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ABSTRACT

The authors analyze and model time series of annual counts of tropical storms lasting more than 2 days in

the North Atlantic basin and U.S. landfalling tropical storms over the period 1878–2008 in relation to different

climate indices. The climate indices considered are the tropical Atlantic sea surface temperature (SST),

tropical mean SST, the North Atlantic Oscillation (NAO), and the Southern Oscillation index (SOI). Given

the uncertainties associated with a possible tropical storm undercount in the presatellite era, two different

time series of counts for the North Atlantic basin are employed: one is the original (uncorrected) tropical

storm record maintained by the National Hurricane Center and the other one is with a correction for the

estimated undercount associated with a changing observation network. Two different SST time series are

considered: the Met Office’s HadISSTv1 and NOAA’s Extended Reconstructed SST.

Given the nature of the data (counts), a Poisson regression model is adopted. The selection of statistically

significant covariates is performed by penalizing models for adding extra parameters and two penalty func-

tions are used. Depending on the penalty function, slightly different models, both in terms of covariates and

dependence of the model’s parameter, are obtained, showing that there is not a ‘‘single best’’ model. Moreover,

results are sensitive to the undercount correction and the SST time series.

Suggestions concerning the model to use are provided, driven by both the outcomes of the statistical

analyses and the current understanding of the underlying physical processes responsible for the genesis,

development, and tracks of tropical storms in the North Atlantic basin. Although no single model is un-

equivocally superior to the others, the authors suggest a very parsimonious family of models using as covariates

tropical Atlantic and tropical mean SSTs.

1. Introduction

Understanding, explaining, and predicting variations

and changes in tropical storm (TS; defined as tropical

cyclones with maximum sustained winds exceeding

17 m s21) frequency is a topic of profound societal sig-

nificance (e.g., Pielke and Landsea 1998, 1999; Rappaport

2000; Arguez and Elsner 2001; Negri et al. 2005; Ashley

and Ashley 2008a; Pielke et al. 2008; Derrig et al. 2008;

Saunders and Lea 2005; Ashley and Ashley 2008b) and

intense scientific interest. The occurrence and intensity of

TSs has varied on many time scales, from intraseasonal

to multidecadal (e.g., Goldenberg et al. 2001; Bell and

Chelliah 2006; Holland and Webster 2007; Chylek and

Lesins 2008). Furthermore, it has been argued that TS

frequency and intensity may be sensitive to changes in at-

mospheric composition in response to anthropogenic in-

creases of greenhouse gases (e.g., Henderson-Sellers et al.

1998), anthropogenic aerosols (e.g., Mann and Emanuel

2006), and natural aerosols (Evan et al. 2006). However,

even the sign of the sensitivity of North Atlantic TS
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frequency to increased greenhouse gases remains elu-

sive (e.g., Trenberth 2005; Shepherd and Knutson 2007;

Vecchi et al. 2008b), with studies suggesting an increase

(e.g., Emanuel 2005; Mann and Emanuel 2006; Oouchi

et al. 2006; Holland and Webster 2007), decrease (e.g.,

Bengtsson et al. 2007; Knutson et al. 2008; Gualdi et al.

2008), or a possibility for either (Emanuel et al. 2008;

Sugi et al. 2009; Zhao et al. 2009).

Whether we are already experiencing a change in TS

frequency from increases in greenhouse gas concentra-

tions remains a topic of vigorous discussion; whether the

number of tropical storms in the North Atlantic basin has

increased since the late nineteenth century and whether

the unambiguous increase over the last 20 years is part of

a long-term secular change remain unsettled.

Developing a robust empirical understanding of the

connections between frequency and large-scale climate

conditions is an essential step in order to improve our

predictive and explanatory understanding of TS varia-

tions. Multiple studies have associated tropical storm

activity with different climate indices, such as Atlantic

(e.g., Shapiro and Goldenberg 1998; Landsea et al. 1999;

Vitart and Anderson 2001; Emanuel 2005; Jagger and

Elsner 2006; Bell and Chelliah 2006; Hoyos et al. 2006;

Saunders and Lea 2008) and tropical (e.g., Latif et al.

2007; Vecchi and Soden 2007; Swanson 2008; Knutson

et al. 2008; Vecchi et al. 2008b) sea surface temperature

(SST), West African monsoon (e.g., Gray 1990; Landsea

and Gray 1992; Goldenberg and Shapiro 1996; Bell and

Chelliah 2006; Donnelly and Woodruff 2007), El Niño–

Southern Oscillation (e.g., Gray 1984; Wu and Lau 1992;

Bove et al. 1998; Elsner et al. 2001; Jagger et al. 2001;

Tartaglione et al. 2003; Elsner et al. 2004; Bell and

Chelliah 2006; Camargo et al. 2007; Donnelly and

Woodruff 2007), North Atlantic Oscillation (NAO;

Elsner et al. 2000b; Elsner and Kocher 2000; Elsner et al.

2000a; Jagger et al. 2001; Elsner et al. 2004; Elsner and

Jagger 2004; Pinto et al. 2009), Atlantic multidecadal

oscillation (e.g., Zhang and Delworth 2006; Goldenberg

et al. 2001), Atlantic Meridional Mode (Vimont and

Kossin 2007; Kossin and Vimont 2007), quasi-biennal os-

cillation (e.g., Shapiro 1982; Gray 1984), and Madden–

Julian oscillation (Maloney and Hartmann 2000; Barrett

and Leslie 2009; Camargo et al. 2009). However, ques-

tions concerning which of these climate indices (or what

combination) are most significant and should be included

in modeling the tropical storm counts are still debated.

Records of past TS activity provide a basis for empir-

ical models, guiding our assessment of future possibilities

for the North Atlantic basin. The Hurricane Database

(HURDAT; Jarvinen et al. 1984; Neumann et al. 1993)

represents the foundation of many studies. It is maintained

by the National Hurricane Center (NHC) and provides

location (latitude and longitude), and information about

maximum wind speed and minimum pressure of the

center of circulation (every 6 h) for recorded tropical

storms from 1851 to the present. Yet observing capa-

bilities over this long period have changed considerably,

resulting in a possibly inhomogeneous dataset. This in-

homogeneity has resulted in criticisms of the reliability

of the first part of the record, possibly explaining some

of the contradictory results concerning the presence (or

absence) of significant trends during the twentieth cen-

tury. To deal with this shortcoming, several different

corrections have been proposed (e.g., Landsea et al.

2004; Landsea 2007; Mann et al. 2007; Chang and Guo

2007; Vecchi and Knutson 2008; Landsea et al. 2010).

Accurate count data for the earliest part of the record

would allow extending the record back in time with con-

fidence, without having to only rely on the data from the

satellite era (from 1966), yet it is clear that we will never

know the exact count of tropical storms in the North At-

lantic basin. However, comparing the results obtained

from the original and corrected HURDAT datasets would

provide information about the sensitivity of the results to

plausible estimates of data undercount.

Uncertainties in the reference datasets combined with

incomplete understanding of physical processes could

significantly affect our capability to make meaningful

statements about the future. To answer questions about

the presence of increasing trends in the data as well as to

improve our understanding of the physical mechanisms,

two main venues are possible: dynamical models (e.g.,

Knutson and Tuleya 1999; Sugi et al. 2002; Knutson

and Tuleya 2004; Chauvin et al. 2006; Emanuel 2006;

Bengtsson et al. 2007; Knutson et al. 2007; LaRow et al.

2008; Emanuel et al. 2008) or statistical–empirical mod-

els (e.g., McDonnell and Holbrook 2004a,b; Elsner et al.

2004; Elsner and Jagger 2004; Sabbatelli and Mann 2007;

Elsner et al. 2008; Mestre and Hallegatte 2009). The

former reflect our understanding of the physical pro-

cesses, while the latter are used to draw information on

physical processes from the existing data. These two

approaches represent distinct ways of tackling this prob-

lem, which should complement each other.

In this study we use a statistical approach to shed light

on the relation between tropical storm count and cli-

mate indices. Statistical modeling of the count data has

been the object of studies in the past (e.g., Sabbatelli and

Mann 2007; Mestre and Hallegatte 2009). Here we build

on and expand these previous works. We model not only

the count data for the entire North Atlantic basin but

also the U.S. landfall events. Moreover, we restrict our

analysis on basin-wide frequency of TSs lasting longer

than 2 days since it has been argued that an inhomo-

geneity is likely to exist in the count of storms of shorter
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duration (Landsea et al. 2010). Furthermore, since we

cannot neglect the likelihood that the HURDAT data is

affected by storm undercount, we consider two datasets:

one in which we use the 2-day duration HURDAT data at

its ‘‘face value’’ and one in which we apply the recent

correction by Landsea et al. (2010) based on Vecchi and

Knutson (2008). It will be interesting to see how different

the models are for these two datasets. In contrast with

other statistical models, we also include tropical SST as

a possible covariate, reflecting the idea that warming of

the North Atlantic relative to the tropical oceans is more

important than the absolute Atlantic warming (e.g., Latif

et al. 2007; Vecchi and Soden 2007; Swanson 2008; Knutson

et al. 2008; Vecchi et al. 2008b). Finally, the selection of

significant covariates will be driven by both statistical

and physical reasoning.

Poisson regression represents the natural statistical

framework to model tropical storm counts. The key as-

sumption is that the counts are conditionally Poisson,

given appropriate covariate random variables. The model

simplifies to a standard Poisson distribution if the co-

variate is a constant rate parameter. This formulation

provides a useful approach to examining the dependence

of counts on climate indices, assessing overdispersion or

underdispersion of counts (relative to the Poisson model),

and characterizing temporal dependence of counts on

covariate processes. We also examine counts through

estimation of parameters of a negative binomial distri-

bution. This distribution has an extra parameter com-

pared to the Poisson distribution that allows modeling

overdispersion of count data.

In this study we address the following questions:

1) Can the count data for the North Atlantic basin and

U.S. landfall be modeled by a Poisson distribution with

constant parameters? Are the counts overdispersed

or underdispersed?

2) Which covariates are significant in modeling the

tropical storm count data?

3) What is the sensitivity of these models to estimates of

tropical storm undercount?

The paper is organized as follows. In section 2 we

describe the data and the different climate indices used

in this study. In section 3 we provide a brief description

of the different statistical models used to describe the

data. Section 4 describes the results of our analysis,

FIG. 1. Time series of the count of (top) U.S. landfalling tropical storms and of (bottom two) North Atlantic basin

storms lasting more than two days. (middle) The time series refers to the original HURDAT dataset, while (bottom)

accounts for the correction by Landsea et al. (2010).

JULY 2010 V I L L A R I N I E T A L . 2683



while in sections 5 and 6 we discuss some of the issues

related to this study and conclude the paper.

2. Data

a. HURDAT dataset

Count data for tropical storms in the North Atlantic

basin have been available since 1851 and represent the

backbone of studies examining trends in the frequency

of tropical storms over the past 150 years. Unfortunately

this record is not homogeneous: until 1943 it is based on

accounts from ships traveling over the North Atlantic

basin and reports of their landfall (even in the ship ob-

serving period, observations are not homogeneous and

reflect changes over time in the ship tracks; Vecchi and

Knutson 2008). Starting in 1944, the ship record is com-

plemented by organized aircraft reconnaissance flights.

Finally, starting in 1966, the record is based on satellite

observations. The earliest part of this record (in particular

before 1944) has been the object of criticism because of

the likely storm undercount, and different corrections

have been proposed. One of the most recent ones is by

Landsea et al. (2010). This correction takes the lead from

the approach proposed in Vecchi and Knutson (2008) and

focuses on storms lasting more than two days. This cor-

rection is not constant over time but tends to be larger the

further back in time we go, representing the degree of

uncertainty in the current record.

In this study we focus on modeling both the overall

count of tropical storms lasting more than two days for the

North Atlantic basin and the count of storms making

landfall in the United States (it is also possible that in the

nineteenth century a small number of these storms may have

not been recorded; e.g., Landsea et al. 2004, 2008) during

the period 1878–2008. As far as the former is concerned,

we analyze storms lasting more than two days and consider

both the original HURDAT dataset and the one corrected

according to Landsea et al. (2010). We will refer to the

former as ‘‘uncorrected’’ and to the latter as ‘‘corrected.’’

In Fig. 1 we show the time series of count data. In the

top panel we have the count data for the U.S. landfalling

tropical storms. The data exhibit a certain degree of in-

terdecadal variability, with periods of higher activity al-

ternating with periods of lower activity. This variability is

also present in the overall count for the North Atlantic

basin (Fig. 1). The undercount correction is more evident

in the earlier part of the record, and it becomes smaller

the closer we get to the satellite era.

b. Climate indices

The relation between tropical storms and climate in-

dices has been the object of several studies. In this study,

FIG. 2. Scatterplots of the (top) tropical Atlantic SST, (middle)

tropical mean SST, and (bottom) tropical Atlantic minus tropical

mean SST averaged over the period June–November based on the

Met Office’s HadISSTv1 and NOAA’s ERSSTv3b. The light gray

line corresponds to the x 5 y line.
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we focus our attention on four of these indexes [tropical

Atlantic SST (SSTAtl), tropical mean SST (SSTTrop),

Southern Oscillation index (SOI), and NAO] since rel-

atively high-quality data are available for the time

period of interest in this study. Various studies have

investigated the physical relation between these climate

indexes and tropical storms. For example, increasing ver-

tical shear of the upper-level horizontal winds associated

with El Niño events tends to suppress tropical storm

genesis and development (e.g., DeMaria 1996). In general,

a warmer Atlantic would result in increasing tropical storm

activity. However, recent studies have suggested that the

warming of the Atlantic relative to the state of the tropical

ocean may be a better predictor for increasing North At-

lantic tropical storm activity than Atlantic SST alone. The

possible relation between tropical storms and NAO re-

sides in the relation between the strength of the trade

winds and the position of the Bermuda high, which could

also affect the steering of the tropical storm tracks.

In this study, the Atlantic SST anomalies are com-

puted for a box 108–258N, 808–208W while the tropical

SST is computed over a box 308S–308N (ocean only),

averaged over the period June–November. We consider

SST time series from two datasets: version 1 of the Met

Office’s Hadley Centre Sea Ice and SST (HadISSTv1

(Rayner et al. 2003) and the National Oceanic and At-

mospheric Administration (NOAA) Extended Recon-

structed SST (ERSSTv3b; Smith et al. 2008). As shown in

Fig. 2, there are some differences between the two datasets,

likely related to the different approaches used to fill in

missing sea surface temperature values, different correc-

tions to changing instrumental methods (e.g., the ‘‘bucket

to intake’’ adjustment), and different use of the satellite

record. These discrepancies tend to be larger for the At-

lantic SST compared to the tropical SST, which exhibits

a better agreement. In this study we investigate the sensi-

tivity of our models to the two SST datasets. The SOI time

series is as in Trenberth (1984) and averaged over the pe-

riod August–October. Finally, the NAO time series is as in

Jones et al. (1997). We consider two averaging periods

since the pressure differences used to compute NAO are

stronger during the boreal winter and spring (e.g., Hurrell

and Van Loon 1997): one that includes May and June

(e.g., Elsner et al. 2001; Elsner 2003; Elsner et al. 2004) and

one that includes August–October (Elsner et al. 2000b;

Mestre and Hallegatte 2009), which represents the core

of the tropical storm season. Therefore, we consider five

possible predictors to model tropical storm count data:

SSTAtl, SSTTrop, SOI, NAO averaged over May–June,

and NAO averaged over August–October. In Fig. 3 we

have plotted the scatterplots of the different climate

indices. The strongest linear relation is between SSTAtl

and SSTTrop. We also notice that NAO (averaged over

May–June and August–October) tends to anticorrelated

with SSTAtl, while SSTTrop seems to be anticorrelated

with SOI, representing the tendency of El Niño to be

associated with warmer tropics.

3. Statistical models

Denoting the counts in year i by Ni, we say that Ni has

a conditional Poisson distribution with rate Li provided

that

P(N
i
5 kjL

i
) 5

e�L
i Lk

i

k!
(k 5 0, 1, 2, . . .), (1)

where Li is a nonnegative random variable.

Poisson regression is a form of regression in which the

response variable is in the form of count data. More

specifically, it is a form of generalized additive model

(GAM) in which the response variable is Poisson dis-

tributed (e.g., Hastie and Tibshirani 1990). We will ex-

amine the rate of occurrence Li of the following form:

L
i
5 exp[b

0
1 b

1
h

1
(x

1,i
) 1 b

2
h

2
(x

2,i
) 1 � � �1 b

n
h

n
(x

n,i
)],

(2)

where (x1,i, . . . , xn,i) is a vector of observable covariate

random variables for year i [see Smith and Karr (1986)

and Karr (1991) for a more general formulation]. These

will include Atlantic and tropical SSTs, NAO, and SOI.

In the special case that

b
1

5 b
2

5 � � �5 b
n

5 0, (3)

the model simplifies to a standard Poisson random var-

iable with parameter Li 5 exp(b0).

In the case in which h1(�), h2(�), . . . , hn(�) are linear

functions, we have a generalized linear model (GLM;

McCullagh and Nelder 1989; Dobson 2001) of the fol-

lowing form:

L
i
5 exp(b

0
1 b

1
x

1,i
1 b

2
x

2,i
1 � � �1 b

n
x

n,i
). (4)

We first consider a case in which the only covariate is

time t and two different models:

E[N
i
] 5 L

i
5 exp(constant), (5)

E[N
i
] 5 L

i
5 exp[cs(i)], (6)

where cs(�) represents a cubic spline. The degrees of

freedom of the cubic spline are optimized using the

Akaike information criterion (AIC; Akaike 1974) and

the Schwarz Bayesian criterion [SBC; Schwarz 1978; for
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a discussion, consult Rigby and Stasinopoulos (2005) and

Stasinopoulos and Rigby (2007)]. Notice that as the de-

grees of freedom tend to zero, the cubic spline tends to a

straight line.

For a Poisson-distributed random variable the mean

and variance are equal to Li. However, it is possible that

the variance is larger (smaller) than the mean, which is

commonly referred to as overdispersion (underdispersion),

with overdispersion being more common. To examine

this behavior, we also estimate the parameters for a

negative binomial model (Hilbe 2007). In this case, in-

stead of following a Poisson distribution, the random

variable Ni follows a negative binomial type I distribu-

tion (Stasinopoulos et al. 2009):

FIG. 4. Modeling the count data for (top) landfalling tropical storms, (middle) ‘‘uncorrected’’ HURDAT

dataset, and (bottom) the HURDAT dataset with the Landsea et al. (2010) correction. The only covariate

is time. The white line represents the median (50th percentile), the dark gray region the area between the

25th and 75th percentiles, and the light gray region the area between the 5th and 95th percentiles.
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P(N
i
jL

i
, s

i
) 5

G(k 1 1/s
i
)

G(k 1 1)G(1/s
i
)

(L
i
s

i
)k

L
i
s

i
1 1

" #k1(1/s
i
)

, (7)

where G(�) is the gamma function, Li . 0 is the mean,

(Li 1 siLi
2) is the variance of the negative binomial dis-

tribution, and si . 0 is the dispersion parameter. This

distribution has one additional parameter compared to

the Poisson distribution, allowing for overdispersion in the

data. In this case, we consider two different models: (i)

both Li and si are modeled as constants and (ii) both Li

and si are modeled as optimized cubic splines.

Apart from modeling the count data as function of time,

we also consider the five covariates discussed in the

previous section. We include two-way interaction terms

(e.g., Elsner and Jagger 2004; Mestre and Hallegatte 2009)

and we do not restrict the dependence of Li to a linear

function (e.g., Elsner and Schmertmann 1993; Elsner

et al. 2000a; Elsner and Jagger 2004, 2006; Sabbatelli and

Mann 2007), but we also include smooth dependence of

this parameter on these covariates via a logarithmic link

function (see also Mestre and Hallegatte 2009). Moreover,

to avoid model overfitting and in agreement with the

parsimony principle, stepwise methods were used with

respect to both AIC and SBC. The use of these criteria

represents a trade-off between model complexity and

precision. AIC and SBC have the following formulation:

AIC 5 �2 ln(L) 1 2k, (8)

SBC 5 �2 ln(L) 1 k ln(n), (9)

where L is the maximum likelihood value for the model,

k is the number of free parameters to estimate, while n is

the number of observations (in this case, n 5 131). Since

TABLE 1. Summary statistics for the modeling of tropical storm counts using time as covariate. For the parameters Li and si, the first value

is the point estimate, while the one in parentheses is the standard error; when more than one estimate is present in a cell, the first estimate

refers to the intercept, while the second one is the coefficient of the cubic spline. Four different models are summarized: ‘‘PO1’’ is the Poisson

model with constant Li; ‘‘PO2’’ is the Poisson model where Li depends on time via an optimized cubic spline; ‘‘NB1’’ is the negative binomial

model with constant Li and si; ‘‘NB2’’ is the negative binomial model where Li and si depend on time via an optimized cubic spline.

Landfall PO1 PO2 NB1 NB2

Li 1.26 (0.02) 2.58 (2.29) 20.001 (0.001) 1.26 (0.05) 21.63 (2.29) 0.002 (0.001)

si — — 25.32 (7.19) 1479.7 (2.07) 20.77 (0.001)

Degrees of freedom for the fit 1 6.14 2 9.12

Mean (residuals) 20.01 0.01 0.00 0.01

Variance (residuals) 0.94 0.91 1.00 0.80

Skewness (residuals) 0.33 0.23 0.32 0.35

Kurtosis (residuals) 2.41 2.60 2.33 2.74

Filliben (residuals) 0.991 0.996 0.988 0.993

AIC 527.3 520.3 529.3 526.1

SBC 530.2 538.0 535.0 552.3

Uncorrected

Li 2.06 (0.02) 20.71 (1.56) 0.001 (0.001) 2.06 (0.04) 20.46 (1.84) 0.001 (0.001)

si — — 22.86 (0.4) 27.03 (26.03) 20.015 (0.01)

Degrees of freedom for the fit 1 5.61 2 10.6

Mean (residuals) 20.01 20.02 20.00 0.01

Variance (residuals) 1.44 1.25 1.00 0.92

Skewness (residuals) 0.40 0.27 0.19 0.13

Kurtosis (residuals) 3.59 3.35 3.54 2.84

Filliben (residuals) 0.991 0.994 0.993 0.996

AIC 692.6 681.3 683.9 678.8

SBC 695.5 697.5 689.7 709.3

Corrected PO1 PO2 NB1 NB2

Li 2.13 (0.02) 3.23 (1.48) 20.001 (0.001) 2.13 (0.04) 3.43 (1.66) 20.001 (0.001)

si — — 23.07 (0.44) 12.21 (30.71) 20.008 (0.02)

Degrees of freedom for the fit 1 5.82 2 10.6

Mean (residuals) 20.03 20.00 0.00 20.00

Variance (residuals) 1.39 1.15 1.01 0.90

Skewness (residuals) 0.96 0.22 0.20 0.14

Kurtosis (residuals) 3.42 3.42 3.31 2.88

Filliben (residuals) 0.992 0.993 0.994 0.996

AIC 695.8 680.1 689.4 681.3

SBC 698.7 696.9 695.2 711.9
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ln(n) ’ 4.9, SBC will apply a larger penalty for adding

extra parameters, resulting in a more parsimonious model

compared to AIC. It is clear that a local adapting function

like a cubic spline provides a better representation of the

data. However, it is important to evaluate whether this

increase in complexity is associated with significant ad-

ditional information extracted from the data. We will

show how the ‘‘optimal’’ model depends on the selected

penalty criterion. Moreover, we will also complement

the statistically driven model selection with additional

model configurations driven by physical reasoning.

Since AIC and SBC do not provide indications about

the quality of the fit (e.g., Hipel 1981), the performance

of the selected model is assessed by analysis of the re-

siduals. If the selected model describes all the system-

atic information, the residuals should be independent

and identically distributed Gaussian noise (e.g., Rigby

and Stasinopoulos 2005). We analyze the (normalized

FIG. 5. Worm plots for the six models in Fig. 4. For a good fit, the points should be on the black line and

between the two gray lines.
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randomized quantile) residuals (Dunn and Smyth 1996)

in terms of their mean, variance, coefficient of skewness,

coefficient of kurtosis, and Filliben correlation coeffi-

cient (Filliben 1975; it represents the correlation co-

efficient between the order statistics of the residuals and

the order statistics of a standard normal distribution), as

well as by visual inspection of residual plots, such as

quantile–quantile (qq) plots and worm plots (see Fig. 5).

Worm plots represent detrended forms of qq plots, where

the shape of the ‘‘worm’’ provides indications about the

agreement between the data and the selected underlying

distribution. A flat worm indicates that the data follows

the selected distribution. Given the sampling uncer-

tainties, in particular for the high and low quantiles, the

points should be within the 95% confidence intervals.

For more details, the reader is pointed to van Buuren

and Fredriks (2001).

All the calculations are performed in R (R Develop-

ment Core Team 2008) using the freely available gamlss

package (Stasinopoulos et al. 2007).

FIG. 6. As in Fig. 4, but using the climate indices as covariates. Model selection is based on AIC. The

results by using SST (left) from the HadISSTv1 dataset and (right) from the ERSSTv3b dataset. See

Table 2 for more information.
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4. Results

In this section we present the results concerning the

modeling of tropical storm counts, and their relation to

climate indices.

a. Modeling of tropical storm counts

Here we explore models of tropical storm counts that

do not take into account any of the climate indices. Using

time as covariate, we have fitted four different models to

the tropical storm count data: (i) a Poisson model with

constant Li; (ii) a Poisson model in which Li depends on

time via an optimized cubic spline; (iii) a negative bi-

nomial model with constant Li and si; and (iv) a nega-

tive binomial model in which Li and si depend on time

via an optimized cubic spline. We have summarized

the modeling results in Fig. 4, and the quality of the fit in

Fig. 5 and Table 1.

We have started with the U.S. landfalling count by fit-

ting a model in which Li (via a logarithmic link function)

FIG. 7. Worm plots for the six models in Fig. 6.
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is constant. The count record shows a slight tendency

toward higher count values in the earlier and later part of

the record, as well as in the 1930s and 1940s. In Fig. 4 (top

panels) we show the results of the modeling using the

Poisson model with parameter Li constant and smooth

function of time (see Table 1 for a summary of the four

models). These two models were the ones with the lowest

SBC and AIC, respectively. In particular, the model with

Li modeled as a cubic spline (via a logarithmic link

function) highlights the alternation of more and less ac-

tive periods. In both cases, these models describe the

observations reasonably well. This is also supported by

the quality of the fit. We have examined the residuals

(Fig. 5; Table 1) and the two selected models provide the

best agreement with the data, avoiding overfitting. Based

on these results, it is difficult to make statements con-

cerning the presence of time trends in the Poisson model

for U.S. landfalling tropical storms (see also Elsner and

Bossak 2001; Parisi and Lund 2008). This is likely due to

the small number of landfalling tropical storms (see also

Coughlin et al. 2009; Nzerem et al. 2006) or to the lack of

a statistically significant trend.

Visual investigation of the record for the overall

number of tropical storms in the North Atlantic basin

shows an undulating behavior similar to the observed

data for the U.S. landfalling tropical storms, with more

active periods alternating with less active ones. In Fig. 4

(middle panels), we show the results of the modeling of

the uncorrected dataset, using both a Poisson and neg-

ative binomial models with parameters changing over

time by means of an optimized cubic spline. These two

models were the ones that best described the data. We

have summarized the quality of the fit in Fig. 5 and Table 1.

Both these models are able to well describe the observed

pattern, with the Poisson model that shows a tighter re-

gion between the 0.05 and 0.95 quantiles. The behavior

of the Li parameters is very similar for the two models.

In the negative binomial model, the dispersion param-

eter tends to be larger than zero in the 1930s and toward

the end of the record, expanding the 0.05–0.95 quantile

region and improving the model fit. Nonetheless, the

negative binomial model uses twice as many degrees of

freedom for the fitting, which makes it the least parsi-

monious model (Table 1).

In the bottom panels of Fig. 4 we show the results of

the modeling of the corrected dataset for the Poisson

and negative binomial models with parameters changing

as a smooth function of time. These two models were the

TABLE 2. Summary statistics for the Poisson modeling of tropical storm counts using climate indices as covariate. Model selection is

performed with respect to AIC. The first value is the point estimate, while the one in parentheses is the standard error. In each cell, the

values in the first (second) row refer to the model using the HadISSTv1 (ERSSTv3b). When ‘‘cs’’ is present, it means that the dependence

of Li on that covariate is by means of a cubic spline (otherwise, linear dependence is implied).

Landfall Uncorrected Corrected

Intercept 1.25 (0.05) 2.02 (0.03) 2.09 (0.03)

1.24 (0.05) 2.04 (0.03) 2.11 (0.03)

NAO — 20.06 (0.03) 20.06 (0.03)

— — —

SOI — 0.04 (0.02; cs) —

— 0.06 (0.02; cs) 0.05 (0.02)

SSTAtl 0.91 (0.24; cs) 0.99 (0.17) 1.05 (0.16; cs)

0.86 (0.22) 0.97 (0.15) 0.97 (0.14)

SSTTrop 20.88 (0.34; cs) 20.78 (0.25; cs) 21.15 (0.22; cs)

20.87 (0.30; cs) 20.74 (0.21; cs) 20.91 (0.20; cs)

Degrees of freedom for the fit 9 11 10

6 10 7

Mean (residuals) 0.04 0.00 20.01

0.00 0.01 20.00

Variance (residuals) 0.70 0.82 0.81

0.83 0.82 0.89

Skewness (residuals) 0.27 20.00 0.03

0.12 20.02 20.01

Kurtosis (residuals) 2.70 2.75 2.44

2.67 2.81 2.34

Filliben (residuals) 0.995 0.997 0.996

0.996 0.996 0.996

AIC 511.3 630.0 640.0

515.1 631.6 641.8

SBC 537.2 661.6 668.8

532.4 660.4 661.9
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ones that were able to capture the decadal variability in

the data. Given the nature of the adjustment, we have the

largest discrepancies with respect to the modeling of

the uncorrected dataset in the earlier part of the record.

Both of the models are capable of describing the data

(see Fig. 5 and Table 1), with a slightly better perfor-

mance for the negative binomial model. This improve-

ment comes at the expenses of many more degrees of

freedom used for fitting (Table 1). Similar to the pre-

vious case, the dispersion parameter si tends to be close

to zero for most of the record, with the exception of the

1930s and toward the end of the record.

Based on these results, it is clear that a Poisson model

with a constant parameter cannot be used to describe the

count data for the North Atlantic basin (both corrected

and uncorrected), pointing toward overdispersion of an-

nual tropical storm counts (representing the multidecadal

clustering of tropical storms). In section 4b we will explore

which of the aforementioned climate indices is a signifi-

cant covariate in the modeling of tropical storm count.

FIG. 8. As in Fig. 6, but using SBC as the penalizing criterion. See Table 3 for more information.
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b. Tropical storm counts and climate indexes

In this section, we examine the link between tropical

storm counts and four climate indices (NAO, SOI, SSTAtl,

and SSTTrop), for a total of five covariates (NAO is aver-

aged over both May–June and August–October periods).

1) CHARACTERISTICS OF THE CLIMATE INDICES

We have looked at the scatterplots (figure not shown)

between these covariates and U.S. landfalling tropical

storm counts and overall counts (both uncorrected and

corrected datasets). We notice that higher values of NAO

(May–June) tend to be associated with smaller count

values. While the effects of NAO are generally associ-

ated (through statistical associations) with the location

of the Bermuda high, possibly affecting the steering of

the tropical storm tracks, its link to the genesis of trop-

ical storms in the North Atlantic basin is less clear

(Elsner et al. 2000a; Landsea 2001). Moreover, the re-

lation between count data and NAO averaged over the

FIG. 9. Worm plots for the six models in Fig. 8.
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August–October period is weaker than the one observed

for NAO in the springtime. The behavior of SOI is op-

posite to the one observed for NAO, with larger values

now associated with higher count values, consistent with

the tendency of El Niño to increase wind shear and ther-

modynamic stability in the Atlantic, inhibiting TS genesis.

Finally, we investigate the dependence of the count data

to SSTAtl, SSTTrop, and their differences, using both the

estimates from the HadISSTv1 and ERSSTv3b datasets.

As expected, increasing Atlantic SST is associated with an

increasing number of tropical storms (this dependence is

weaker as far as the landfalling tropical storms are con-

cerned). The count data does not show a significant de-

pendence on the tropical SST alone (it is related to the

differences between the two SSTs). The two SST datasets

tend to give similar results for smaller count values, while

they tend to be different for the largest ones. These dif-

ferences are larger for the Atlantic SST while they are

much smaller for the tropical SST (see also Fig. 2).

2) MODELING TROPICAL STORM COUNTS WITH

CLIMATE INDICES

We now focus our attention on the modeling of the

count data using these climate indexes as covariates. In

this case, we focus on a Poisson model, in which ln(Li) is

modeled as both a linear and smooth function of NAO,

SOI, SSTAtl, and SSTTrop, including two-way interaction

terms as well. To avoid model overfitting, we select the

statistically significant covariates using a stepwise ap-

proach with respect to AIC and SBC. Even though we

included NAO averaged over the August–October pe-

riod, we found that it was not a significant covariate in

any of the models described below (likely because of the

low signal-to-noise ratio; Elsner et al. 2001). For this

reason, in the remainder of the paper, NAO will refer to

the index averaged over the period May–June.

Let us start with the results obtained using AIC as

penalty criterion. In Fig. 6 we show the modeling results,

using both HadISSTv1 (left panels) and ERSSTv3b (right

panels) datasets for SSTs. In Fig. 7 and Table 2 we sum-

marize the fitting performance and the values of the pa-

rameters. The modeling of the landfalling tropical storms

as a function of covariates shows that the selected model

is able to describe the complex behavior exhibited by the

data reasonably well. According to the model selection

procedure, when using the HadISSTv1 dataset SSTAtl

and SSTTrop are included as significant covariates (no

two-way interaction terms are added). The dependence

of Li on the SSTs is by means of a cubic spline. Similar

covariates are found when using the ERSSTv3b dataset

TABLE 3. As in Table 2, but using SBC as penalizing criterion. SSTAtl:SSTTrop indicates the interaction term.

Landfall Uncorrected Corrected

Intercept 1.24 (0.05) 2.04 (0.03) 2.07 (0.04)

1.24 (0.05) 2.04 (0.03) 2.07 (0.04)

NAO — — —

— — —

SOI — 0.05 (0.02) —

— 0.06 (0.02) 0.05 (0.02)

SSTAtl 0.89 (0.24) 1.00 (0.17) 1.06 (0.15)

0.86 (0.22) 0.96 (0.15) 0.97 (0.15)

SSTTrop 20.89 (0.34) 20.71 (0.25) 21.22 (0.23)

20.86 (0.30) 20.70 (0.21) 20.98 (0.21)

SSTAtl:SSTTrop — — 0.82 (0.42)

— — 0.58 (0.30)

Degrees of freedom for the fit 3 4 4

3 4 5

Mean (residuals) 0.02 20.01 0.01

0.01 0.01 0.01

Variance (residuals) 0.84 0.97 0.97

0.84 0.96 0.91

Skewness (residuals) 0.32 0.14 20.04

0.35 0.20 20.03

Kurtosis (residuals) 2.73 2.95 2.73

2.79 2.60 2.37

Filliben (residuals) 0.995 0.997 0.996

0.994 0.996 0.994

AIC 516.9 639.7 650.7

515.7 635.3 641.4

SBC 525.5 651.2 662.2

524.3 646.8 655.8
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with the only difference being that the dependence on

Atlantic SST is now linear. The coefficients for the At-

lantic and tropical SST have opposite sign, suggesting that

the latter has a dampening effect, supporting the idea that

increases of Atlantic SST relative to the tropical SST are

more significant than the absolute increase in Atlantic

SST. Model fitting (Fig. 7 and Table 2) suggests a slightly

better fit when using the ERSSTv3b dataset.

In the middle and bottom panels of Fig. 6 we show the

modeling of the count of the tropical storms in the North

Atlantic basin for both corrected and uncorrected data-

sets and using both HadISSTv1 (left panels) and ERSSTv3b

(right panels) datasets. Visual investigation of the model-

ing results shows that these models are able to describe

the undulating behavior exhibited by the data, with pe-

riods of higher activity alternating with periods of lower

activity. For the uncorrected HURDAT dataset, SOI

and both Atlantic and tropical SSTs are significant co-

variates (Li depends on SOI and SSTTrop by means of

a cubic spline, and on SSTAtl via linear dependence). On

FIG. 10. As in Fig. 6, but the natural logarithm of the parameter Li is modeled as a linear function of NAO,

SOI, SSTAtl, and SSTTrop. See Table 4 for more information.
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the other hand, NAO is an additional significant co-

variate only when the HadISSTv1 is used. Based on

examination of the residuals (Fig. 7 and Table 2), the

model fitting does not highlight any significant problem

with these models.

When looking at the corrected dataset, the model is

able to account for the larger count values at the be-

ginning of the study period. However, we notice some

discrepancies in terms of covariates depending on the

SST dataset. Both of the SSTs are significant covariates

when using HadISSTv1 and ERSSTv3b datasets. How-

ever, there are differences in the dependence of Li on

Atlantic SST, as well as in the significance of NAO and

SOI: the former (the latter) is included in the model

using HadISSTv1 (ERSSTv3b) SST. Since both of the

models are able to capture well the observed behavior, it

is difficult to say whether SOI and/or NAO should be

included in the model based only on the statistical re-

sults. Apart from data correction, these results show the

sensitivity of the model to different input forcing.

These results are related to the use of AIC as penal-

izing criterion. We also investigate the modeling results

using SBC as penalizing criterion. Based on Eqs. (8) and

(9), we would expect more parsimonious models in terms

of covariates and/or functional dependence of Li on them.

We have summarized the modeling results in Fig. 8 and

the goodness of fit in Fig. 9 and Table 3. As expected, the

models are more parsimonious than when using AIC,

with almost half of the degrees of freedom used com-

pared to AIC (3–5 versus 6–11; Table 3). Moreover, Li

(via a logarithmic link function) is always a linear func-

tion of the covariates and the cubic spline is never se-

lected. In the top panels of Fig. 8 we have the results for

the landfalling tropical storm count. As in the previous

case, the SSTs are the only significant covariates and

their coefficients have opposite sign. The model is able

to capture the observed behavior reasonably well, with

the alternation of more and less active periods. Overall,

based on residual plots and statistics (Fig. 9 and Table 3),

the quality of the fit is reasonably good.

Modeling of the count data for the entire North At-

lantic basin (Fig. 8, middle and bottom panels) shows that

the selected models are able to capture the observed

pattern in the data. The models are rather parsimonious,

with the Atlantic and tropical SSTs significant covariates

in all of them. For the uncorrected dataset and indepen-

dent of the SST dataset (Fig. 8, middle panels), the final

model according to SBC has SOI in addition to SSTs.

These models are able to well describe the results and,

based on the model’s residuals, there is no evidence of

poor model fitting. Moreover, independent of the SST

dataset, these models have the same covariates and func-

tional dependence on Li, allowing a comparison between

the two SST time series. Based on the AIC and SBC values,

TABLE 4. As in Table 2, but for a model in which ln(Li) is a linear function of NAO, SOI, SSTAtl, and SSTTrop.

Landfall Uncorrected Corrected

Intercept 1.23 (0.05) 2.02 (0.03) 2.09 (0.03)

1.23 (0.05) 2.02 (0.03) 2.10 (0.03)

NAO 20.05 (0.05) 20.05 (0.03) 20.06 (0.03)

20.04 (0.05) 20.04 (0.03) 20.04 (0.03)

SOI 0.02 (0.03) 0.05 (0.02) 0.04 (0.02)

0.03 (0.03) 0.06 (0.02) 0.05 (0.02)

SSTAtl 0.80 (0.25) 0.97 (0.17) 0.91 (0.16)

0.77 (0.23) 0.92 (0.15) 0.90 (0.15)

SSTTrop 20.78 (0.38) 20.72 (0.25) 20.91 (0.25)

20.72 (0.32) 20.67 (0.21) 20.83 (0.20)

Degrees of freedom for the fit 5 5 5

5 5 5

Mean (residuals) 20.00 0.01 0.01

0.04 20.00 0.00

Variance (residuals) 0.83 0.96 0.99

0.82 0.97 0.93

Skewness (residuals) 0.23 0.11 0.04

0.27 0.02 20.04

Kurtosis (residuals) 2.62 2.74 2.67

2.94 2.52 2.47

Filliben (residuals) 0.996 0.997 0.997

0.997 0.997 0.997

AIC 519.2 638.9 649.3

518.1 635.8 643.6

SBC 533.6 653.3 663.6

532.5 650.2 657.9
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given everything else the same, a model with ERSSTv3b

describes the data better than the HadISSTv1.

As far as the uncorrected dataset is concerned, in ad-

dition to the SSTs, we know that the interaction term

between Atlantic and tropical SSTs are significant. When

using the ERSSTv3b dataset, the SOI is significant as

well. Both of these models are able to capture the ob-

served variability and fit the data well. Again, notice how

the Atlantic and tropical SSTs have different signs, rein-

forcing the idea that the relative, rather than absolute

increases in Atlantic SST with respect to tropical SST are

important factors that should be taken into account.

These results show how model selection is sensitive to

the selected penalty criterion and SST datasets. In the

rest of the section we consider two additional models

in which we consider ln(Li) depending linearly on the

four covariates (NAO, SOI, SSTAtl, and SSTTrop) and

only on Atlantic and tropical SSTs. In Fig. 10 we show

the modeling of the count data for the case in which the

four covariates are considered. As in the previous fig-

ures, the panels on the left (right) refer to the cases in

which we used the HadISSTv1 (ERSSTv3b) dataset. For

the count of U.S. landfalling tropical storms this model is

able to capture the behavior observed in the data. When

considering the count for the North Atlantic basin (Fig. 10,

middle and bottom panels), we observe that the model

is able to describe well the pattern in the count data, in

agreement with the results using AIC and SBC, in which

these four covariates were found to be significant pre-

dictors. We have summarized the point estimates for

the models’ parameters in Table 4. Examination of the

residual plots (figure not shown) and of their statistics

(Table 4) does not suggest any particular issue with these

models.

Since these models use the same covariates and their

relation with Li, we can compare the results from the

two different SST datasets using AIC and SBC. As shown

in Table 4, the models using the ERSSTv3b dataset show

smaller values of AIC and SBC, suggesting that, given

that everything else stays the same, this dataset pro-

vides a better fit to the data compared to the HadISSTv1

dataset.

Given the previous results, Atlantic and tropical SSTs

are significant covariates in all the previous models. For

this reason, we investigate how a parsimonious model

with only these two covariates and with ln(Li) linearly

depending on them would perform. In Fig. 11 we have

summarized our modeling results for the overall count

FIG. 11. As in Fig. 10, but the natural logarithm of the parameter Li is modeled as a linear function of

SSTAtl and SSTTrop. See Table 5 for more information.
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(see Fig. 8 and Table 3 for the modeling of the U.S. land-

falling tropical storms). When looking at the modeling of

the count for the entire North Atlantic basin we observe

that this model is able to capture the observed behavior

for both corrected and uncorrected datasets. Looking at

the residual plots (figure not shown) and at the residuals’

statistics (Table 5), these models fit the data well. Once

again, the AIC and SBC values using the ERSSTv3b

dataset are smaller than those obtained using the

HadISSTv1 dataset. Additionally, in agreement with the

previous results the coefficients of these two covariates

have opposite signs (Table 5).

For the sake of completeness, we have also considered

a model for the corrected dataset in which we use SOI,

SSTAtl, and SSTTrop as covariates [with linear dependence

of ln(Li)]. We have summarized the results in Fig. 12 for

both SST datasets. This model is able to describe well the

observed behavior (top panels), as also suggested by the

quality of the fitting (bottom panels). As for the previous

cases, the ERSSTv3b dataset shows better values of AIC

and SBC compared to the HadISSTv1.

Given all these models, a question that still needs to be

addressed concerns the selection of the ‘‘best’’ model. As

shown in this study, there is not a unique best model. We

think that model selection should be driven by both sta-

tistical and physical reasoning. Based on the results of this

study, we can provide some suggestions. First of all, we

would suggest using the ERSSTv3b dataset for estimates

of the Atlantic and tropical SSTs. We also suggest mod-

eling ln(Li) as a linear function of the covariates, in order

to have a more parsimonious model that could also be

used to study future scenarios. As far as covariate selec-

tion is concerned, we think that statistical model selection

can provide helpful guidelines, even though we should

also consider our understanding of the underlying phys-

ical processes. For this reason, we suggest modeling the

U.S. landfalling tropical storms using a model with only

Atlantic and tropical SSTs. It is the one that provides the

best fit with the smallest number of degrees of freedom

used for the fit.

When dealing with the overall count for the North

Atlantic basin, we suggest not including NAO (it should

mostly affect the tracks of the tropical storms rather

than their genesis and/or development). When dealing

with both corrected and uncorrected datasets, we would

suggest a model with only Atlantic and tropical SSTs

as covariates, since it provides a good fit with a small

number of degrees of freedom used for the fit.

One final element that we have investigated concerns

an evaluation of the correction for the North Atlantic

count proposed by Vecchi and Knutson (2008) and im-

plemented in Landsea et al. (2010). It is clear that it is

not possible to make conclusive statements concerning its

correctness, since it is not possible to test all the under-

lying assumptions (this is a general statement, valid with

any correction so far proposed for the HURDAT data-

set). However, we can evaluate the correction within our

modeling framework by splitting the corrected and un-

corrected datasets into two subperiods (pre- and post-

satellite era; 1878–1965 and 1966–2008). We can then fit

a Poisson model with ln(Li) linearly depending on SSTAtl

and SSTTrop (from the ERSSTv3b dataset) to the count

data for the presatellite era, and use the computed pa-

rameters to ‘‘predict’’ the count over the postsatellite era.

We can do this for both corrected and uncorrected data-

sets. We have summarized our results in Fig. 13. These

models are able to describe reasonably well the count

data for the 1966–2008 period. This is particularly true for

the corrected dataset (bottom panel), in which the ob-

servations are better described by the model. Since the

model is the same for the two datasets, this is linked to the

correction for undercount, which tends to move the 90%

region of the model to slightly larger values. The root-

mean-square error (RMSE) is 4.1 for the uncorrected

dataset and 3.6 for the corrected one. Similar improve-

ment is obtained with respect to the mean absolute error

(MAE), with a value of 3.1 and 2.7 for the uncorrected and

corrected datasets, respectively. Based on these results,

even though we cannot say that the proposed correction

TABLE 5. Summary statistics for the Poisson modeling of tropical

storm counts using SSTAtl and SSTTrop as covariates. The first value

is the point estimate, while the one in parentheses is the standard

error. In each cell, the values in the first (second) row refer to the

model using the HadISSTv1 (ERSSTv3b). The natural logarithm

of Li depends linearly on the two covariates.

Uncorrected Corrected

Intercept 2.03 (0.03) 2.11 (0.03)

2.03 (0.03) 2.10 (0.03)

SSTAtl 1.13 (0.16) 1.05 (0.15)

1.05 (0.15) 1.02 (0.14)

SSTTrop 20.98 (0.23) 21.12 (0.22)

20.91 (0.20) 21.05 (0.19)

Degrees of freedom for the fit 3 3

3 3

Mean (residuals) 20.01 20.01

0.02 0.00

Variance (residuals) 1.00 1.02

1.00 0.97

Skewness (residuals) 0.24 0.05

0.15 0.10

Kurtosis (residuals) 2.74 2.71

2.59 2.35

Filliben (residuals) 0.995 0.998

0.997 0.996

AIC 643.2 652.4

641.9 647.6

SBC 651.8 661.0

650.6 656.2
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was able to identify all the missing storms, our results tend

to support its validity over no correction.

5. Discussion

Since the data and the predictors exhibit large in-

terannual variability, it is possible that, while the model

is able to describe well this variability, it may not de-

scribe the decadal variability as well. When applying

these models for periods outside of the one used for

training, it would be good to have a model that is able to

describe both the interannual and decadal fluctuations,

since future climate variations could be different from

what we have observed. In this context, a model robust

across dominant types of changes should be sought.

To investigate the model sensitivity to decadal varying

data, we have smoothed both the input time series and

the count data. As far as the former are concerned, we

have used a 5-yr smoothing window (with equal weights).

On the other hand, we cannot use the same smoothing

approach on the count data, since the values might not

be integers (for a Poisson model, the variable we want

to model has to be a positive integer). Therefore, within

each 5-yr window we have computed the sum of the

number of tropical storms. To avoid border effects, we

have excluded from the analyses the first two and last two

years of the record, fitting the new models over the period

1880–2006.

We have followed an approach similar to the one dis-

cussed above. We have first selected the best model

according to AIC, then SBC, and finally a model with only

Atlantic and tropical SSTs. We have performed the ana-

lyses only on the corrected counts for the North Atlantic

basin, using both the HadISSTv1 and ERSSTv3b time

series. We have summarized the results in Tables 6–8,

where, for comparison we have also included the results

for the annual count.

When modeling the ‘‘smoothed’’ corrected data, both

of the tropical and Atlantic SSTs are always included

as significant covariates, independent of the SST time

series and the penalty criterion. When considering AIC as

penalty criterion, NAO is a significant covariate as well,

while SOI is significant only when using the ERSSTv3b

SST time series. On the other hand, with respect to SBC,

NAO and SOI are no longer significant covariates, and

only Atlantic and tropical SSTs are retained. Notice that

the dependence of ln(Li) on these covariates is in general

FIG. 12. (top) Modeling of the ‘‘corrected’’ count data for the North Atlantic basin using a Poisson

model in which the parameter ln(Li) is a linear function of SOI, SSTAtl, and SSTTrop. (bottom) The worm

plots for the above models are shown, together with numerical values of the some of the summary sta-

tistics. The results using SST (left) from the HadISSTv1 dataset and (right) from the ERSSTv3b dataset.
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by means of a cubic spline, likely related to the smoothing

of the input time series (see also Table 8).

We have also repeated these analyses using an 11-yr

window (from 1883 to 2003). In this case, the quality of

the fit was not good independent of the penalty criterion.

Nonetheless, Atlantic and tropical SSTs were always

retained as significant covariates for both SST dataset

and penalizing criterion.

Even though a direct link between these results and

those from the count data is not possible since we mod-

eled the sum of tropical storms within a 5-yr window,

the modeling of the smoothed data tends to support the

suggestions provided at the end of the previous section

regarding the selection of the best models.

6. Conclusions

The focus of this study was the statistical modeling of

the number of tropical storms lasting more than two days

in the North Atlantic basin [with and without the cor-

rection for undercount by Landsea et al. (2010)] and of

those making landfall in the United States for the period

1878–2008. The findings of the present study can be

summarized as follows:

1) Analyses exploring the presence of overdispersion in

the count data were performed. We have used both a

Poisson and a negative binomial model. For the U.S.

landfalling tropical storms, it was difficult to make

conclusive statements concerning the validity of the

independence assumption or the presence of over-

dispersion given the nature of the data (see also

Coughlin et al. 2009; Nzerem et al. 2006). The count

for the North Atlantic basin showed that the data

should be described by a Poisson model with param-

eter Li changing smoothly over time or by a negative

binomial model (with variable parameters). This find-

ing implies that the tropical storm count data for the

North Atlantic exhibits serial clustering (the events

are not independent in time; e.g., Mailier et al. 2006;

Vitolo et al. 2009). This statement was valid for both

corrected and uncorrected datasets.

FIG. 13. Modeling of the count data (bottom) with and (top)

without undercount correction using SSTAtl and SSTTrop (from the

ERSSTv3b dataset) as covariates. The model is fitted to the period

1878–1965 and the computed parameters are used to ‘‘predict’’ the

count for the period 1966–2008.

TABLE 6. Summary statistics for the Poisson modeling of the

‘‘corrected’’ tropical storm counts using climate indices as covariate

over annual and 5-yr time scales. Model selection is performed with

respect to AIC. The first value is the point estimate, while the one in

parentheses is the standard error. In each cell, the values in the first

(second) row refer to the model using the HadISSTv1 (ERSSTv3b).

When ‘‘cs’’ is present, it means that the dependence of Li on that

covariate is by means of a cubic spline (otherwise, linear dependence

is implied).

Annual 5-Yr

Intercept 2.09 (0.03) 3.72 (0.02)

2.11 (0.03) 3.73 (0.02)

NAO 20.06 (0.03) 20.03 (0.03; cs)

— 20.02 (0.03; cs)

SOI — —

0.05 (0.02) 0.04 (0.03)

SSTAtl 1.05 (0.16; cs) 0.78 (0.11; cs)

0.97 (0.14) 0.58 (0.12)

SSTTrop 21.15 (0.22; cs) 20.65 (0.13; cs)

20.91 (0.20; cs) 20.43 (0.14; cs)

Degrees of freedom

for the fit

10 13

7 11

Mean (residuals) 20.01 0.01

20.00 20.00

Variance (residuals) 0.81 0.74

0.89 0.85

Skewness (residuals) 0.03 0.07

20.01 20.05

Kurtosis (residuals) 2.44 3.55

2.34 4.23

Filliben (residuals) 0.996 0.992

0.996 0.988

AIC 640.0 825.2

641.8 833.2

SBC 668.8 862.2

661.9 864.5
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2) Different final models both in terms of covariate and

functional dependence of Li are obtained depending

on the penalty criterion. We tried to find a compro-

mise between model complexity and performance by

using the Akaike information criterion (AIC) and

the Schwarz Bayesian criterion (SBC) for model com-

parison. As expected, in this study the use of SBC re-

sulted in a more parsimonious model than AIC (both in

terms of number of covariates as well as model de-

pendence on them). These results showed how there is

not an ‘‘overall best’’ statistical model.

3) For all the models, Atlantic and tropical SSTs are

retained as significant covariates. These results sup-

port the idea that the increases (or decreases) in

Atlantic SST relative to tropical SST are preferable

to the absolute values of Atlantic SST in modeling

the tropical storms count in the North Atlantic basin

and U.S. landfalling storms. This result can have large

implications in looking at tropical storm counts over

the twenty-first century and interpreting the extent to

which historical increases in tropical storm counts are

due to increased greenhouse gases (e.g., Vecchi et al.

2008b).

NAO is seldom found to be a significant covariate.

Our results do not seem to add supporting evidence

to the idea that this climate index should be included

when modeling U.S. landfalling tropical storms. There-

fore, more research is needed to clarify the relation

between NAO and tropical storm frequencies from

both a physical and statistical standpoint. Moreover,

SOI tends to be a significant predictor for the over-

all counts, consistent with the increase of shear (e.g.,

Goldenberg and Shapiro 1996) and atmospheric sta-

bility (Tang and Neelin 2004), both of which would

have adverse effects on tropical storm genesis and

development.

4) Modeling results suggest that the ERSSTv3b rather

than HadISSTv1 dataset provides a better description

of the count data over 1878–2008. This result begs the

question of whether circumstantial evidence of this

type is relevant to resolving disagreements in the trend

patterns of SST exhibited by these SST datasets (e.g.,

Vecchi et al. 2008a; Bunge and Clarke 2009).

5) Given these covariates, it is not possible to identify an

overall best model. However, given the current un-

derstanding of the processes underlying storm genesis

and development, we suggest modeling U.S. land-

falling count and the overall count for the North At-

lantic (for both corrected and uncorrected datasets)

with a conditional Poisson distribution with ln(Li)

linear function of only tropical and Atlantic SSTs.

TABLE 7. As in Table 6, but using SBC as penalizing criterion.

SSTAtl:SSTTrop indicates the interaction term.

Annual 5-Yr

Intercept 2.07 (0.04) 3.73 (0.01)

2.07 (0.04) 3.73 (0.01)

NAO — —

— —

SOI — —

0.05 (0.02) —

SSTAtl 1.06 (0.15) 0.80 (0.11; cs)

0.97 (0.15) 0.63 (0.12)

SSTTrop 21.22 (0.23) 20.67 (0.13; cs)

20.98 (0.21) 20.51 (0.14; cs)

SSTAtl:SSTTrop 0.82 (0.42) —

0.58 (0.30) —

Degrees of

freedom for the fit

4 9

5 6

Mean (residuals) 0.01 0.00

0.01 20.00

Variance (residuals) 0.97 0.81

0.91 0.95

Skewness (residuals) 20.04 0.15

20.03 0.01

Kurtosis (residuals) 2.73 3.22

2.37 3.80

Filliben (residuals) 0.996 0.994

0.994 0.992

AIC 650.7 826.0

641.4 837.6

SBC 662.2 851.6

655.8 854.7

TABLE 8. As in Table 6, but using only SSTAtl and SSTTrop as

covariates.

Annual 5-Yr

Intercept 2.11 (0.03) 3.73 (0.01)

2.10 (0.03) 3.73 (0.01)

SSTAtl 1.05 (0.15) 0.58 (0.11)

1.02 (0.14) 0.72 (0.12)

SSTTrop 21.12 (0.22) 20.43 (0.13)

21.05 (0.19) 20.59 (0.14)

Degrees of

freedom for the fit

3 3

3 3

Mean (residuals) 20.01 20.01

0.00 20.01

Variance (residuals) 1.02 1.40

0.97 1.32

Skewness (residuals) 0.05 20.05

0.10 0.03

Kurtosis (residuals) 2.71 2.56

2.35 2.76

Filliben (residuals) 0.998 0.998

0.996 0.999

AIC 652.4 888.7

647.6 879.2

SBC 661.0 897.2

656.2 887.7
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6) Based on our results, the undercount correction by

Vecchi and Knutson (2008) for the presatellite era as

implemented in Landsea et al. (2010) seems to have

a beneficial effect on the tropical storm count modeling.
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