremes, since an extreme cold event is generally linked to an520

extreme anticyclone. The model also predicts coherent shifts in the statistics of extremes521

of 10-m wind speed, daily precipitation extremes and rainy day ratio changes associated522

with ENSO. Hence, as it has been able to do in the tropics when focusing on tropical523

cyclones (Vecchi et al. 2014), this high-resolution model is capable of providing higher-order524

statistical information related to extremes , thus enriching the seasonal forecast products for525

the research community and decision makers beyond the seasonal mean.526

The analyzed seasonal predictability of extratropical storm tracks may be subject to the527

forecast model and the initialization methodology used. Further improvements in predictive528

skill of extratropical storm tracks are expected when the seasonal prediction system directly529

uses the FLOR as the data assimilation model.530

Acknowledgments.531

We thank Lucas Harris and Liping Zhang for helpful reviews of an earlier draft. We532

thank Isaac Held for insightful discussions about this research which lead to improvements533

and clarifications. This research was supported by the Visiting Scientist Program at the Na-534

tional Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory,535

administered by the University Corporation for Atmospheric Research. This research was536

partly supported by the Disaster Recovery Act of 2013.537

21



538

REFERENCES539

Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of540

real-time seasonal ENSO model predictions during 200211: Is our capability increasing?.541

bull. amer. meteor. soc., 93, 631651. Bull. Amer. Mereor. Soc., 93, 631–651, doi:10.1175/542

BAMS-D-11-00111.1.543

Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea.544

Rev., 97, 163–172.545

Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency546

circulation anomalies. J. Atmos. Sci., 52, 207–226.547

Cai, M. and M. Mak, 1990: Symbiotic relation between planetary and synoptic scale waves.548

J. Atmos. Sci., 47, 2953–2968.549

Chang, E., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track550

change under global warming. J. Geophys. Res., 117, D23 118, doi:10.1029/2012JD018578.551

Chang, E. K. M. and Y. Fu, 2002: Interdecadal variations in northern hemisphere winter552

storm track intensity. J. Climate, 15, 642–658.553

Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013a: Storm-track activity in IPCC554

AR4/CMIP3 model simulations. J. Climate, 26, 246–260.555

Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15,556

2163–2183.557

Chang, Y.-S., S. Zhang, A. Rosati, T. L. Delworth, and W. F. Stern, 2013b: An assessment558

of oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation.559

Clim. Dyn., 40, 775–803, doi:10.1007/s00382-012-1412-2.560

22



Dee, D. P., et al., 2011: The ERA-Interim reanalysis: configuration and performance of the561

data assimilation system. Q.J.R. Meteorol. Soc., 137, 553–597.562

DelSole, T. and M. K. Tippett, 2009a: Average predictability time. part I: Theory. J. Atmos.563

Sci, 66, 1172–1187, doi:10.1175/2008JAS2868.1.564

DelSole, T. and M. K. Tippett, 2009b: Average predictability time. part II: seamless di-565

agnosis of predictability on multiple time scales. J. Atmos. Sci., 66, 1188–1204, doi:566

10.1175/2008JAS2869.1.567

DelSole, T., M. K. Tippett, and J. Shukla, 2011: A significant component of unforced568

multidecadal variability in the recent acceleration of global warming. J. Clim., 24, 909–569

926.570

Delworth, T. L., et al., 2006: GFDL’s CM2 global coupled climate models. part I: Formula-571

tion and simulation characteristics. J. Clim., 19, 643–674.572

Delworth, T. L., et al., 2012: Simulated climate and climate change in the GFDL CM2.5573

High-Resolution Coupled Climate Model. Journal of Climate, 25, 2755–2781.574

Eichler, T. and W. Higgins, 2006: Climatology and ENSO-Related Variability of North575

American Extratropical Cyclone Activity. J. Climate, 19, 2076–2093.576

Farneti, R., T. L. Delworth, A. J. Rosati, S. M. Griffies, and F. Zeng, 2010: The role of577

mesoscale eddies in the rectification of the southern ocean response to climate change. J.578

Phys. Oceanogr., 40, 1539–1557.579

Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulations.580

Quart. J. Roy. Meteor. Soc., 106, 447–462.581

Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to582

El Niño. J. Atmos. Sci., 46, 163–174.583

23



Jia, L., et al., 2014: Improved seasonal prediction skill of land temperature and precipitation584

in a GFDL high-resolution climate model. J. Climate, submitted.585

Jin, F. and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic586

atmosphere. J. Atmos. Sci., 52, 307–319.587

Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niña-588

Southern Oscillation events. Journal of Climate, 2, 1239–1252.589

Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes590

in a changing climate in support of informed decisions for adaption. Climate data and591

monitoring, WMO-TD 1500, 56pp, WCDMP-No. 72.592

Merryfield, W. J. and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction593

System. Part I: models and initialization. Mon. Wea. Rev., 141, 2910–2945.594

Msadek, R., G. A. Vecchi, M. Winton, and R. G. Gudgel, 2014a: Importance of initial595

conditions in seasonal predictions of arctic sea ice extent. Geophys. Res. Lett., submitted.596

Msadek, R., et al., 2014b: Predicting a decadal shift in north atlantic climate variability597

using the gfdl forecast system. J. Climate, in press, doi:10.1175/JCLI-D-13-00476.1.598

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, and599

A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine600

air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14), 4407,601

doi:10.1029/2002JD002670.602

Saha, S., et al., 2006: The NCEP Climate Forecat System. J. Climate, 19 (15), 3483–3517.603

Saha, S., et al., 2014: The NCEP Climate Forecast System Version 2. J. Climate, 27, 2185–604

2208.605

Stockdale, T. N., et al., 2011: ECMWF seasonal forecast system 3 and its prediction of sea606

surface temperature. Clim. Dyn., 37, 455–471.607

24



Straus, D. M. and J. Shukla, 1997: Variations of midlatitude transient dynamics associated608

with ENSO. J. Atmos. Sci., 54, 777–790.609

Vecchi, G., et al., 2014: On the seasonal forecasting to regional tropical cyclone activity. J.610

Climate, in press.611

Vecchi, G. A., et al., 2013: Multiyear predictions of north atlantic hurricane frequency:612

Promise and limitations. Jounral of Climate, 26, 5337–5357.613

Wallace, J., G. Lim, and M. Blackmon, 1988: Relationship between cyclone tracks, anticy-614

clone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439–462.615

Wallace, J. M. and D. S. Gutzler, 1981: Teleconnections in the geopotential height field616

during Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.617

Yang, X. and E. K. M. Chang, 2006: Variability of the southern hemisphere winter split618

flow: A case of two-way reinforcement between mean flow and eddy anomalies. Journal of619

the Atmospheric Sciences, 63, 634–650.620

Yang, X. and E. K. M. Chang, 2007: Eddy-zonal flow feedback in the southern hemisphere621

winter and summer. J. Atmos. Sci, 64, 3091–3112.622

Yang, X. and T. DelSole, 2012: Systematic comparison of ENSO teleconnection patterns623

between models and observations. J. Climate, 25, 425–446.624

Yang, X., et al., 2013: A predictable AMO-like pattern in GFDL’s coupled initialization and625

decadal forecasting system. Jounal of Climate, 26, 650–661.626

Yuan, X., 2004: ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and627

mechanisms. Antarctic Science, 16, 415–425, doi:10.1017/S0954102004002238.628

Zhang, R. and T. L. Delworth, 2007: Impact of the Atlantic Multidecadal Oscillation629

on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi:10.1029/2007/630

GL031601.631

25



Zhang, S., M. J. Harrison, A. Rosati, and A. T. Wittenberg, 2007: System design and632

evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon.633

Wea. Rev., 135, 3541–3564.634

Zhang, S. and A. Rosati, 2010: An inflated ensemble filter for ocean data assimilation with635

a biased coupled GCM. Mon. Wea. Rev., 138, 3905–3931.636

Zhang, Y. and I. M. Held, 1999: A linear stochastic model of a GCM’s midlatitude storm637

tracks. J. Atmos. Sci., 56, 3416–3435.638

26



List of Figures639

1 The climatological 300-hPa zonal winds for DJF in model a) and observation b), and JAS in model c) and observation d). The shading interval is 5 m s-1. Note the model climatology is also averaged over all lead times for displaying purpose. 28640

2 The climatological storm tracks measured by the standard deviation of 24-hour-difference filtered sea-level-pressures for DJF in model hindcasts a) and observation b), and JAS in model hindcasts c) and observation d). The shading interval is 2 hPa. 29641

3 a) The APT values and b) the associated fraction of explained variance using 30 leading PCs for the 24-hour difference filtered SLP in DJF and JAS. Solid line is the 5% significance level of the APT values. 30642

4 a) The spatial structure of the predictable component (shading) that maximized the average predictability time of storm tracks in the seasonal hindcasts for the DJF season, which is called PrC1. The black contour denotes the climatological storm tracks (in hPa). The shading unit is hPa per unit standard deviation. b) Percent of variance of storm tracks explained by PrC1. c) The ensemble mean time series of PrC1 averaged over lead time 1-5 months (red solid) and 6-10 months (blue solid) as a function of time, the time series of the ERA Interim data projected onto PrC1 (black solid), and the NINO34 index (green solid) from 1982 to 2014. d) The anomaly correlation coefficients (ACC) between forecasts and observations (red squares) and associated 95% error bars as a function of initial month. The green line denotes the ACC for the NINO34 index. 31643

5 a) The spatial structure of the second predictable component (shading, in hPa per unit standard deviation) that maximized the average predictability time of storm tracks in the hindcasts for the DJF season, which is called PrC2. The black contour denotes the climatological storm tracks (in hPa). b) Percent of variance of storm tracks explained by PrC2. c) The ensemble mean time series of PrC1 averaged over lead time 1-5 months (red solid) and 6-10 months (blue solid) as a function of time, the time series of the ERA Interim data projected onto PrC1 (black solid). d) The anomaly correlation coefficients (ACC) between forecasts and observations (red squares) and associated 95% error bars as a function of the forecast lead time. 32644

6 The linear trend pattern of storm tracks (shading) derived from the 5-member historical forcing simulations of FLOR from 1981 to 2013 for the DJF (a) and JAS (b) seasons. The shading unit is hPa per unit standard deviation. The black contour denotes the climatological storm tracks (in hPa). 33645

7 As in Fig. 4, but for the JAS season. 34646

8 As in Fig. 5, but for the JAS season. 35647

9 a) The observed storm track anomalies (shading) for the 2013-2014 DJF season. The ensemble mean b) and one “best” member c) of the predicted storm track anomalies initialized on 1st November 2013. The black contour denotes the climatological storm tracks. Units are hPa. 36648

10 The box and whisker plots for the pattern correlation coefficients (left column) between each ensemble member and observed storm track anomalies over the North Pacific and North American region (25◦N-70◦N, 150◦W-50◦W), the spatial mean storm track anomalies of each ensemble member and ensemble mean for one region (35◦N-60◦N,110◦W-90◦W) over the midwestern North America (middle column) and the other (35◦N-50◦N, 140◦W-120◦W) in the North Pacific (right column) respectively. The ensemble mean values are denoted as the red cycle symbols, and the observed values are denoted as the black cross symbols. The hindcast is the same as Fig. 9. 37649

11 a) The spatial structure of the leading predictable component (shading) that maximized the average predictability time of 300-hPa zonal winds in the hindcasts for the DJF season, which is called PrC1. The black contour denotes the climatological 300-hPa zonal winds (in m s-1 ). The shading unit is m s-1 per unit standard deviation. b) Percent of variance of storm tracks explained by PrC1. c) The ensemble mean time series of PrC1 averaged over lead time 1-5 months (red solid) and 6-10 months (blue solid) as a function of time, the time series of the ERA Interim data projected onto PrC1 (black solid). d) The anomaly correlation coefficients (ACC) between forecasts and observations (red squares) and associated 95% error bars as a function of the forecast lead time. The green line denotes the ACC for the NINO34 index. 38650

12 As in Fig. 11 but for the JAS season. 39651

13 a) The spatial structure of the leading predictable component (shading) that maximized the average predictability time of storm tracks in the hindcasts for the DJF season. The black contour denotes the climatological storm tracks (in hPa). The 1st (dots), 50th (solid) and 99th (dashed) percentile values of 6-hourly SLP in the composite El Niño years (red) and La Niña years (blue) for observation b) and model c) along the crossline with maximum storm track predictable signals (the thick line in a). Note the hindcasts shown here were initialized on 1st December of the composite years. 40652

14 The 1st (dots), 50th (solid) and 99th (dashed) percentile values of 6-hourly 2-m air temperature (top), 10-m wind speed (middle) and daily precipitation (bottom) in the composite El Niño years (red) and La Niña years (blue) for observation (left) and model (right) in the crossline with maximum storm track predictable signals (the heavy line in the upper panel of Fig. 13). Note the hindcasts shown here were initialized on 1st December of the composite years. 41653

15 The rainy day ratio during the composite El Niño years (red) and La Niña years (blue) for observation (left) and model (right) in the crossline with maximum storm track predictable signals (the heavy line in the upper panel in Fig. 13). 42654
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Fig. 1. The climatological 300-hPa zonal winds for DJF in model a) and observation b),
and JAS in model c) and observation d). The shading interval is 5 m s-1. Note the model
climatology is also averaged over all lead times for displaying purpose.
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Fig. 2. The climatological storm tracks measured by the standard deviation of 24-hour-
difference filtered sea-level-pressures for DJF in model hindcasts a) and observation b), and
JAS in model hindcasts c) and observation d). The shading interval is 2 hPa.
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Fig. 3. a) The APT values and b) the associated fraction of explained variance using 30
leading PCs for the 24-hour difference filtered SLP in DJF and JAS. Solid line is the 5%
significance level of the APT values.
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Fig. 4. a) The spatial structure of the predictable component (shading) that maximized
the average predictability time of storm tracks in the seasonal hindcasts for the DJF season,
which is called PrC1. The black contour denotes the climatological storm tracks (in hPa).
The shading unit is hPa per unit standard deviation. b) Percent of variance of storm tracks
explained by PrC1. c) The ensemble mean time series of PrC1 averaged over lead time 1-5
months (red solid) and 6-10 months (blue solid) as a function of time, the time series of the
ERA Interim data projected onto PrC1 (black solid), and the NINO34 index (green solid)
from 1982 to 2014. d) The anomaly correlation coefficients (ACC) between forecasts and
observations (red squares) and associated 95% error bars as a function of initial month. The
green line denotes the ACC for the NINO34 index.
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Fig. 5. a) The spatial structure of the second predictable component (shading, in hPa
per unit standard deviation) that maximized the average predictability time of storm tracks
in the hindcasts for the DJF season, which is called PrC2. The black contour denotes
the climatological storm tracks (in hPa). b) Percent of variance of storm tracks explained
by PrC2. c) The ensemble mean time series of PrC1 averaged over lead time 1-5 months
(red solid) and 6-10 months (blue solid) as a function of time, the time series of the ERA
Interim data projected onto PrC1 (black solid). d) The anomaly correlation coefficients
(ACC) between forecasts and observations (red squares) and associated 95% error bars as a
function of the forecast lead time.
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Fig. 6. The linear trend pattern of storm tracks (shading) derived from the 5-member
historical forcing simulations of FLOR from 1981 to 2013 for the DJF (a) and JAS (b)
seasons. The shading unit is hPa per unit standard deviation. The black contour denotes
the climatological storm tracks (in hPa).
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Fig. 7. As in Fig. 4, but for the JAS season.
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Fig. 8. As in Fig. 5, but for the JAS season.
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Fig. 9. a) The observed storm track anomalies (shading) for the 2013-2014 DJF season.
The ensemble mean b) and one “best” member c) of the predicted storm track anomalies
initialized on 1st November 2013. The black contour denotes the climatological storm tracks.
Units are hPa.
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Fig. 10. The box and whisker plots for the pattern correlation coefficients (left column) be-
tween each ensemble member and observed storm track anomalies over the North Pacific and
North American region (25◦N-70◦N, 150◦W-50◦W), the spatial mean storm track anomalies
of each ensemble member and ensemble mean for one region (35◦N-60◦N,110◦W-90◦W) over
the midwestern North America (middle column) and the other (35◦N-50◦N, 140◦W-120◦W)
in the North Pacific (right column) respectively. The ensemble mean values are denoted as
the red cycle symbols, and the observed values are denoted as the black cross symbols. The
hindcast is the same as Fig. 9.
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Fig. 11. a) The spatial structure of the leading predictable component (shading) that
maximized the average predictability time of 300-hPa zonal winds in the hindcasts for the
DJF season, which is called PrC1. The black contour denotes the climatological 300-hPa
zonal winds (in m s-1 ). The shading unit is m s-1 per unit standard deviation. b) Percent
of variance of storm tracks explained by PrC1. c) The ensemble mean time series of PrC1
averaged over lead time 1-5 months (red solid) and 6-10 months (blue solid) as a function
of time, the time series of the ERA Interim data projected onto PrC1 (black solid). d) The
anomaly correlation coefficients (ACC) between forecasts and observations (red squares) and
associated 95% error bars as a function of the forecast lead time. The green line denotes the
ACC for the NINO34 index.
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Fig. 12. As in Fig. 11 but for the JAS season.
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Fig. 13. a) The spatial structure of the leading predictable component (shading) that
maximized the average predictability time of storm tracks in the hindcasts for the DJF
season. The black contour denotes the climatological storm tracks (in hPa). The 1st (dots),
50th (solid) and 99th (dashed) percentile values of 6-hourly SLP in the composite El Niño
years (red) and La Niña years (blue) for observation b) and model c) along the crossline with
maximum storm track predictable signals (the thick line in a). Note the hindcasts shown
here were initialized on 1st December of the composite years.
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Fig. 14. The 1st (dots), 50th (solid) and 99th (dashed) percentile values of 6-hourly 2-m
air temperature (top), 10-m wind speed (middle) and daily precipitation (bottom) in the
composite El Niño years (red) and La Niña years (blue) for observation (left) and model
(right) in the crossline with maximum storm track predictable signals (the heavy line in the
upper panel of Fig. 13). Note the hindcasts shown here were initialized on 1st December of
the composite years.
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Fig. 15. The rainy day ratio during the composite El Niño years (red) and La Niña years
(blue) for observation (left) and model (right) in the crossline with maximum storm track
predictable signals (the heavy line in the upper panel in Fig. 13).
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