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ABSTRACT

Skillfully predicting North Atlantic hurricane activity months in advance is of potential societal significance

and a useful test of our understanding of the factors controlling hurricane activity. In this paper, a statistical–

dynamical hurricane forecasting system, based on a statistical hurricane model, with explicit uncertainty

estimates, and built from a suite of high-resolution global atmospheric dynamical model integrations spanning

a broad range of climate states is described. The statistical model uses two climate predictors: the sea surface

temperature (SST) in the tropical North Atlantic and SST averaged over the global tropics. The choice of

predictors is motivated by physical considerations, as well as the results of high-resolution hurricane modeling

and statistical modeling of the observed record. The statistical hurricane model is applied to a suite of

initialized dynamical global climate model forecasts of SST to predict North Atlantic hurricane frequency,

which peaks during the August–October season, from different starting dates. Retrospective forecasts of the

1982–2009 period indicate that skillful predictions can be made from as early as November of the previous

year; that is, skillful forecasts for the coming North Atlantic hurricane season could be made as the current

one is closing. Based on forecasts initialized between November 2009 and March 2010, the model system

predicts that the upcoming 2010 North Atlantic hurricane season will likely be more active than the 1982–2009

climatology, with the forecasts initialized in March 2010 predicting an expected hurricane count of eight and

a 50% probability of counts between six (the 1966–2009 median) and nine.

1. Introduction

Substantial attention has been placed in developing

forecast systems for the seasonal activity of North At-

lantic hurricanes and tropical storms, with various meth-

ods developed over the years [see review in Camargo

et al. (2007)]. Seasonal basin-wide activity forecast sys-

tems have been developed that show skill in retrospective

forecasts over many years starting from April through

July for the hurricane season that peaks in August–

October (e.g., Gray 1984; Elsner and Jagger 2006; Vitart

2006; Vitart et al. 2007; Klotzbach and Gray 2009; LaRow

et al. 2010; Wang et al. 2009; Zhao et al. 2010). In general,

one can view the seasonal hurricane prediction problem as

a two-step process: (i) predicting the state of the future

climate system on large scales (the climate prediction) and

(ii) predicting the response of seasonal basin-wide hurri-

cane frequency to that future climate state (the hurricane

prediction). Sometimes the two steps occur within a single

process, such as when dynamical coupled climate models

are used to predict the state of future climate, and the

response of the hurricane-like vortices in the models is

used to estimate future hurricane activity (e.g., Vitart 2006;

Vitart et al. 2007), or when a statistical relationship be-

tween conditions prior to the hurricane season and the

future season’s hurricane activity is used (e.g., Gray 1984;

Elsner and Jagger 2006; Klotzbach and Gray 2009). Since

both the evolution of the climate system and the response

of the hurricane activity to climate are chaotic processes,

these forecasts are necessarily probabilistic.

The methods developed to date have been shown to

have skill at predicting basin-wide tropical cyclone statistics
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in the North Atlantic from the summer (Vitart 2006;

Klotzbach and Gray 2009; LaRow et al. 2010; Zhao et al.

2010), and as early as spring (Vitart et al. 2007; Wang

et al. 2009). Here, we develop a statistical–dynamical

forecast system to extend the lead times of the forecasts

to the winter prior to the hurricane season, with explicit

uncertainty estimates.

Our approach is to build on recent results with the

National Oceanic and Atmospheric Administration/

Geophysical Fluid Dynamics Laboratory (NOAA/GFDL)

High-Resolution Atmospheric Model (HiRAM-C180;

Zhao et al. 2009, 2010), a model that is able to recover

much of the observed year-to-year variations in North

Atlantic hurricane frequency when forced with ob-

served sea surface temperatures (SSTs). We take ad-

vantage of a variety of experiments that have been

performed to date with this dynamical model across

a broad range of climates to develop a statistical emu-

lation of the sensitivity of hurricane frequency to SST

in this dynamical model. Training our statistical model

on the hurricane frequency sensitivity of the HiRAM-

C180 dynamical model allows us to address several is-

sues that emerge when constructing statistical models

from observations: (i) since we know the climate forc-

ing in the model, we can be more confident of the causal

connection between predictors and predictands; (ii)

training on the sensitivity of hurricanes to a wide range

of climate states allows us to better describe the re-

lation between the predictors and the predictand; (iii)

the dynamical model ensemble allows us to separate

the forced and stochastic components of the hurricane

frequency, which helps us avoid ‘‘overfitting’’ the sta-

tistical model; and (iv) the influence uncertainties aris-

ing from changes in observing and recording practices

on SST (e.g., Vecchi and Soden 2007; Villarini et al.

2010) and hurricane frequency (e.g., Vecchi and Knutson

2008; Landsea et al. 2010) do not influence a statistical

model built from the hurricane sensitivity of a dynamical

model. An obvious disadvantage of training the statistical

emulator on the sensitivity of the HiRAM-C180 dy-

namical model is that the sensitivity of hurricanes to large-

scale conditions in that model may be incorrect; however,

the strong agreement between the statistics of the ob-

served and HiRAM-C180 hurricane frequencies (Zhao

et al. 2009, 2010) and the retrospective skill of the forecast

system that we show here gives us confidence to proceed

with this methodology.

The statistical formulation of the emulator is based on

the results of Villarini et al. (2010) and is motivated by

physical considerations. The emulator is applied to dy-

namical predictions of SST from two initialized coupled

modeling prediction systems in order to make predictions

of Atlantic hurricane frequency. We use retrospective

forecasts over the period 1982–2009 to assess the skill

of our method, and we make forecasts for the upcoming

(2010) hurricane season.

2. Methods

a. High-Resolution Atmospheric Model

Our hybrid forecasting technique is built on the results

from a dynamical hurricane climate model recently de-

veloped at NOAA/GFDL, the High-Resolution Atmo-

spheric Model, specifically the HiRAM-C180 [cubed

sphere dynamical core (Putman and Lin 2007) with

180 3 180 grid points on each face of the cube, resulting

in grid sizes ranging from 43.5 to 61.6 km]. When forced

with the observed SSTs of Rayner et al. (2003), the

HiRAM-C180 model simulates hurricane statistics that

compare well with the observations for the period 1981–

2008 (Zhao et al. 2009, 2010). The model recovers the

overall geographical distribution of storm genesis loca-

tions, as well as the seasonal cycle and the interannual

variability of hurricane frequencies for the North At-

lantic and the eastern and western Pacific.

The quality of our dynamical model forced with the

observed SSTs has encouraged us to use this model as a

tool to explore issues related to seasonal hurricane

predictions. As a first step, Zhao et al. (2010) used

HiRAM-C180 to pursue retrospective predictions of

seasonal hurricane frequency in the North Atlantic and

eastern Pacific by simply persisting SST anomalies from

June throughout the hurricane season (these are effec-

tively persistence forecasts initialized in July). Using an

ensemble of five realizations for each year between 1982

and 2008, the correlation of the model mean with ob-

servations of basin-wide hurricane frequency is 0.69 in the

North Atlantic. Furthermore, Zhao et al. (2010) found

that a significant part of the degradation in skill [com-

pared to a model forced with observed SSTs (correlation 5

0.78) during the hurricane season] can be explained by

the change from June through the hurricane season in

one parameter, the difference between the SST in the

main development region and the tropical mean SST.

This indicates that the quality of seasonal forecasts based

on a coupled atmosphere–ocean model will depend in

large part on the model’s ability to predict the evolution

of the difference between main development region

SSTs and tropical mean SSTs.

In Zhao et al. (2009), the same dynamical model was

also used to simulate the hurricane response to four

different SST anomalies generated by coupled models

in the Third Coupled Model Intercomparison Project

(CMIP3; Meehl et al. 2007) archive, for the late twenty-

first century based on the Intergovernmental Panel on
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Climate Change’s (IPCC) Special Report on Emissions

Scenarios’s (SRES) A1B scenario. The SST anomalies

were obtained from single realizations of three models

[GFDL’s Coupled Model version 2.1 (CM2.1), the Met

Office’s (UKMO) third climate configuration of the Met

Office Unified Model (HadCM3), and the Max Planck

Institute’s (MPI) ECHAM5], and from the ensemble

mean for the simulations for 18 models.

Since the Zhao et al. (2009) study, we have further

pursued five additional SST warming experiments using

SSTs from different coupled models [GFDL’s CM2.0,

UKMO’s Hadley Centre Global Environmental Model

version 1 (HADGEM1), the Canadian Centre for Cli-

mate Modelling and Analysis’s (CCCma) Coupled

General Circulation Model (CGCM), the Meteoro-

logical Research Institute’s (MRI) Coupled General

Circulation Model version 2.3.2 (CGCM2.3.2), and the

Center for Climate Systems Research’s (CCSR) high-

resolution version of the Model for Interdisciplinary

Research on Climate (MIROC-HI)]. As described in

Zhao et al. (2009), we generated a control simulation by

prescribing the climatological SST (seasonally varying

with no interannual variability) using time-averaged

(1982–2005) Hadley Centre Global Sea Ice Coverage and

Sea Surface Temperature (HadISST) data (Rayner et al.

2003). We then added the SST warming anomalies (also

seasonally varying with no interannual variability) pro-

jected by the coupled model to the climatological SST to

pursue the global warming experiments. Ten-year in-

tegrations were carried out for both the control and the

perturbation experiments.

b. Statistical hurricane model

Ideally, we would like to use as our hurricane forecast

tool a global dynamical modeling system like that of

Zhao et al. (2009, 2010), which exhibits both substantial

skill in retrospective hurricane frequency simulations

with prescribed SSTs and represents the response of

hurricanes across a broad range of possible climate states.

However, the computational expense of running this

high-resolution model over the hundreds of retrospective

forecast experiments needed to assess the retrospec-

tive skill of the model is prohibitive. Our approach in this

work is to take advantage of the hundreds of years of ex-

periments with the HiRAM-C180 model across a broad

range of climates to develop a statistical emulation of this

dynamical model, which will have the advantage of being

computationally inexpensive, allowing us to perform the

hundreds of retrospective forecasts needed. In addition,

we will train this statistical emulator on both the historical

HiRAM-C180 experiments as well as a suite of experi-

ments exploring substantially altered climate states, in

order to build a statistical system that is more likely to be

robust across different possible climates, and not opti-

mized to retrospectively predicting past climate. An

additional advantage is that once it is developed, the

statistical model can be applied to a wide range of SST

forecast products, for example, by applying it to seasonal

SST forecasts from various operational centers.

To build our statistical emulation of HiRAM-C180,

we must select a set of potential climate-state covariates

to serve as predictors. We focus on covariates based on

SST since the results of Zhao et al. (2009) strongly sug-

gest that a large fraction of the climate information for

hurricane activity is contained in the monthly evolution

of global patterns of SST. For this work, we wish to build

as parsimonious a statistical model of basin-wide hurri-

cane frequency as possible, but one that is still able to

describe the variability exhibited by the data. For this

reason and building on the results of various recent

studies (Vecchi and Soden 2007; Swanson 2008; Vecchi

et al. 2008; Knutson et al. 2008; Zhao et al. 2009, 2010;

Villarini et al. 2010), we limit our predictors to two:

Atlantic main development region SST (SSTMDR) and

global tropical-mean SST (SSTTROP). We choose as

one possible predictor SSTMDR (SST averaged over 108–

258N, 808–208W, and averaged over August–October,

the peak months of the hurricane season), since we ex-

pect hurricane activity in the Atlantic to depend partly

on the evolution of SST local to hurricane development

(e.g., Emanuel 2005; Mann and Emanuel 2006; Vecchi

and Soden 2007; Swanson 2008; Knutson et al. 2008; Zhao

et al. 2009; Villarini et al. 2010). In addition, we choose as

another possible covariate SSTTROP (SST averaged 308S–

308N and during the period August–October) because (i)

there is a substantial body of evidence that tropical-mean

SST changes can influence large-scale climatic conditions

in the North Atlantic that affect hurricane activity, such

as wind shear (Latif et al. 2007) and upper-tropospheric

temperature (Sobel et al. 2002), that in turn influences

hurricane potential intensity (Vecchi and Soden 2007)

and other measures of thermodynamic instability (e.g.,

Shen et al. 2000; Tang and Neelin 2004), (ii) tropical-

mean SST appears to be a useful covariate in the de-

scription of the historical changes in other measures of

basin-wide tropical cyclone activity in the North Atlantic

(e.g., Swanson 2008; Vecchi et al. 2008; Villarini et al.

2010), and (iii) the differences between tropical Atlantic

and tropical-mean SSTs are a good indicator of the re-

sponse of hurricane frequency to changes in climate in

high-resolution atmospheric models (e.g., Knutson et al.

2008; Zhao et al. 2009, 2010; Villarini et al. 2011). Based

on the studies cited above, we expect a priori that SSTMDR

will emerge as a positively correlated predictor of hurri-

cane frequency, while SSTTROP should emerge as a nega-

tively correlated predictor.
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To emulate the response of hurricane frequency to

changes in SST in HiRAM-C180, we use a Poisson re-

gression model in which the rate of occurrence l is a

function of both SSTMDR and SSTTROP. The statistical

model is built from 212 yr of model integration from

HiRAM-C180 (Fig. 1), which include ten 10-yr climate

change experiments [each of the ten experiments ex-

plores the hurricane response to a different projection

of twenty-first-century SST from the IPCC Fourth As-

sessment Report (AR4)–CMIP3 archive] and four his-

torical ensembles in which the model was forced with

the observed SSTs (Rayner et al. 2003) over the period

1981–2008 (Zhao et al. 2009, 2010). We then build a

Poisson regression model [using the Generalized Ad-

ditive Models for Location Scale and Shape (gamlss) R

package; Stasinopoulos et al. (2009)] for the HiRAM-

C180 hurricane counts to the corresponding SSTMDR

and SSTTROP. Our training was performed on anomalies

relative to the 1982–2005 average. We also performed

sensitivity experiments by training the statistical model

separately on the four-member historical experiment

dataset of HiRAM-C180 and on the suite of climate

change experiments. For all of the training experiments,

both tropical Atlantic and mean tropical SSTs are re-

tained as significant predictors; the coefficients of these

two covariates have similar magnitudes but opposite signs

(SSTMDR acting as a positive predictor and SSTTROP as

a negative one, conforming to our prior expectation).

More specifically, in each of the training experiments the

magnitude of the influence of SSTTROP is always larger

than that of SSTMDR, indicating a tendency of uniform

tropical-mean warming (SSTMDR 5 SSTTROP) to reduce

Atlantic hurricane frequency, and consistent with the sen-

sitivity of historical North Atlantic tropical-storm fre-

quency (Villarini et al. 2010). We retain as our ‘‘best’’

emulator the model fitted to the entire record, since it

spans the broadest range of possible climate conditions,

giving us more confidence as to its applicability to novel

situations. When trained on the entire suite of HiRAM-

C180 experiments (exploring both historical and climate

change conditions), the rate of occurrence l of the Pois-

son regression model can be described as a linear function

of both SSTMDR and SSTTROP (via a logarithmic link

function) as follows:

l 5 e1.70711.388SSTMDR�1.521SSTTROP , (1)

where SSTMDR and SSTTROP are anomalies in the re-

gional SST indices relative to the 1982–2005 average.

As can be seen in Fig. 1, the fitted statistical model is

able to reproduce well the variability exhibited by the

basin-wide hurricane counts under different conditions

(both in the HiRAM-C180 response to historical SST

changes and to large climate change projections), pro-

viding supporting evidence of its robustness. Evaluation

of the model fit was performed by visual examination of

the residual plots (e.g., qq-plots and worm plots), as well

as computing residuals’ statistics, such as mean, variance,

FIG. 1. Construction and evaluation of the statistical hurricane frequency model, showing the

fit of the Poisson regression model of hurricane counts for the North Atlantic basin to the

training set of HiRAM-C180 high-resolution atmospheric model hurricane counts: blue dots

show the counts from the HiRAM-C180 model, the black line shows the median of the sta-

tistical model fit, and the green and gray shadings show the 50% and 90%, respectively, con-

fidence intervals on the fit. The parsimonious statistical model with only two covariates is able

to capture the behavior of basin-wide hurricane counts across a broad range of climates in this

dynamical atmospheric model.
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skewness, kurtosis, and a Filliben correlation coefficient

[consult Villarini et al. (2010) for a more extensive discus-

sion about model fitting and evaluation]; these assessments

of the model’s residuals supported the model’s selection.

To test the relevance of this statistical emulator of

a global dynamical model to the observed record, we

apply the statistical hurricane frequency model to the

observed August–October SST indices (Fig. 2), which

we refer to as a perfect prediction, as it indicates the skill

of the emulator if we were able to perfectly predict the

predictors. In this perfect prediction mode, the statistical

emulator recovers much of the observed variability in

hurricane activity, with a correlation coefficient of 0.76

and a root-mean-square error (RMSE) of 1.99 hurricanes

over the period 1982–2009. These values compare very

well to the 1982–2008 correlation of 0.79 and RMSE of

1.86 hurricanes from the full HiRAM-C180 AGCM when

forced with the observed monthly varying SST field (Zhao

et al. 2009, 2010). Therefore, despite its parsimony (only

two predictors), our simple hurricane statistical model

performs very well, and there is little statistical justifica-

tion for adding predictors to our emulator since the cor-

relation to the observed record is so similar to that of the

full high-resolution dynamical model we are seeking to

emulate.

c. Forecasts of sea surface temperature

We explore two initialized forecast systems built on

coupled ocean–atmosphere models: the CM2.1 experi-

mental seasonal-to-interannual (S-I) prediction system

and the National Centers for Environmental Prediction

(NCEP) Climate Forecast System (CFS).

The NOAA/GFDL experimental S-I prediction sys-

tem is built on the CM2.1 coupled climate modeling

system (Delworth et al. 2006), which was also used to

provide data for the recent AR4. The GFDL–CM2.1

retrospective forecasts consist of a set of retrospective

predictions initialized over the period November 1981–

March 2010, each with a 10-member ensemble initiated

from the first day of every month (November–August)

with an integration of 12 months. Thus, for each of 28

August–October seasons (1982–2009) we have 100 ret-

rospective integrations (10 ensemble members initialized

in each of the 10 months). In addition, we have 10-member

forecasts for the upcoming 2010 hurricane season initial-

ized from 1 November 2009 to 1 March 2010.

The state of the ocean and atmosphere for each of

the GFDL–CM2.1 forecast experiments is set using a

state-of-the-art coupled (ocean–atmosphere) ensemble

Kalman filter (EnKF) assimilation system, which incor-

porates the observed oceanic and atmospheric states

available prior to the initiation of the forecast run (Zhang

et al. 2007). The initial conditions for the 10 ensemble

members for each forecast experiment are selected from

the ensemble members of the EnKF initialization scheme.

The 10 ensemble members of each forecast experiment

were used to calculate the ensemble mean climatol-

ogy, with each start month having its own separate

climatology to correct for systematic model drift. For

each of the forecast initialization times (1 November–

1 August) we computed 1 August(0)–31October(0)

SST anomaly (relative to each forecast system’s 1982–

2005 climatology) indices for the Atlantic MDR and

tropics.

FIG. 2. Results of applying the statistical emulator of the sensitivity of HiRAM-C180 hurricane frequency to the

observed SST data of Rayner et al. (2003). (a) A time series plot of the observed hurricane counts (black line) and the

expected counts from applying the statistical model to the observed SSTs (blue line); the 90%, 75%, and 50%

confidence intervals of the statistical fit are shown by the gray, yellow, and green shadings, respectively. (b) A

scatterplot of the observed hurricane counts vs the mean hurricane counts estimated by the statistical model from the

observed SSTs.

1074 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



We also use SST forecasts from the current NCEP

operational Climate Forecast systems (CFS) model (Saha

et al. 2006). These are the standard initialized forecasts

with the CFS system available from NCEP. The CFS is

a fully coupled ocean–land–atmosphere dynamical sea-

sonal prediction system, and forecasts are initialized from

the observed estimates of the ocean, atmosphere, and

land conditions. Various elements of the CFS consist of

the NCEP Global Forecast Systems version 2003 (Moorthi

et al. 2001) and the GFDL Modular Ocean Model version

3 (Pacanowski and Griffies 1998). Initial conditions for the

CFS are taken from the NCEP/Department of Energy

(DOE) Reanalysis-2 (R2) for the atmosphere and land,

and from the NCEP Global Ocean Data Assimilation

System (GODAS) for the ocean (Behringer et al. 1998;

Behringer and Xue 2004).

For each month (January–July) in the NCEP–CFS

forecast period (1982–2009), 15 forecast members were

produced by the CFS for the nine following (target)

months. The 15 forecast members are in a group of three

sets with five members each. The three sets of forecast

runs are initiated from 0000 UTC around the 1st, 11th,

and 21st calendar day of the month. The five members in

each set of the forecast runs are from five observed at-

mospheric and land initial conditions that are 1 day

apart, but share the same oceanic initial conditions.

For comparing the various retrospective forecasts, we

use the convention that a Month-M forecast should in-

clude data no more recent than the first week of month

M in its initialization, so that we are assessing the ability

to issue a hurricane forecast early in month M. Thus,

the GFDL–CM2.1 Month-M forecasts compose the

10-member ensemble initialized on the 1st day of that

month, the NCEP–CFS Month-M forecasts compose the

15-member ensemble made up of the 10 members ini-

tialized on the 11th and 21st of month M 2 1 and the five

members initialized on the 1st of month M, and for SST

persistence the Month-M forecasts are those in which

SST anomalies from month M 2 1 are persisted.

d. Seasonal hurricane forecasts and uncertainty
estimates

To perform our hybrid statistical–dynamical forecasts

of hurricane frequency, we take the dynamical pre-

dictions of SSTMDR and SSTTROP and use them as input

for our statistical emulation of the HiRAM-C180 high-

resolution dynamical atmospheric model. In our seasonal

forecasts of hurricane frequency we wish to explicitly

compute uncertainty estimates arising from two sources

that we can currently quantify: (i) given an initial state

of the climate system, the forecasts of the SST indices

are uncertain, with variations arising due to the chaotic

nature of the global climate system, and (ii) given a

particular realization of SST the forecasts of hurricane

frequency are uncertain, due to variations in hurricane

frequency that are not constrained by our SST indices.

We can estimate the uncertainty arising from the first

of these sources by exploring the ensemble suite of the

initialized forecasts, and we can estimate the uncertainty

arising from the second source through the parametric

probability estimates in the Poisson model of hurricane

frequency given a rate parameter (l) (Rice 1995, p. 41):

p(Count 5 kjl) 5
lke�l

k!
(k 5 0, 1, 2 . . . .). (2)

To compute our predictions of hurricane activity, we

first, for each initialization, take the predicted August–

October SSTMDR and SSTTROP from each of the ensem-

ble members (anomalies computed from the forecast

system 1982–2005 climatology). We then apply these in-

dices to the fit to obtain the predicted rate parameter l

from our Poisson fit emulator of the HiRAM-C180 model

[Eq. (1)], and from Eq. (2) we can compute the probability

density function (PDF) of predicted hurricane counts for

each of the ensemble members. We then convolve the

PDFs from the suite of forecast ensemble members in

order to arrive at an ensemble PDF for each month of

initialized forecasts:

p(Count 5 kjInitialization) 5
1

N
�
N

i51
p(Count 5 kjl

i
),

(3)

where li is the rate parameter computed from the ith

ensemble member for a given initialization month’s

forecast and N is the number of ensemble members

available. With this PDF, we can compute an expected

value (mean), as well as various confidence intervals and

exceedance probabilities in the counts for each year and

for each forecast month.

We use two ensemble-averaging techniques to gener-

ate our predictions of annual hurricane frequency. The

first technique is a simple ensemble average, in which we

take the ensemble members that are initialized using data

from the month just prior to a given month as the total

ensemble set. The second technique is the lagged super-

ensemble, which is motivated by a desire to increase the

ensemble size from 10 to 15, and results from the con-

straints on the size of the ensemble that have been run. In

this lagged superensemble we build a 30-member en-

semble set consisting of the three 10-member ensembles

initialized that particular month and the two preceding

months for GFDL–CM2.1, and of the two 15-member
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ensembles initialized by the particular month and that

preceding it for NCEP–GFS. The assumption in gener-

ating the lagged superensemble is that the error growth

over the period between the initialization of the oldest

ensemble set and the newest is smaller than the enhanced

fidelity of additional ensemble members. This assump-

tion is justified a posteriori by the examination of the

patterns of behavior of our retrospective forecasts pre-

sented below. We can compute a two-model ensemble by

using as the set of SST forecasts the total ensemble from

NCEP–CFS and GFDL–CM2.1, which for monthly fore-

casts is 25 and for lagged ensembles is 60.

3. Retrospective forecast results

In this section we explore the retrospective skill of our

basin-wide hurricane frequency forecast system. To as-

sess the skill of the predictions of hurricane frequency

based on the SST forecasts from GFDL–CM2.1 and

NCEP–CFS, we compare them against the persistence

of anomalies in SSTMDR and SSTTROP from the Rayner

et al. (2003) dataset. As shown in Zhao et al. (2010), we

expect a sharp dropoff in the skill of persistence fore-

casts across late boreal spring. Our hope is that, by ini-

tializing the coupled ocean–atmosphere system from

observations and representing the dynamical and ther-

modynamical processes that control the evolution of the

climate system, the dynamical forecast systems could

extend the forecast window into boreal winter.

In these retrospective forecasts, we perform forecasts

of hurricane activity in past years attempting to keep out

information that would not have been available at the

time of the forecast. It must be acknowledged that the

construction of our hurricane prediction scheme is not

entirely independent of the historical hurricane record

(albeit in an indirect manner), as we decided to build

a statistical emulation of the HiRAM-C180 atmospheric

model because it is able to recover much of the historical

hurricane frequency when forced with historical SSTs

(Zhao et al. 2009, 2010). However, the HiRAM model

was not optimized to recover the year-to-year variations

of hurricane frequency (Zhao et al. 2009), and therefore

the observed hurricane variations did not go into its

construction. Moreover, in building the statistical emu-

lator we did not use the observed hurricane record (which

we seek to retrospectively forecast), but used only the

HiRAM-C180 response to observed SST as well as to a

suite of global climate change simulations. In doing so,

we have attempted to minimize the direct influence

of the observed hurricane record in our retrospective

forecasts.

Figure 3 shows the retrospective skill exhibited by the

GFDL–CM2.1 and NCEP–CFS systems in forecasting

the SST indices that are used in the statistical hurricane

model over 1982–2009. GFDL–CM2.1 exhibits correla-

tions greater than 0.6 for both indices at all leads ex-

plored here, while the correlation coefficient for both

indices in NCEP–CFS drops relatively more rapidly

than for GFDL–CM2.1. Part of the drop in the corre-

lations of the NCEP–CFS forecast of each index is due

to a failure of NCEP–CFS to capture much of the 1982–

2009 trend in both SST indices. The inability of NCEP–

CFS to capture the observed warming in these SST indices

is likely related to the use of invariant greenhouse and

aerosol forcing in the model (Cai et al. 2009).

Our hurricane forecasts depend on a particular com-

bination of these two indices, with the difference be-

tween the indices, roughly speaking, controlling the

hurricane activity. To the extent that errors in the pre-

dictions for the individual indices arise from the spatially

uniform component of SST trends, they will not be

closely related to the hurricane forecast skill. In fact, as

described below, the NCEP–CFS forecasts provide better

short-lead-time seasonal hurricane forecasts than does the

GFDL system.

Figure 4 illustrates the retrospective skill in hurri-

cane counts of the forecast system in two initialization

months (January and March) and using the two ensem-

ble averaging techniques (simple ensemble and lagged

superensemble). Since the hurricane season peaks in

August–October, these can be considered 7- or 5-month-

lead forecasts. Since January-initialized forecasts of

August–October are not available from NCEP–CFS,

the top panels Fig. 4 show the confidence intervals from

the GFDL–CM2.1-based forecast, while the bottom panels

show the confidence intervals from the two-model (NCEP–

CFS 1 GFDL–CM2.1) forecasts. In each of the panels in

Fig. 4 the various ensemble averages of the forecast sys-

tems, though not perfect, exhibit some visual similarity to

the observed hurricane record. For the retrospective fore-

casts shown in Fig. 4, the uncertainty estimates seem con-

servative, with nominally fewer than 25% and 10% of the

cases outside the 75% and 90% confidence intervals, yet

this difference is not statistically significant, and over the

entire forecast suite there is no systematic bias in the un-

certainty estimate. Measures of correlation and RMSE

bear out the visual similarity of the observed and forecast

time series, with correlations between 0.5 and 0.6 and

RMSEs of 2.4 and 2.6 hurricanes per year.

Among the years that were problematic for the system

to retrospectively predict was the incredibly active sea-

son of 2005. None of the January or March retrospective

forecasts were able to foretell in their mean estimate

that 2005 should have been the most active year over

1982–2005, much less its extreme value that lay outside

the 90% confidence interval for all forecasts (Fig. 4).
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However, with ‘‘perfect’’ SST values our statistical em-

ulator is able to recover that 2005 should have been the

most active year over 1982–2009 (Fig. 2), suggesting that

predicting the evolution of our SST indices to the values

leading to an extreme hurricane season proved difficult

for the dynamical SST forecast systems. Furthermore,

the observed counts for 2005 were outside the 90%

confidence interval of the statistical emulator even with

perfect SST (Fig. 2), yet the observed value of the 2005

hurricane frequency was within the spread of the four-

member ensemble from the dynamical HiRAM-C180

model (Zhao et al. 2009) forced using monthly fields of

SST. This suggests that either nonlinear dynamics cap-

tured by the HiRAM-C180 framework but absent in our

simplified statistical model or the response to details

in SST beyond our two indices were important to the

extreme 2005 season; that is, it may be that the statistical

emulator may have been inadequate for predicting 2005.

However, the observed hurricane frequency for 2005 is

only one of a couple of years from 28 that is outside the

90% confidence interval in Fig. 2, suggesting that its

extreme hurricane frequency could be understood as

a stochastic enhancement to an active season. As noted

in section 2b, we cannot currently justify additional pre-

dictors since the statistical model explains as much vari-

ance in hurricane frequency as the dynamical model

indicates should be explainable. Further analyses should

explore the key mechanisms that led to the extreme 2005

season.

We can use the correlation coefficients and RMSEs

from Zhao et al. (2009) and from applying the statistical

hurricane emulator to observed SSTs (r 5 0.78 and 0.76,

FIG. 3. Retrospective prediction skill by two dynamical forecast systems of the SST indices in the hurricane count

statistical model: (a),(c) August–October Atlantic MDR SST and (b),(d) August–October global tropical-mean

SSTs. Dates indicated along the horizontal axes identify the initialization month of the forecasts. Panels (a) and (b)

are computed using the retrospective predictions from the GFDL–CM2.1 system, while (c) and (d) use NCEP–CFS.

The black stars indicate the 1982–2009 correlation of the ensemble-mean-predicted SST index with the observed SST

index.
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and RMSE 5 1.91 and 1.99 hurricanes per year, respec-

tively) as estimates of the explainable variance in hurri-

cane counts from perfect knowledge of SSTs. Within this

context, our retrospective forecasts initialized in January

and March explain around half of this explainable variance,

with forecasts initialized in December and November ex-

hibiting slightly lower skill (Fig. 5).

The retrospective hurricane forecast skill as a function

of initialization month is compared to a variety of other

estimates of predictability in Fig. 5. As one approaches

the hurricane season (forecasts initialized in June and

later), the hurricane forecasts using GFDL–CM2.1 fore-

casts of SST do not outperform the persistence of SST

anomalies [either with our statistical emulator or in the

results of Zhao et al. (2010)]. In contrast, the short-lead

(July and August) hurricane forecasts using the NCEP–

CFS system reach our estimates of potential predict-

ability, with May and June forecasts approaching that

measure. For longer lead times (April and earlier), the

dynamical predictions of SST from both dynamical sys-

tems lead to substantial increases in hurricane forecast

skill over those with persisted SST anomalies. All of the

FIG. 4. Retrospective 1982–2009 forecasts of North Atlantic hurricane frequency for (a),(b) January and (c),(d)

March, for both the (a),(c) simple monthly ensemble and (b),(d) 30-member lagged ensemble. These plots illustrate

the potential for long-lead hurricane frequency forecasts from as early as January. In all the panels, the black lines

show the observed North Atlantic hurricane counts. The colored lines show the ensemble-averaged forecasts for the

mean count using SST predictions from the GFDL–CM2.1 system (red; CM2.1), the NCEP–CFS system (blue; CFS),

and the two-system average (violet; MME). The blue dots show the forecasts of the mean count from the individual

ensemble members. Color shading indicates estimates of uncertainty in the forecasts (the gray shading shows the

90% confidence range, the yellow shading shows the 75% confidence range, and the pink shading shows the 50%

confidence range). Confidence ranges are based on the GFDL–CM2.1 system in the top panels, and on the two-

system ensemble in the bottom panels.
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schemes, including the persisted SST anomaly schemes,

outperform the trailing 5-yr average [gray dashed–dotted

line in Fig. 5; a skill metric suggested by the World Mete-

orological Organization (WMO 2008)] and the persistence

of the previous season’s hurricane frequency (correla-

tion of 0.14 and RMSE of 3.83 hurricanes per year).

In Fig. 5 one can see that the retrospective skill levels

(as measured by correlation and RMSE) of the 10- and

15-member simple ensemble forecasts (left panels) ex-

hibit substantial variability from month to month; for

example, the correlation for GFDL–CM2.1 reaches 0.66

in January but drops to 0.45 in the February initializations

before rising again to 0.49 for its March initialization. On

the other hand, the lagged superensemble predictions

(Fig. 5, right panels) exhibit not only stable skill in time,

as one would expect from its inherent time smoothing, but

also a consistently greater level of skill than the individual

simple ensembles (except for January in GFDL–CM2.1

and the forecasts from boreal summer in NCEP–CFS).

This difference in the behavior of the two types of ensemble

strategies suggests that the forecast systems (particularly

GFDL–CM2.1) could benefit from a larger ensemble set

FIG. 5. Performance of the dynamical–statistical S-I North Atlantic hurricane frequency forecast system as

a function of forecast lead time. The system skill is evaluated using (a),(b) correlation and (c),(d) RMSE, for both

(a),(c) the simple monthly ensembles and (b),(d) the lagged ensemble schemes. The colored lines show the skill of the

statistical–dynamical system using GFDL–CM2.1 (red), NCEP–CFS (blue), and the two-model average (violet). The

skill of the dynamical–statistical scheme is compared with two measures of ‘‘null skill’’: the WMO-suggested standard

(WMO 2008) of a lagged 5-yr average for the evaluation of hurricane forecast skill (gray dashed–dotted) and the

statistical hurricane frequency model applied to the persistence of SST anomalies (solid gray and black lines, for

persistence of monthly and 3-month SST anomalies). Two measures of ‘‘potential skill’’ are shown: the performance

of the statistical hurricane model using observed August–October SSTs (black dashed line) and the performance of

the HiRAM-C180 dynamical atmospheric model using observed monthly Rayner et al. (2003) SST fields from 1982

to 2008. For reference, we show the Zhao et al. (2010) persisted June SST anomaly skill using the HiRAM-C180

dynamical atmospheric model (star symbol). The NCEP–CFS and two-model average schemes outperform the

persistence forecasts for all months, and the GFDL–CM2.1 forecasts outperform persistence for all months prior to

June.
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(e.g., 30 members instead of 10), and that—as was assumed

above—over the time between the newest and oldest of the

members of the superensemble, the impacts of error growth

are smaller than the beneficial effects from additional

ensemble members. Because of this, we view the lagged

superensemble system as likely being superior to the sim-

ple ensemble particularly at longer leads, though perhaps

a larger ensemble set would be preferable to either.

The two-model ensemble forecast performs better

than either model for forecasts initialized in February

and March (late boreal winter; Figs. 4 and 5). As we

approach the verification period, the skill exhibited by

NCEP–CFS is sufficiently higher than that of GFDL–

CM2.1 that the two-model ensemble performs worse

than NCEP–CFS alone. These results would suggest that

forecasts at long leads (April and earlier) should focus

on the lagged ensemble, and when possible the two-

model average, while for shorter leads (June initializa-

tion and shorter) forecasts using NCEP–CFS appear to

be superior. For the November–January initializations

we are limited to using the GFDL–CM2.1 forecasts of

SST, since NCEP–CFS is not available.

4. Discussion

We have built a statistical–dynamical North Atlantic

hurricane frequency prediction scheme that exhibits

skill in retrospective forecasts for 1982–2009 based on

North Atlantic and global tropical SSTs during boreal

winter and spring prior to the hurricane season. The

system was built using a statistical emulator of a high-

resolution dynamical atmospheric model and initialized

forecasts of SST. The forecast system predicts the prob-

ability density function of North Atlantic basin-wide hur-

ricane frequency; thus, uncertainty estimates are explicitly

computed in the forecasts.

We have explored the predictability of seasonal North

Atlantic hurricane frequency using a set of retrospective

forecasts from a pair of dynamical forecasting systems.

The low computational cost of the statistical emulator

allows us to perform the hundreds of retrospective

forecasts needed to establish its skill. In addition, this

statistical framework can easily take advantage of data

available from many dynamical forecast models at min-

imal additional cost. We find a slight indication that the

skill of the long-lead (February and March initializa-

tions) seasonal forecasts is enhanced through the en-

semble of GFDL–CM2.1 and NCEP–CFS forecasts of

SST. This suggests that employing a ‘‘multimodel en-

semble’’ approach (by combining a variety of climate

forecasting systems to develop a ‘‘consensus’’ estimate)

could be a useful extension of the current methodology.

Multiple forecast centers around the world routinely

make multi-season initialized forecasts of the state of

the global climate system, from which one could easily

extract the relevant predictors (tropical Atlantic and

tropical-mean SSTs) to use in our hurricane prediction

scheme. The simplicity and negligible computational cost

of the statistical hurricane frequency emulator employed

in our forecast system, along with the explicit uncertainty

estimates from convolving the uncertainty in SST with the

uncertainty in hurricane frequency given SST, suggest that

a multimodel ensemble modification to our technique is

feasible.

Since El Niño variations impact seasonal North Atlantic

hurricane frequency, it is reasonable to wonder whether

our retrospective forecasts are only recovering skill from

successful forecasts of El Niño–La Niña. Although pre-

dicting the inactive hurricane frequency during some

El Niño years (e.g., 1997) and the active frequency during

some La Niña years (e.g., 1995 and 1998) contributes to

the skill of the retrospective hurricane forecasts, the skill

of the hurricane forecasting system exceeds the skill one

would expect from El Niño alone. The correlation skill

of the retrospective forecasts is higher than that between

commonly used measures of El Niño–La Niña and hur-

ricane activity [0.5–0.6 versus 0.4–0.5 in HiRAM-C180

and observations; Zhao et al. (2010)], and the El Niño–La

Niña forecasts in GFDL–CM2.1 and NCEP–CFS are not

perfect. Additional skill in seasonal hurricane frequency

may be coming from correctly predicting the coupled at-

mospheric processes that control seasonally phase-locked

year-to-year variations in tropical Atlantic SSTs (e.g.,

Vimont and Kossin 2007; Doi et al. 2010).

Some of the retrospective skill comes from correctly

diagnosing that the years before 1994 were more likely

to be inactive, while later years had a greater tendency

of being active. The causes of that heightened activity

remain a topic of discussion, with natural climate varia-

tions, anthropogenic radiative forcing, or changes in at-

mospheric dust loading each likely contributing, though

their relative influences remains a topic of active inquiry

(e.g., Mann and Emanuel 2006; Zhang and Delworth

2006, 2009; Evan et al. 2009). Both dynamical SST forecast

systems (CM2.1 and CFS) capture the tendency for in-

creased frequency after 1995, as do the various persisted

SST anomaly forecasts, suggesting that the SST anom-

alies driving the multidecadal increase in frequency are

principally seasonally invariant. Since the skill of the

initialized hurricane predictions is larger than that of

the persisted SST anomaly forecasts and the WMO-

recommended measure of the trailing 5-yr average (WMO

2008), both of which include aspects of the multidecadal

shift, we see that the initialized forecasts include skill be-

yond correctly diagnosing the multidecadal increase in

hurricane frequency.
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The retrospective forecasts of the extremely active

2005 initialized in January and March were particularly

problematic: although the forecast system predicted an

active year, it failed to predict the extreme values that

occurred. It appears that part of the failure arose from

an inability of the dynamical forecast systems to cor-

rectly predict the SST indices in 2005, since the statistical

emulator using observed SSTs correctly identifies 2005

as the most active year over the 1982–2009 period. The

observed counts for 2005 were one of a couple of years

outside the 90% confidence interval of the ‘‘perfect

forecasts’’ (Fig. 2); it is unclear at this stage if this is an

indication of a strong stochastic contribution to the ex-

treme values in 2005 (an option we cannot exclude) or

a failure of the statistical emulator in 2005. Further work

should explore the elements responsible for the extreme

values in 2005.

The forecasting system has been developed for basin-

wide hurricane frequency, yet the results of statistical

modeling of tropical storm frequency (Villarini et al.

2010) and basin-wide measures that combine intensity

and frequency (Swanson 2008; Vecchi et al. 2008) sug-

gest that the procedure developed here could be adap-

ted to these and possibly other quantities in the North

Atlantic. Further, Zhao et al. (2010) indicate that a sta-

tistical model using two SST indices can successfully

describe eastern Pacific hurricane activity in the HiRAM-

C180 model, suggesting that a methodology analogous to

the current one may be applicable to eastern Pacific sea-

sonal hurricane forecasts. We are currently investigating

these and related topics.

For the upcoming hurricane season of 2010, this sea-

sonal hurricane forecasting system predicts an above

average number of hurricanes (see Table 1); these pre-

dictions are quite similar to those from the various

predictions with this system initialized since November

2009 (e.g., see Figs. 4a and 4b). The prediction system

forecasts that the upcoming season has a higher ex-

pected hurricane count than the average over the recent

decades, along with a higher probability of an extreme

(.10 hurricanes) number of hurricanes. This indicates

that it should be more similar to the active years that

have dominated the North Atlantic since 1995 than the

very inactive season of 2009, and suggests that we should

not conclude that (due to the relatively inactive 2006,

2007, and 2009 seasons) the multidecadal period of

heightened hurricane frequency has necessarily already

abated.
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