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Abstract

Time series of US landfalling and North Atlantic hurricane counts and their ratios

over the period 1878-2008 are examined and modeled using different climate variables

(tropical Atlantic sea surface temperature (SST), tropical mean SST, North Atlantic

Oscillation, and Southern Oscillation Index). Two different SST input data (Met

Office’s HadISSTv1 and NOAA’s ERSSTv3b) are employed to examine the uncer-

tainties in the reconstructed SST data on the modeling results. Due to the likely

undercount of recorded hurricanes in the earliest part of the record, we consider both

the uncorrected hurricane record (HURDAT) maintained by the National Hurricane

Center, and a time series with a recently proposed undercount correction.

Modeling of the count data is performed by means of a conditional Poisson regres-

sion model, in which the rate of occurrence parameter can be a linear or non-linear

function of the climate indices. Model selection is performed following a stepwise

approach and using two different penalty criteria. The results of this study do not

allow identifying a single “best” model due to the different model configurations re-

sulting from the different SST input data, corrected versus uncorrected count time

series, and penalty criteria. These differences were both at the level of the selected

covariates and their functional relation to the Poisson parameter. Despite the lack of

an objectively identified unique final model, we recommend a set of models in which

the parameter of the Poisson distribution depends linearly on both tropical Atlantic

and tropical mean SSTs.
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Modeling of the fractions of North Atlantic hurricanes making landfall in the US

is performed by means of a binomial regression model. Similar to the count data, it

is not possible to identify a single “best” model, but different model configurations

are obtained depending on the SST input data, undercount correction, and selected

penalty criterion. The results of this study suggest that these fractions are controlled

by both local (related to the NAO) and remote (SOI and tropical mean SST) effects.
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1 Introduction

North Atlantic hurricanes claim a large toll in terms of fatalities and economic damage

every year (e.g., Pielke and Landsea 1998, 1999; Rappaport 2000; Arguez and Elsner

2001; Negri et al. 2005; Ashley and Ashley 2008a; Pielke et al. 2008; Derrig et al.

2008; Saunders and Lea 2005; Ashley and Ashley 2008b; Changnon 2009; Villarini

and Smith 2010). Therefore, our improved understanding of the physical mechanisms

responsible for their genesis, development, and tracking are not only of interest from

a scientific standpoint, but have important societal and economic repercussions as

well.

It is currently unclear what the possible changes in North Atlantic hurricane

frequency would be in a warmer climate (e.g., Shepherd and Knutson 2007; Vecchi

et al. 2008b; Villarini et al. 2011b; the interested reader is pointed to Knutson et al.

(2010) for a recent review), with contradicting results in the sign of these changes,

in addition to their magnitudes (e.g., Bengtsson et al. 1996; Knutson et al. 1998;

Emanuel 2005; Mann and Emanuel 2006; Oouchi et al. 2006; Holland and Webster

2007; Bengtsson et al. 2007; Knutson et al. 2008; Gualdi et al. 2008; Emanuel et al.

2008; Sugi et al. 2009; Zhao et al. 2009; Bender et al. 2010). Our capability of

predicting future changes in hurricane frequency lays its foundation on our capability

to understand and represent the physical processes responsible for the variability

exhibited by the existing record at various time scales, from intra- and inter- annual

to multidecadal. An important element of this process is examining the dominant

4



factors that explain the variations in frequency of North Atlantic and US landfalling

hurricanes.

Several studies have explored the impact of different climate indices on the North

Atlantic tropical storm and hurricane frequency. Among the most commonly used

indices, we find Atlantic and tropical sea surface temperatures (SSTs; e.g., Shapiro

and Goldenberg 1998; Landsea et al. 1999; Vitart and Anderson 2001; Emanuel 2005;

Jagger and Elsner 2006; Bell and Chelliah 2006; Hoyos et al. 2006; Latif et al. 2007;

Vecchi and Soden 2007; Saunders and Lea 2008; Swanson 2008; Knutson et al. 2008;

Vecchi et al. 2008b; Villarini et al. 2010), El Niño-Southern Oscillation (ENSO; Gray

1984a; Wu and Lau 1992; Bove et al. 1998; Elsner et al. 2001; Jagger et al. 2001;

Tartaglione et al. 2003; Elsner et al. 2004; Bell and Chelliah 2006; Camargo et al.

2007b; Donnelly and Woodruff 2007), North Atlantic Oscillation (NAO; Elsner et al.

2000b; Elsner and Kocher 2000; Elsner et al. 2000a; Jagger et al. 2001; Elsner et al.

2004; Elsner and Jagger 2004; Pinto et al. 2009), West African monsoon (e.g., Gray

1990; Landsea and Gray 1992; Goldenberg and Shapiro 1996; Bell and Chelliah 2006;

Donnelly and Woodruff 2007), Atlantic Multidecadal Oscillation (AMO; e.g., Zhang

and Delworth 2006; Goldenberg et al. 2001), Atlantic Meridional Mode (AMM; Vi-

mont and Kossin 2007; Kossin and Vimont 2007), Madden-Julian Oscillation (MJO;

Maloney and Hartmann 2000; Barrett and Leslie 2009; Camargo et al. 2009), Quasi-

Biennal Oscillation (e.g., Shapiro 1982; Gray 1984a), and solar cycle (Elsner and

Jagger 2008).
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No agreement exists regarding which of these climate variables should be included

in a model describing North Atlantic and US landfalling hurricane frequencies. Bove

et al. (1998) examined the effects of El Niño on US landfalling hurricanes and found

that the probability of two or more US hurricane strikes increased from 28% during

an El Niño year to 66% during a La Niña year. Elsner et al. (2001) used a Pois-

son regression model to examine the relation between US landfalling hurricane data

and ENSO and NAO (see also Elsner (2003), Elsner et al. (2004), and Elsner and

Jagger (2006) for additional models of US landfalling hurricane counts). Parisi and

Lund (2008) found that NAO and the Bivariate El Niño-Southern Oscillation (an

index computed from the Southern Oscillation Index and El Niño 3.4) can be used to

model the US landfalling hurricane strike count. Dailey et al. (2009) examined the re-

lation between Atlantic SST and US landfalling hurricanes. Vecchi et al. (2011) built

a Poisson regression model from 212 years of global atmospheric simulations from

the HiRAM-C180 model (Zhao et al. 2009, 2010) and assumed that both tropical At-

lantic and tropical mean sea surface temperatures were important predictors, finding

that the former exerted a positive impact (increasing frequency of hurricanes with

increasing tropical Atlantic SST) and the latter a negative impact (decreasing fre-

quency of hurricanes with increasing tropical mean SST). Kossin et al. (2010) divided

the North Atlantic tropical storms and hurricanes into four clusters and investigated

their frequency in terms of ENSO, AMM, NAO, and MJO.

Modeling of the North Atlantic hurricanes is complicated by the uncertainties
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associated with the Hurricane dataset (HURDAT; Jarvinen et al. 1984; Neumann

et al. 1993; MacAdie et al. 2009), which is maintained by the National Hurricane

Center (NHC). For all the recorded storms starting from 1851, the HURDAT dataset

provides information about the latitude, longitude, minimum pressure and maximum

wind speed at the center of circulation at the six-hourly scale. The homogeneity

of this record has been a subject of research. Statements about the presence of

increasing linear trends are unavoidably affected by the large uncertainties in the

record, especially considering the large leverage that the data at the beginning of

the time series would exert. There is, therefore, a trade-off between the availability

of the longest possible record and having results which are affected by significant

uncertainties. To address this issue, several corrections for possible undercounts have

been proposed, each of them based on different assumptions and methodologies (e.g.,

Landsea et al. 2004; Landsea 2007; Mann et al. 2007; Chang and Guo 2007; Chenoweth

and Divine 2008; Vecchi and Knutson 2008; Landsea et al. 2010; Vecchi and Knutson

2011). In addition, efforts are underway to “reanalyze” the record using historical

meteorological observations (e.g., Landsea et al. 2004, 2008). Even though it will

never be possible to know with complete certainty the exact number of hurricanes

over the entire record, the use of corrections for possible undercounts would mitigate

the impact of these errors and allow making more meaningful statements about the

results of these study.

In this work we examine the relation between climate indices and counts of US
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landfalling and North Atlantic hurricanes by means of a Poisson regression model. We

take the lead from prior studies (e.g., Elsner and Schmertmann 1993; McDonnell and

Holbrook 2004a,b; Elsner et al. 2004; Elsner and Jagger 2004; Sabbatelli and Mann

2007; Chu and Zhao 2007; Elsner et al. 2008; Mestre and Hallegatte 2009; Chu et al.

2010; Villarini et al. 2010) and build on them. We consider five different predictors

(tropical Atlantic SST, tropical mean SST, NAO averaged over two different periods,

and SOI), reflecting our currently understanding of the physical processes responsible

for the frequency of North Atlantic hurricanes. In particular, the use of both tropical

Atlantic and mean tropical SSTs is partly motivated by the broad evidence in support

of the concept that tropical Atlantic SST relative to SST of the global tropics is a more

significant predictor for the conditions that impact cyclone frequency than absolute

tropical Atlantic SST (e.g., Sobel et al. 2002; Tang and Neelin 2004; Latif et al. 2007;

Vecchi and Soden 2007; Swanson 2008; Knutson et al. 2008; Vecchi et al. 2008b; Zhao

et al. 2009, 2010; Villarini et al. 2010, 2011b). Rather than assuming a linear relation

between covariates and parameter of the Poisson regression model by means of an

appropriate link function, we allow for non-linear dependencies as well by means of

cubic splines. Moreover, the selection of the most appropriate predictors is performed

using two different selection criteria. Villarini et al. (2010) showed that there is not

a “single best” statistical model when modeling North Atlantic and US landfalling

tropical storms, but different final models result from different selection criteria. To

account for likely undercounts in the number of North Atlantic hurricanes in the pre-
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satellite era (pre-1966), we model both the original HURDAT record as well as the

HURDAT time series after correcting for undercounts using the approach recently

described in Vecchi and Knutson (2011). Finally, we do not restrict ourselves to one

single SST dataset, but examine the impact of different SST input data (e.g., Vecchi

et al. 2008a; Bunge and Clarke 2009) by employing two different SST records.

Modeling the number of hurricanes in the North Atlantic basin and making land-

fall in the US has been the object of prior studies. Examination of the temporal

changes in the fractions of North Atlantic hurricanes making US landfall, however,

has received much less attention. Landsea (2007) explored the ratio of landfalling to

total tropical storms, and argued that the notable increase over time was evidence

for an inhomogeneity of the tropical storm record. Coughlin et al. (2009) examined

these ratios, applying different statistical tests. They found that these fractions were

different between the first and second half of the 20th century (most likely due to inho-

mogeneities in the record), but could be considered constant over the most recent part

of the record. After applying a correction to the North Atlantic basinwide hurricane

record, Vecchi and Knutson (2011) found that the 1878-2008 record of US landfalling

hurricane fraction became more stationary. To the best of our knowledge there are

no studies attempting to describe the fraction of North Atlantic hurricanes making

US landfall in terms of climate variables. Improved understanding of the physical

mechanisms responsible for the hurricane landfall would improve our capability of

predicting and understanding landfalling hurricanes, with implications for decision
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makers and for the insurance and reinsurance industry (e.g., Lonfat et al. 2007). In

particular, a model able to represent the fraction of hurricanes making landfall in

terms of climate indices could be coupled with predictive models of the overall North

Atlantic hurricane activity (e.g., Gray 1984b; Elsner and Jagger 2006; Vitart 2006;

Vecchi et al. 2011; consult Camargo et al. (2007a) for a review). From a statistical

standpoint, the appropriate model to describe the proportions of hurricanes making

landfall is a binomial model, in which the number of landfalling hurricanes has a

binomial distribution given the total number of storms.

The main questions we address in this study can be summarized as follows:

1. what are the important climate indices to describe the frequency of US land-

falling and North Atlantic hurricanes?

2. what are the important covariates to describe the fractions of North Atlantic

hurricanes making landfall in the US?

3. what is the sensitivity of these models to hurricane undercounts, SST input

data, and criterion for model selection?

The paper is organized in the following way. In Section 2 we describe the data

and the climate indices, followed by Section 3 in which we describe the Poisson re-

gression model and the binomial regression model used to model the frequency of US

landfalling and North Atlantic hurricanes and their ratios. The results of this study
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are presented in Section 4. Finally, in Section 5 we discuss some of the issues with

this study and summarize the main points of this work.

2 Data

2.1 Hurricane Data

The number of North Atlantic hurricanes (Saffir-Simpson Category 1-5) is derived

from the HURDAT database (Jarvinen et al. 1984; Neumann et al. 1993; MacAdie

et al. 2009), which contains the number of hurricanes since 1851. This dataset, how-

ever, is not homogeneous and becomes more prone to missed hurricanes the further

back we go. Until 1943, the number of recorded storms relies on ship observations (not

homogeneous themselves and affected by changes in the ship tracks; Vecchi and Knut-

son 2008) and landfall recordings. Organized aircraft reconnaissance flights started in

1944 and complemented the ship accounts. The hurricane record from 1966 is largely

based on satellite observations.

These changes in the observation system raised questions about the accuracy of

the HURDAT record, in particular regarding the earliest parts (pre-1944). Several

different corrections have been proposed to account for likely storm undercounts,

each of them based on different hypothesis (e.g., Landsea et al. 2004; Landsea 2007;

Chang and Guo 2007; Mann et al. 2007; Vecchi and Knutson 2008; Landsea et al.

2010). These corrections, however, were not specifically developed for hurricanes.

11



Vecchi and Knutson (2011) recently proposed a correction for likely undercounts of

hurricanes in the North Atlantic basin, following a methodology similar to the one

described in Vecchi and Knutson (2008). As far as US landfalling hurricane counts are

concerned, we conditionally assume that the record is complete due to the devastating

impact that these storms would have had.

In this study we model the yearly number of North Atlantic hurricanes and US

landfalling hurricanes over the period 1878-2008. When dealing with the overall North

Atlantic hurricane activity, we consider two datasets: time series obtained from the

original HURDAT dataset (we will refer to this record as “uncorrected”), and a time

series in which the HURDAT dataset is corrected for undercount using the correction

in Vecchi and Knutson (2011) (we will refer to this record as “corrected”). These

three time series are shown in Figure 1. These data exhibit considerable interannual

and interdecadal variability, with periods of higher activity alternating to periods of

lower activity. Comparison between the uncorrected and corrected records highlights

the largest discrepancies in the earliest parts of the records, in which the undercount

correction was larger. These discrepancies become smaller as we move towards the

satellite era.

In addition to the modeling of the hurricane counts, we also focus on the statistical

modeling of the fraction of the North Atlantic hurricanes that made landfall in the US

(Figure 2). These time series are bound between 0 (in a given year, no hurricane made

landfall in the US) and 1 (all of the hurricanes formed in the North Atlantic made

12



landfall in the US as hurricanes). While there have been years with no landfalling

hurricanes, over 1878-2008 there are no years in which all of the North Atlantic

hurricanes made landfall in the US as hurricanes. Once again, we use both the

corrected and uncorrected HURDAT database for the overall North Atlantic hurricane

activity. There are considerable variations on a variety of timescales with periods of

larger US landfalling fraction alternating to periods of lower frequency. When using

the uncorrected HURDAT, we observe larger fractions towards the beginning of our

record, due to the lower number of recorded North Atlantic hurricanes, similar to

Landsea (2007) for tropical storms and Coughlin et al. (2009).

2.2 Climate Indices

We use as possible predictors to describe the frequency of North Atlantic hurri-

canes, US landfalling hurricanes, and fraction of hurricanes making landfall in the

US four different climate indices: tropical Atlantic SST (SSTAtl), tropical mean

SST (SSTTrop), Southern Oscillation Index (SOI), and the North Atlantic Oscillation

(NAO). We have focused on these variables because of the availability of relatively

high quality data over our study period and for their relation to the physical fac-

tors that control the genesis, development and tracking of North Atlantic hurricanes.

A warm Atlantic is generally more conducive to increased hurricane activity (e.g.,

Emanuel 2005; Mann and Emanuel 2006; Vecchi and Soden 2007; Swanson 2008;

Zhao et al. 2009; Villarini et al. 2010). We also include tropical mean SST because of
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its impact on wind shear (Latif et al. 2007), upper tropospheric temperature (Sobel

et al. 2002) and other measures of thermodynamic instability (e.g., Shen et al. 2000;

Tang and Neelin 2004; Vecchi and Soden 2007; Ramsay and Sobel 2011) affecting

hurricane frequency. Moreover, based on high resolution atmospheric models, tropi-

cal Atlantic SST relative to tropical mean SST is found to be relevant in describing

the impacts of changing climate on hurricane frequency (e.g., Knutson et al. 2008;

Vecchi et al. 2008b; Zhao et al. 2009, 2010; Villarini et al. 2011b). Hurricane genesis

and development is generally suppressed (favored) by increasing (decreasing) vertical

shear of the upper level horizontal winds during El Niño (La Niña) events (e.g., Gray

1984a; Wu and Lau 1992; DeMaria 1996). The strength of the trade winds and the

position of the Bermuda High are indicated as the physical link between NAO and

hurricane activity (e.g., Elsner et al. 2000b, 2001), with effects mostly associated with

the steering of the hurricane tracks.

We compute the tropical Atlantic SST undetrendend anomalies spatially averaged

over a box 10N-25N and 80W-20W while the tropical mean SST over a box 30S-30N.

Both of them are averaged over the period June-November. We use SST time series

obtained from two datasets to examine the sensitivity of our results to different in-

puts. Similar to Villarini et al. (2010), we use both the UK Met Office’s HadISSTv1

(Rayner et al. 2003) and NOAA’s Extended Reconstructed SST (ERSSTv3b; Smith

et al. 2008). Despite measuring the same quantity (SST), they exhibit differences

associated with different methods used to infill missing SST values, as well as differ-
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ent ways of correcting for data inhomogeneities and the use of the satellite record.

The SOI time series is averaged over the August-October period and is computed

as described in Trenberth (1984). The NAO is computed as in Jones et al. (1997)

and averaged over two different periods (May-June (NAOMJ) and August-October

(NAOAO); Elsner et al. 2000b, 2001; Elsner 2003; Elsner et al. 2004; Mestre and Hal-

legatte 2009; Villarini et al. 2010). The selection of these two averaging periods is

due to the fact that NAO is stronger during boreal winter and spring (e.g., Hurrell

and Van Loon 1997) but we also want to have a period representative of the core of

the hurricane season.

3 Statistical Models

3.1 Poisson Regression Model

Poisson regression is a form of Generalized Additive Model (GAM; e.g., Hastie and

Tibshirani 1990) in which the predictand is in the form of count data and follows a

Poisson distribution. Let us define the number of North Atlantic and US landfalling

hurricanes in the i th year by Ni. We can write that Ni follows a conditional Poisson

distribution with rate of occurrence Λi if:

P (Ni = k|Λi) =
e−ΛiΛk

i

k!
[k = 0, 1, 2, . . . ] (1)
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The parameter Λi can assume the following general formulation:

Λi = exp[β0 + β1h1(z1i) + β2h2(z2i) + ... + βnhn(zni)] (2)

where {z1i, . . ., zni} is a vector of n observable covariate random variables for the i th

year (see Smith and Karr (1983) and Karr (1991) for a more general formulation),

and hj (for j=1, . . ., n) is a synthetic way of indicating both linear and non-linear de-

pendencies. As discussed in the previous section, we consider five predictors (SSTAtl,

SSTTrop, SOI, NAO averaged over two different periods), as well as two-way inter-

actions (e.g., Elsner and Jagger 2004; Mestre and Hallegatte 2009; Villarini et al.

2010).

As a special case of equation 2, we could have that all the beta coefficients are

equal to zero, with Λi=exp[β0] (standard Poisson random variable). Moreover, if

ln(Λi) linearly depends on the covariates, we have a Generalized Linear Model (GLM;

McCullagh and Nelder 1989; Dobson 2001) and we can write that Λi=exp[β0+β1z1i +

β2z2i + ... + βnzni].

In this study, we do not limit the dependence of Λi on the covariates (via a loga-

rithmic link function) to be only linear (e.g., Elsner and Schmertmann 1993; Elsner

et al. 2000a; Elsner and Jagger 2004, 2006; Sabbatelli and Mann 2007). We also in-

clude the case in which the relation between predictand and predictors is by means of

a cubic spline (e.g., Mestre and Hallegatte 2009; Villarini et al. 2010). Model selection
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(in terms of both covariates and their relation to the Poisson parameter) is performed

using a stepwise approach, penalizing with respect to both the Akaike Information

Criterion (AIC; Akaike 1974) and the Schwarz Bayesian Criterion (SBC; Schwarz

1978). The use of these criteria would help in avoiding model overfit, and represents

a trade-off between the complexity and the accuracy of the models. Because of our

sample size (131 years), SBC would apply a larger penalty compared to AIC, lead-

ing to a more parsimonious model. We, therefore, would expect the model selected

according to SBC to be more parsimonious (both in terms of number of covariates

and their relation to the rate of occurrence parameter) than the one based on AIC.

Villarini et al. (2010) showed how the use of different penalty criteria results in dif-

ferent “best” models for the frequency of North Atlantic and US landfalling tropical

storms. Consult the Appendix for a discussion about the impact of the correlation

among predictors on the selected models.

Because AIC and SBC do not provide information about the quality of the fit (e.g.,

Hipel 1981), we evaluate the model performance by analyzing the model residuals,

which should be independent and identically distributed, following a Gaussian distri-

bution (e.g., Rigby and Stasinopoulos 2005). We examine the (normalized randomized

quantile) residuals (Dunn and Smyth 1996) by computing the first four moments of

their distribution (mean, variance, coefficients of skewness and kurtosis), their Fil-

liben correlation coefficient (Filliben 1975). We also examine quantile-quantile (qq)

and worm plots (van Buuren and Fredriks 2001).
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All the calculations are performed in R (R Development Core Team, 2008) using

the freely available gamlss package (Stasinopoulos et al., 2007).

3.2 Binomial Regression

Modeling of the fraction of North Atlantic hurricanes that made lanfall in the US is

performed by means of binomial regression, which is another form of GAM. Under

this model the number of landfalling storms has a binomial distribution given the

total number of storms. Following the notation in McCullagh and Nelder (1989),

let us indicate with Y1 and Y2 two Poisson random variables with means µ1 and

µ2, respectively. Let us also indicate with m their sum (m=Y1+Y2), which follows

a Poisson distribution with mean equal to µ1+µ2. In our case, m represents the

basinwide number of hurricanes, while Y1 the number of US landfalling hurricanes.

Given m, the distribution of Y1 can then be written as:

f(Y1 = y|µ) =
Γ(m + 1)

Γ(y + 1)Γ(m − y + 1)
µy(1 − µ)(m−y) (3)

where µ = µ1/(µ1 + µ2). The mean and the variance of Y1/m are µ and µ(1 − µ),

respectively.

Similar to what described in equation 2, we can related the parameter µ for the

ith year to a vector of n covariates:
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g(µi) = β0 + β1h1(z1i) + β2h2(z2i) + ... + βnhn(zni) (4)

The link function g(·) ensures that µ ∈ [0, 1], and several link functions are avail-

able (e.g., logit, probit, complementary log-log). We use the logit link, so that

g(µ)=log[µ/(1-µ)]. Therefore, we can explicitly write the dependence of µ on the

covariates as:

µi =
exp[β0 + β1h1(z1i) + ... + βnhn(zni)]

1 + exp[β0 + β1h1(z1i) + ... + βnhn(zni)]
(5)

We consider the same five predictors as for the Poisson regression model (SSTAtl,

SSTTrop, SOI, NAOMJ , NAOAO). To the best of our knowledge, studies about the

statistical modeling of the fraction of North Atlantic hurricanes making landfall in the

US in terms of climate indices are still lacking. Therefore, it is hard to predict what

to expect a priori from model selection. We could expect NAO to be an important

predictor because of its possible relation to the hurricane tracks (e.g., Elsner et al.

2000b, 2001). Model selection is performed with respect to both AIC and SBC.

Similar to the Poisson regression model, we evaluate the goodness-of-fit of our

models by analyzing the residuals, which should be an independent and identically

distributed, following a Gaussian distribution. We examine the (normalized random-

ized quantile) residuals (Dunn and Smyth 1996) by computing the first four moments

of their distribution (mean, variance, coefficients of skewness and kurtosis), their Fil-

19



liben correlation coefficient (Filliben 1975). We also examine quantile-quantile (qq)

and worm plots (van Buuren and Fredriks 2001).

All the calculations are performed in R (R Development Core Team, 2008) using

the freely available gamlss package (Stasinopoulos et al., 2007).

4 Results

4.1 Poisson Regression Model

We start by focusing on the statistical modeling of the number of North Atlantic and

US landfalling hurricanes using a Poisson regression model in which the logarithm of

the rate of occurrence is a function of SSTAtl, SSTTrop, NAO, and SOI. We consider

both linear and smooth (by means of a cubic spline) dependence of the Poisson

parameter on these covariates, and include two-way interaction terms. Model selection

is performed using a stepwise approach, using both AIC ans SBC as penalty criteria.

We start with the results obtained using AIC as penalty criterion (Figure 3), for

the US landfalling hurricanes (top panels), and the uncorrected (middle panels) and

corrected (bottom panels) North Atlantic hurricane counts. The results for both

of the SST datasets are shown (HadISSTv1: left panels; ERSSTv3b: right panels).

We summarize the parameter estimates and the model fit performance in Figure 4

and Table 1. In modeling the landfalling hurricanes (Figure 3, top panel), different
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covariates and functional relations between predictors and the rate of occurrence pa-

rameter are identified depending on the SST input data. When using the HadISST

data, NAOMJ , SSTAtl, and SSTTrop are significant predictors. There is a linear rela-

tion between NAOMJ and the logarithm of the rate of occurrence parameter, while

the relation between SSTAtl and SSTTrop and ln(Λ) is by means of a cubic spline.

When using ERSST data, SOI is added as a significant predictor. In this case, there

is a linear relation between SSTTrop and SOI and ln(Λ). The number of degrees of

freedom for the fit is larger when using HadISST (10) than ERSST (8) due to the use

of cubic splines for tropical Atlantic and tropical mean SSTs. Similar to what found

for US landfalling tropical storms (Villarini et al. 2010), tropical Atlantic and tropical

mean SSTs are always important predictors. Moreover, the coefficient of SSTAtl and

SSTTrop have opposite signs, pointing to relative SST as an important factor in de-

scribing US landfalling hurricane frequency. Despite the complex patterns exhibited

by the hurricane record, these models are able to describe its behavior. Assessment of

the quality of the fit (Figure 4 and Table 1) does not highlight any significant problem

with these models.

The time series of hurricane counts for the entire North Atlantic basin exhibit more

marked multidecadal variations than observed in the US landfalling hurricane count

time series (Figure 3, middle and bottom panels). When modeling the uncorrected

data and using the HadISST data, SOI, tropical Atlantic and tropical mean SSTs

are retained as important predictors. The relation between SOI and the rate of
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occurrence parameter is linear, while Λ is related to SSTAtl and SSTTrop by means

of a cubic spline (via a logarithmic link function). The results obtained using the

ERSST input data are slightly different. Even in this case, both tropical Atlantic

and tropical mean SSTs are retained as important predictors and, once again, they

have opposite sign. However, their relation to the logarithm of the Poisson parameter

is now linear. While SOI is included in the final model, NAOAO is also included.

Because the relation between tropical Atlantic and mean tropical SSTs and ln(Λ) is

linear when using ERSST, the number of degrees of freedom used for the fit is smaller

(5 against 10). These models are able to well reproduce the behavior exhibited by

the data, with decades of increased hurricane activity alternating to decades of lower

activity. The fit diagnostics do not indicate any large problem with these models

(Figure 4 and Table 1).

Similar to what was found for the uncorrected dataset, the models for the corrected

time series always include tropical Atlantic and mean tropical SSTs as important

predictors. In agreement with the idea that tropical Atlantic SST relative to the

tropical mean SST is more important than tropical Atlantic SST alone, the coefficients

of SSTAtl and SSTTrop have opposite signs (positive for the former and negative for the

latter). These statements are valid independently of the SST data used. When using

HadISST data, NAO is retained as an important predictor. The relation between

ln(Λ) and NAO is linear, while is by means of a cubic spline for tropical Atlantic

and tropical mean SSTs. If we use ERSST data, the results (in terms of covariates
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and their relation to Λ) are similar to what found for the uncorrected dataset. The

logarithm of the rate of occurrence is linearly related to SOI, NAOAO, SSTAtl and

SSTTrop (the number of degrees of freedom used for the fit are less than what found

using the HadISST data due to the simple linear dependence). These models are able

to well reproduce the behavior exhibited by the data, with the alternation of periods

of increased and decreased frequencies. The diagnostic measures used to assess the

quality of the fit tend to support the modeling results.

So far we have been performing model selection using AIC as penalty criterion.

Similar to Villarini et al. (2010), we also use SBC as penalty criterion, expecting that

these models would be more parsimonious in terms of both number of covariates and

their relation to the rate of occurrence parameter (i.e., a smaller number of degrees of

freedom used for the fit). We summarize the model results in Figures 5 and 6 and Ta-

ble 2. When modeling the US landfalling hurricane counts and using HadISST data,

we find that the same covariates we found for AIC are retained as important (NAO,

SSTAtl and SSTTrop). However, where the models based on AIC and SBC differ is in

their relation to the rate of occurrence parameter. In this case, these three covariates

are linearly related to ln(Λ), and four degrees of freedom are used for the fit. The

results obtained using ERSSST suggest that SOI and tropical Atlantic and tropical

mean SSTs are important predictors to describe the frequency of US landfalling hurri-

canes. Once again, this is more parsimonious than the corresponding model based on

AIC (four versus eight degrees of freedom used for the fit). These models are able to
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reproduce the behaviors exhibited by the data, and the fit diagnostics do not suggest

any significant problem with these fits (Figure 6 and Table 2). Based on all these

models, tropical Atlantic and mean tropical SSTs are always important predictors

and their coefficients have opposite sign. These statements are valid independently

of the input SST data and penalty criterion. The same is not true for NAO and SOI,

because their inclusion in the final model depends on the selected penalty criterion

and/or SST input data. These findings add supporting evidence to the key role of

relative SST (tropical Atlantic minus tropical mean SSTs) in the frequency of US

landfalling hurricanes and tropical storms (see also Villarini et al. (2010)).

The model for the uncorrected time series using SBC as penalty criterion includes

different covariates compared to what we found when using AIC. The only two co-

variates retained as important in the final model are SOI and tropical Atlantic SST,

independently of the SST dataset. Both of them are linearly related to the rate of oc-

currence parameter via a logarithmic link function, resulting in only three degrees of

freedom used for the fit. This is different from what we found using AIC as penalty

criterion, since tropical mean SST was always retained as an important predictor.

The model based on ERSST has a smaller AIC and SBC value than the one based

on HadISST (Table 2), suggesting that using ERSST results in a better agreement

to the data than using HadISST. These models are able to capture the variability

exhibited by the data, and the fit diagnostics do not indicate any problem with these

models (Figure 6 and Table 2).
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When modeling the corrected time series, we find that, independently on the SST

input data, the only two predictors retained as important are tropical Atlantic and

mean tropical SSTs. These covariates are linearly related to the logarithm of the rate

of occurrence parameter. Despite being parsimonious (only three degrees of freedom

are used for the fit), these models are able to well reproduce the variability exhibited

by the data. Assessment of the model fit (Figure 6 and Table 2) does not indicate any

significant problem with these models. The coefficients of these two covariates have

opposite sign, with the absolute value of the coefficient of SSTTrop being slightly larger

than the one for SSTAtl. The values of these coefficients are in agreement with what

found by Vecchi et al. (2011) (1.707 for the intercept, +1.388 for tropical Atlantic

SST, and -1.521 for tropical mean SST), who built a Poisson regression model from

212 years of model runs from the HiRAM-C180 model (Zhao et al. 2009, 2010). These

results indicate that both tropical Atlantic and mean tropical SSTs are necessary to

describe the temporal evolution of the North Atlantic hurricane counts. Moreover, a

uniform increase in SST would result in a slight decrease in North Atlantic hurricane

counts because the coefficient for SSTTrop is slightly larger in absolute value than

the one for SSTAtl. The decrease in North Atlantic hurricane frequency implied by

this statistical model is consistent with the sensitivity of the HiRAM-C180 dynamical

model to uniform SST increase (Held and Zhao 2011) These results are similar to those

for observed North Atlantic tropical storm frequency (Villarini et al. 2010, 2011b).

All of these modeling results provide information about the sensitivity of the model
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selection to the selected penalty criterion and SST input data. Villarini et al. (2010)

came to the similar conclusions when modeling the US landfalling and North Atlantic

tropical storm count time series. Among the different models, they also suggested

using a parsimonious model in which the logarithm of the rate of occurrence depends

linearly on tropical Atlantic and tropical mean SSTs. This simple model was then used

by Villarini et al. (2011b) to examine possible changes in US landfalling and North

Atlantic tropical storm frequency under different climate change scenarios and using

several climate models. In this study, this parsimonious model was selected as the

final model for the corrected hurricane count time series when penalizing with respect

to SBC. For sake of completeness, we include the results obtained by modeling the US

landfalling (Figure 7) and uncorrected (Figure 8) hurricane count time series with a

Poisson regression model in which the logarithm of the rate of occurrence parameter

is a linear function of both tropical Atlantic and mean tropical SSTs. The models for

the US landfalling hurricanes are able to reproduce the variability exhibited by the

data, with no significant issues highlighted by the fit diagnostics. The values of the

AIC are larger than what we found for the previous models, while the SBC values

are close to those obtained by penalizing with respect to SBC and smaller than those

obtained by penalizing with respect to AIC. When dealing with the uncorrected data,

a model based on only tropical Atlantic and tropical mean SSTs is able to describe the

variability exhibited by the data reasonably well (Figure 8). The results concerning

the quality of the fit do not point to any significant problem with these models. The
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values of AIC and SBC for these models are consistently larger than those obtained

by the stepwise approach.

Similar to what found in Villarini et al. (2010), there is not a unique “best” model,

but different final models are obtained depending on the penalty criterion and the

SST input data. In general, we would suggest describing as linear the relation between

covariates and the logarithm of the rate of occurrence parameter in agreement with the

parsimony principle and because at this point there are no clear physical or statistical

reasons indicating that this functional dependence should be of a more complicated

form. When modeling the US landfalling hurricane counts, the only covariates that

are always included as important for any model configuration are tropical Atlantic and

tropical mean SSTs. We, therefore, suggest using this parsimonious model. However,

NAOMJ is often included in the final models and it would be reasonable to include it

as well in a slightly less parsimonious model.

It is harder to come up with recommendations for the “best” model for the uncor-

rected dataset. In this case, only SOI and tropical Atlantic SST are always included

in the final models, while tropical SST is an important predictor only when perform-

ing model selection using AIC as penalty criterion. We would have expected SSTTrop

to be included as well, based on other studies on the sensitivity of tropical storms

and hurricanes in dynamical models (e.g., Knutson et al. 2008; Zhao et al. 2009, 2010;

Villarini et al. 2010; Vecchi et al. 2011; Ramsay and Sobel 2011; Tippett et al. 2011;

Held and Zhao 2011; Villarini et al. 2011b). Rather than a real “climate” feature,
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these results are likely due to the large impact of hurricane undercounts. For this

reason, we recommend not using the original (uncorrected) HURDAT data without

accounting for the undercount correction.

The results from the modeling of the corrected dataset are more consistent with

our current understanding of the physical processes at play in the genesis and de-

velopment of North Atlantic hurricanes. Tropical Atlantic and tropical mean SSTs

are always retained as important predictors, independently of the penalty criterion

and SST input dataset. When penalizing with respect to AIC, NAO is also included.

However, when using SBC as penalty criterion, only the two SST predictors are re-

tained (when using both HadISST and ERSST data). To describe the frequency of

North Atlantic hurricanes, we therefore recommend a parsimonious model in which

the logarithm of the rate of occurrence parameter is a linear function of both SSTAtl

and SSTTrop.

4.2 Binomial Regression Model

We model the fraction of hurricanes making landfall in the US using a binomial regres-

sion model. We consider both uncorrected and corrected time series, five covariates,

two SST datasets, and two penalty criteria. In Figure 9 we show the results obtained

when using AIC as penalty criterion for model selection. We summarize the values of

the parameters of these models in Table 3. When we consider the fractions based on

the uncorrected dataset, NAOMJ and SSTTrop are selected as important predictors
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independently of the SST input data, and the parameter µ is a linear function of

these two covariates via a logit link function. These parsimonious models (3 degrees

of freedom used for the fit) are able to describe the complex behavior exhibited by

the data, as also supported by the residuals’ diagnostics (Table 3 and Figure 10).

In particular, up to the 1940s there is a tendency towards higher ratios compared

to the more recent period. This behavior could be explained by considering the likely

undercount of hurricanes in the pre-satellite era. Based on the covariates retained as

important predictors during the model selection, we observe both local (NAO) and

remote (tropical mean SST) effects are important in describing these fractions. We

would have expected NAO to be a significant covariate because of its possible link to

storm steering (e.g., Elsner et al. 2000b, 2001). The sign of the coefficients for NAO

is always negative, indicating that a small value of this index would correspond to a

more negative NAO phase, with the Bermuda High moving more towards the eastern

Atlantic, and an larger fraction of storms making US landfall (keeping everything

else constant). We obtain slightly different results if we use SBC as penalty criterion,

depending on the SST input data. Using HadISST data, the final model is the same

as the one obtained penalizing with respect to AIC (the µ parameter depends on

NAOMJ and SSTTrop). On the other hand, SSTTrop is the only predictor included in

the final model when we use the ERSST data (Figure 11).

When we consider the fractions based on the corrected dataset and penalize with

respect to AIC, we see some similarities but also some differences with the results
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obtained using the uncorrected dataset. The parameter µ depends on NAOMJ in-

dependently of the SST data. On the other hand, SOI is an important covariate

as well. The fact that this climate index is an important predictor in describing

the probability of US landfalling hurricanes was also discussed in Bove et al. (1998).

Tropical mean SST is included in the final model only when using the ERSST data.

Using the corrected record, we no longer have a more marked increased in the fraction

of landfalling hurricanes in the earlier part of the record because of the undercount

correction. There is still year-to-year variability, but the multidecadal variability ex-

hibited by the hurricane frequency (Figure 1) is no longer clearly visible (see also

Coughlin et al. (2009)). The diagnostics used to assess the goodness-of-fit of these

models do not point to any significant problem (Table 3 and Figure 10). When

penalizing with respect to SBC, no covariate was retained in the final model.

These results suggest that there are important remote influences (SOI and/or

tropical mean SST) in explaining the fraction of hurricanes making US landfall. As

far as local influences are concerned, NAO is an important predictor, while tropical

Atlantic SST is not, possibly because it affects the genesis and development rather

than the hurricane tracking.
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5 Conclusions

We have performed statistical modeling of the North Atlantic and US landfalling

hurricane counts and the fraction of hurricanes making landfall into the US over the

period 1878-2008. The main findings of our study can be summarized as follows:

1. We considered two different hurricane datasets (original HURDAT and account-

ing for likely undercount with the correction described in Vecchi and Knutson

(2011)), five different covariates (NAO averaged over the period May-June and

August-October, SOI, tropical Atlantic SST and tropical mean SST), and two

different SST datasets (HadISSTv1 and ERSSTv3b). Selection of important

covariates was performed by following a stepwise approach and using AIC and

SBC as penalty criteria. Modeling of the count data is performed by means

of a Poisson regression model, while modeling of the fraction of storms making

landfall in the US by means of the binomial regression model.

2. Depending on the penalty criterion and SST input data, we obtained different

final models. These results indicate that there is not a unique “best” model

from a statistical standpoint, and a Bayesian Model Averaging procedure could

be a solution to overcome this issue (Jagger and Elsner 2010). The results

of the statistical modeling effort should help in assessing what the important

predictors are. The statistical analyses, however, should be complemented by

physical reasonings.
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3. When modeling US landfalling and North Atlantic hurricane counts with the

undercount correction by Vecchi and Knutson (2011), tropical Atlantic and

tropical mean SSTs are always retained as important predictors in the final

models, independently of the penalty criterion and SST data. The coefficients

of these two predictors tend to have similar magnitude but opposite sign. Their

values are very similar to those in Vecchi et al. (2011), who estimated them from

212 years of model runs from the HiRAM-C180 model across a broad range of

climates, and the decrease in North Atlantic hurricane frequency implied by the

statistical model is consistent with the response of the HiRAM-C180 Model to

uniform SST increase (Held and Zhao 2011). That is: the sensitivity of that

dynamical model to SST forcing is consistent with the observed relationships

between SST and Atlantic hurricane frequency.. These results provide support-

ing evidence to the importance of relative rather than absolute Atlantic SST in

describing the frequency of US landfalling and North Atlantic tropical storms

and hurricanes.

4. We used a binomial regression model to describe the fraction of North Atlantic

tropical storms making landfall in the US in terms of climate indices. We

found that the observations are influenced by both local and remote effects. In

particular, the local effects are related to the NAO, while remote effects are

associated with tropical mean SST and/or SOI.

5. Previous studies investigated landfalling hurricanes by dividing the US into sub-
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regions (e.g., Gulf of Mexico, East Coast, Florida Panhandle; e.g., Dailey et al.

2009; Brettschneider 2008; Smith et al. 2007; Nakamura et al. 2009; Kossin et al.

2010). Future studies examining the fractions of hurricanes making landfall

in specific US sub-areas could help to highlight features that may have been

disguised when focusing on the entire North Atlantic basin and US coastline.
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7 Appendix: Impact of Collinearity

To describe the relation between North Atlantic and US landfalling hurricane frequen-

cies and climate indices we have used NAO, SOI, SSTAtl, and SSTTrop as predictors.

Model selection was performed by means of a stepwise approach using AIC and SBC

as penalty criteria. We have found that both tropical Atlantic and tropical mean

SSTs are always retained as important predictors for US landfalling and corrected

data (for the uncorrected dataset, tropical mean SST is not included when penalizing

with respect to SBC). This statement is valid independently of the selected penalty

criterion and SST input data. One element that requires further discussion is the fact

that tropical Atlantic and tropical mean SSTs are positively correlated (the value of

the correlation coefficient between these two covariates is equal to 0.73 for HadIS-

STv1 and 0.78 for ERSSTv3b data), possibly affecting the outcome of our modeling

efforts. Even though these values of correlation may seem large, they are smaller than

what found in other studies in which model selection was performed with respect to

these penalty criteria (e.g., Burnham and Anderson 2004; Stasinopoulos and Rigby

2007). On this matter, Burnham and Anderson (2002) suggest not to drop a pre-

dictor unless the correlation coefficient is extremely high (near collinearity problem).

They indicate |0.95| as a cutoff value for dropping a covariate. Nonetheless, to show

that relative SST (tropical Atlantic SST minus tropical mean SST; SSTrel) is a key

factor in explaining the frequency of North Atlantic and US landfalling hurricanes,

we use the variance inflation factor (VIF), a diagnostic tool routinely used to assess
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the impact of collinearity.

The VIF allows quantifying the “inflation” of the sampling variance of an esti-

mated coefficient due to collinearity. We compute the VIF using the vif function

in the Design package (Harrell Jr 2009) in R (R Development Core Team 2008), in

which the methodology presented in Davis et al. (1986) is implemented (consult also

Wax (1992)). A VIF value of 1 indicates that the predictors are uncorrelated, while

larger values reflect increasing degrees of correlation among covariates.

In order to evaluate whether collinearity could have an unacceptably high impact

on the modeling results, different rules of thumb has been proposed, and a VIF cut-off

value of 10 is generally adopted (e.g., O’Brien 2007). Davis et al. (1986) refer to a

VIF value larger than 10 as “indicating a modest amount of dependency among the

variables.” In this study, we set a VIF value of 10 to decide whether collinearity

represents a substantial problem.

Let us start with US landfalling hurricanes. If we use all the five predictors and

the HadISST data, the largest value of VIF we obtain is 2.81. This value slightly

increases when we use the ERSST data (VIF equal to 2.87), reflecting the larger

correlation between tropical Atlantic and tropical mean SSTs for this dataset. For

the final models obtained using AIC and SBC as penalty criteria and both of the SST

data, the results are similar, with the largest value of VIF being smaller than 3. When

dealing with the uncorrected and corrected records, we come to the same conclusion,

independently of the model configuration and SST input data (the largest VIF values
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for the uncorrected and corrected records are smaller than 3). Based on these results

(VIF much smaller than 10), we can conclude that the dependence among predictors

does not have a significant effect on the outcome of this study (see also discussion in

Villarini et al. (2011a)).
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Figure 4: Worm plots of the six models in Figure 3.
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Figure 5: Same as Figure 3, but using SBC as penalty criterion.
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Figure 6: Worm plots of the six models in Figure 5.
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Figure 7: Modeling the US landfalling hurricane count time series using tropical
Atlantic and mean tropical SSTs as predictors (top panels). The white line represents
the median (50th percentile), the dark gray region the area between the 25th and 75th

percentiles, and the light gray region the area between the 5th and 95th percentiles. In
the bottom panels, worm plots and summary statistics for these models are presented.
The results in the left panels are obtained by using the HadISSTv1 SST data, while
those in the right panels on the ERSSTv3b SST data.
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Figure 8: Same as Figure 7, but for the “uncorrected” HURDAT dataset.
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Figure 9: Modeling the fraction of North Atlantic hurricanes making landfall in the
US based on the “uncorrected” HURDAT dataset (top panels), and the HURDAT
dataset with the Landsea et al. (2010) correction (bottom panels) using the climate
indices as predictors. Model selection is performed with respect to AIC. The results
in the left panels are obtained using the HadISSTv1 SST data, while those in the
right panels the ERSSTv3b SST data. The white line represents the median (50th

percentile), the dark gray region the area between the 25th and 75th percentiles, and
the light gray region the area between the 5th and 95th percentiles.
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Figure 10: Worm plots of the four models in Figure 9.
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Figure 11: Modeling the fraction of North Atlantic hurricanes making landfall in
the US based on the “uncorrected” HURDAT dataset using tropical mean SST from
the ERSSTv3b SST data as predictor (top panel). Model selection is performed with
respect to SBC and the worm plot is in the bottom panel. The white line represents
the median (50th percentile), the dark gray region the area between the 25th and 75th

percentiles, and the light gray region the area between the 5th and 95th percentiles.
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Table 1: Summary statistics for the Poisson modeling of hurricane counts using
climate indices as covariate. Model selection is performed with respect to AIC. The
first value is the point estimate, while the one in bracket is the standard error; “D.
of F. for the fit” indicates the degrees of freedom used for the fit. In each cell, the
values in the first (second) row refer to the model using the HadISSTv1 (ERSSTv3b).
When “cs” is present, it means that the dependence of Λi on that covariate is by means
of a cubic spline and the coefficients and standard errors are for the linear fit that
accompanies the cubic spline fit (otherwise, simple linear dependence is implied).

Landfall Uncorrected Corrected
Intercept 0.50 (0.07) 1.67 (0.04) 1.84 (0.04)

0.52 (0.07) 1.68 (0.04) 1.86 (0.04)
NAOMJ -0.18 (0.07) - -0.06 (0.03)

-0.14 (0.07) - -
NAOAO - - -

- 0.07 (0.04) 0.07 (0.04)
SOI - 0.05 (0.03) -

0.09 (0.04) 0.09 (0.03) 0.05 (0.02)
SSTAtl 1.21 (0.34; cs) 1.15 (0.20; cs) 1.12 (0.18; cs)

0.94 (0.31; cs) 1.03 (0.18) 1.01 (0.17)
SSTTrop -1.93 (0.49; cs) -0.75 (0.30; cs) -1.37 (0.25; cs)

-1.32 (0.44; cs) -0.51 (0.25) -0.97 (0.23)
D. of. F. for the fit 10 10 10

8 5 5
Mean (residuals) 0.04 -0.00 0.01

0.03 0.02 0.04
Variance (residuals) 0.78 0.67 0.55

0.76 0.70 0.62
Skewness (residuals) 0.18 -0.36 -0.25

0.13 -0.06 -0.05
Kurtosis (residuals) 2.99 2.92 2.72

2.77 3.00 2.92
Filliben (residuals) 0.997 0.994 0.996

0.993 0.997 0.997
AIC 423.6 559.9 571.8

425.9 560.4 573.2
SBC 452.3 588.6 600.5

448.9 574.8 587.6
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Table 2: Same as Table 1, but using SBC as penalty criterion.

Landfall Uncorrected Corrected
Intercept 0.49 (0.08) 1.68 (0.04) 1.86 (0.03)

0.57 (0.07) 1.68 (0.04) 1.85 (0.04)
NAOMJ -0.18 (0.07) - -

- - -
NAOAO - - -

- - -
SOI - 0.10 (0.02) -

0.11 (0.04) 0.11 (0.02) -
SSTAtl 1.18 (0.34) 0.73 (0.13) 1.11 (0.17)

1.07 (0.30) 0.68 (0.11) 1.05 (0.16)
SSTTrop -1.95 (0.49) - -1.33 (0.25)

-1.41 (0.44) - -1.17 (0.22)
D. of. F. for the fit 4 3 3

4 3 3
Mean (residuals) -0.05 0.00 0.03

-0.00 0.02 0.01
Variance (residuals) 0.99 0.82 0.68

0.94 0.79 0.71
Skewness (residuals) -0.01 -0.10 0.04

-0.17 -0.17 0.10
Kurtosis (residuals) 3.11 2.84 2.79

3.42 2.93 2.94
Filliben (residuals) 0.993 0.995 0.997

0.994 0.997 0.998
AIC 429.5 568.7 578.6

429.7 563.6 577.1
SBC 441.0 577.3 587.3

441.2 572.2 585.7
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Table 3: Summary statistics for the binomial regression modeling of the fraction of
hurricanes making landfall using climate indices as covariate. The first value is the
point estimate, while the one in bracket is the standard error. In each cell, the values
in the first (second) row refer to the model using the HadISSTv1 (ERSSTv3b).

Uncorrected (AIC) Uncorrected (SBC) Corrected (AIC)
Intercept -0.76 (0.09) -0.76 (0.09) -1.02 (0.09)

-0.75 (0.09) -0.67 (0.08) -1.03 (0.09)
NAOMJ -0.19 (0.08) -0.19 (0.08) -0.16 (0.08)

-0.17 (0.08) - -0.17 (0.08)
SOI - - 0.10 (0.05)

- - 0.08 (0.05)
SSTTrop -1.39 (0.39) -1.39 (0.39) -

-1.21 (0.32) -1.18 (0.32) -0.47 (0.32)
D. of. F. for the fit 3 3 3

3 2 4
Mean (residuals) -0.09 -0.09 0.01

0.06 0.04 -0.00
Variance (residuals) 1.03 1.03 0.93

0.97 0.98 0.96
Skewness (residuals) -0.13 -0.13 -0.02

0.02 -0.07 0.00
Kurtosis (residuals) 3.27 3.27 2.92

2.82 2.76 3.63
Filliben (residuals) 0.996 0.996 0.997

0.997 0.996 0.991
AIC 376.4 376.4 381.3

374.6 376.9 381.0
SBC 385.1 385.1 389.9

383.2 382.7 392.6
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