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In this study, a linear statistical predictive model of observed fingerprints4

of Atlantic Meridional Overturning Circulation (AMOC) variability is de-5

veloped, which predicts a weakening of AMOC strength in the coming years.6

Recent studies have suggested that the leading modes of North Atlantic sub-7

surface temperature (Tsub) and sea surface height (SSH) anomalies are in-8

duced by AMOC variations and can be used as fingerprints of AMOC vari-9

ability. Here, we show that in the GFDL coupled general circulation model10

assimilated with observed subsurface temperature data, including recent Argo11

network data (2003-2008), the leading mode of the North Atlantic Tsub anoma-12

lies is similar to that found with the objectively analyzed Tsub data and highly13

correlated with the leading mode of altimetry SSH anomalies for the period14

1993-2008. A statistical auto-regressive (AR) model is fit to the timeseries15

of the leading mode of objectively analyzed detrended North Atlantic Tsub16

anomalies (1955-2003) and is applied to assimilated Tsub and altimetry SSH17

anomalies to make predictions. A similar statistical AR model, fit to the time-18

series of the leading mode of modeled Tsub anomalies from the 1000-years19

GFDL CM2.1 control simulation, is applied to modeled Tsub, SSH, and AMOC20

anomalies to make predictions. The two AR models show comparable skills21

in predicting observed Tsub and modeled Tsub, SSH and AMOC variations.22
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1. Introduction

Recent studies have demonstrated tele-connections between the North Atlantic and23

regional climate variability at multidecadal timescales [e.g. Enfield et al., 2001; Knight24

et al., 2006; Zhang and Delworth, 2006]. Low frequency variability in the North Atlantic25

is often thought to be linked to Atlantic Meridional Overturning Circulation (AMOC)26

variability [Delworth and Mann, 2000; Knight et al., 2005; Zhang, 2008]. Griffies and27

Bryan [1997] have shown that AMOC variations provide decadal predictability of simu-28

lated North Atlantic variability. However, estimating the AMOC variability has been a29

major challenge. Instantaneous surveys across 25◦N suggest a long-term slowdown of the30

AMOC [Bryden et al., 2005], but these snapshots could be aliased by large intra-annual31

variations [Cunningham et al., 2007]. To reconstruct the past variability of the AMOC32

when no direct observations are available, as well as to evaluate future AMOC impacts,33

it will be very useful to develop fingerprints for AMOC variations. The fingerprints need34

to be quantities that can be derived from both climate models and observations. The35

development of AMOC fingerprints would link the ocean circulation with variables that36

are observed extensively. The identification of such AMOC fingerprints will contribute to37

the interpretation of AMOC variations, and improve assessments of the impacts of AMOC38

variability on global climate change.39

Previous studies have suggested that basin averaged North Atlantic sea surface tem-40

perature (SST) anomalies could be taken as a fingerprint of the multidecadal AMOC41

variability [Latif et al., 2004; Knight et al., 2005]. The anti-correlated relationship be-42

tween the tropical North Atlantic SST and subsurface temperature anomalies has also43
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been shown as a signature of the AMOC variability [Zhang, 2007]. The North Atlantic44

SST anomalies might be influenced by high frequency synoptic atmospheric variability45

and changes in the radiative forcing [Mann and Emanuel, 2006], thus their linkage to the46

AMOC variability is highly debated. A recent study [Zhang, 2008] found that the lead-47

ing mode of altimeter SSH data is highly correlated with that of instrumental subsurface48

ocean temperature data in the North Atlantic, and both show opposite signs between the49

subpolar gyre and the Gulf Stream path. Such a dipole pattern is a distinctive fingerprint50

of AMOC variability, as shown by a millennial coupled ocean-atmosphere model (GFDL51

CM2.1) simulation. The fingerprint using modeled and observed SSH/subsurface temper-52

ature data suggests that, contrary to previous interpretations, the recent slowdown of the53

subpolar gyre is a part of a multidecadal variation and linked to a strengthening of the54

AMOC. With recent advancement in measurement of subsurface oceans by the ARGO55

network and satellite altimetry, it may be possible to monitor AMOC variability using56

this fingerprint.57

In this paper, we extend the analysis of Zhang [2008] to include more recent mea-58

surements and highlight the link between these new measurements and the capability of59

estimating AMOC variability. In particular, to obtain a continuously updated AMOC60

variability and to establish a new framework for monitoring the AMOC variability in the61

future using the observed subsurface temperature fingerprint, we take advantage of the62

recent measurement of ocean subsurface ocean temperature by the ARGO network. We63

employ the recent ARGO subsurface temperature data through the GFDL coupled data64

assimilation (CDA) product [Zhang et al., 2007b]. Furthermore, we make predictions of65
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the AMOC variability using a statistical auto-regressive (AR) model fit to the time-series66

of the fingerprints of the AMOC. Schneider and Griffies [1999] apply discriminant analysis67

to North Atlantic decadal variability of SSH and conclude that the predictive power of AR68

models, as applied here, is comparable to that of climate models. Applying the AR model69

to the assimilated subsurface temperature and altimetry SSH anomalies predicts a decline70

of the AMOC in the coming decade. A similar statistical AR model, fit to the timeseries71

of the leading mode of modeled subsurface temperature anomalies from a 1000-years con-72

trol simulation of the fully coupled ocean-atmosphere model (GFDL CM2.1, Delworth73

et al. [2006]), is applied to modeled subsurface temperature, SSH, and AMOC anomalies74

to make predictions. The two AR models show comparable skills in predicting observed75

subsurface temperature and modeled subsurface temperature, SSH and AMOC variations.76

2. Description of Data and Models

In this study, the observed North Atlantic ocean subsurface temperature data are de-77

rived from the publicly available yearly averaged dataset of objectively analyzed ocean78

temperature anomalies [Levitus et al., 2005] based on instrumental data for the period of79

1955-2003. A quadratic monotonic function is fit to the time series of the basin averaged80

subsurface temperature anomaly in the North Atlantic to estimate the long term global81

warming trend over the past decades. The subsurface temperature anomaly is detrended82

by removing this quadratic regression fit at each grid point. This nonlinear detrended83

North Atlantic subsurface temperature anomaly is used to define a fingerprint of AMOC84

variability and to reconstruct the past AMOC variability using the method shown in85

Zhang [2008].86
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To obtain a continuously updated AMOC variability, we take advantage of the recent87

measurement of ocean subsurface ocean temperature by the Argo network. We employ the88

recent Argo subsurface temperature data through the GFDL coupled data assimilation89

(CDA) product [Zhang et al., 2007b] (briefly described in supplementary material). The90

inclusion of high quality ARGO network observations has considerably increased the skill91

of the assimilation [Chang et al., 2009]. Ongoing developments of assimilating the latest92

ARGO network data into the coupled model with increased data record length in the93

future have the potential for monitoring the current and future ocean climate.94

The altimeter SSH data used in this study is obtained from AVISO (Archiving, Vali-95

dation and Interpretation of Satellite Oceanographic data) [Le Traon et al., 1998] (briefly96

described in supplementary material). This altimetry SSH data is available from 1993-97

2008 and is used to define a fingerprint of the AMOC variability. To compare with the98

altimetry SSH data, we analyze the subsurface temperature data from the CDA product99

over the same period of 1993-2008.100

3. AMOC Fingerprints

The spatial pattern of the leading empirical orthogonal function (EOF1) of detrended101

North Atlantic subsurface temperature anomalies at a depth of 400m (Tsub) displays102

a dipole pattern (Figure 1a), i.e. warming in the subpolar gyre and cooling near the103

Gulf Stream path; the principal component of the leading mode (PC1) of the Tsub is104

strongly correlated with that of the altimetry SSH for the period (1993-2003) (Figure 1d),105

as discussed in Zhang [2008]. Figure 1b shows the spatial pattern of the leading mode106

of CDA subsurface temperature at a depth of 400m for the period 1993-2008. The PC1107
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is highly correlated with that of the objectively analyzed Tsub for the period 1993-2003108

(Figure 1d). However, the spatial pattern shows differences in and around the Gulf Stream109

region near the North American eastern coast. These differences can be attributed to the110

inherent model biases of the coupled climate model (GFDL CM2.1) and the short length111

of data-record for assimilation, which limits the convergence of the assimilation product.112

The spatial pattern of the leading mode of altimetry SSH (Figure 1c) shows a similar113

dipole pattern, i.e. increasing SSH in the subpolar gyre and reduced SSH near the Gulf114

Stream path. A high correlation is also seen between PC1s of CDA Tsub and SSH (Figure115

1d), establishing the robustness of the coherence between Tsub and SSH discussed in116

Zhang [2008], where it was proposed that these fingerprints of the AMOC could be used117

as proxies for estimating AMOC variability on decadal scales. An intensification of the118

AMOC is associated with a weakening of the subpolar gyre and a southward shift of the119

Gulf Stream and a strengthening of the northern recirculation gyre (NRG). The weaker120

subpolar gyre is associated with warmer subsurface temperature and increased SSH over121

subpolar North Atlantic, while colder subsurface temperature and lower SSH are seen in122

Gulf Stream region associated with the southward shift of the Gulf Stream.123

4. Predicting the AMOC Variability Using Subsurface Temperature and SSH

Fingerprints

We now take a step further by forecasting the variability of the AMOC in the near124

future using linear statistical models. The two identified indices of AMOC variability,125

namely, SSH and Tsub PC1s, respectively provide slightly different initial conditions for126

conducting forecasts. Recent extensive observations of altimetry SSH and ARGO network127
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are too short to reconstruct the AMOC variability in the past several decades. Our128

approach here is to construct one AR model for AMOC variability using the much longer129

standardized PC1 of the objectively analyzed North Atlantic Tsub anomalies (1955-2003),130

and apply it to the standardized PC1s of the CDA Tsub and altimetry SSH anomalies to131

conduct forecasts of near future AMOC variations.132

Our application of the same statistical model for different standardized data is pinned133

on the strong correlation between these data over the past 15 years, discussed in the134

previous section, and also supported by the strong model evidence about the correlation135

and physical link between the two variables [Zhang, 2008]. Hence, we assume that the AR136

model parameters estimated from the PC1 of objectively analyzed Tsub anomalies are the137

best estimate for the PC1s of the CDA Tsub and altimetry SSH anomalies in the North138

Atlantic. In order to focus on the low frequency decadal variability of AMOC, we perform139

a running mean smoothing with a bandwidth of five years on the three time-series before140

we fit the model and make predictions.141

A computation and comparison of the Schwarz Bayesian criterion (SBC) [Schwarz, 1978]142

using the ARfit software [Schneider and Neumaier, 2001] reveals that an AR model of order143

two (AR2) would serve as the best fit for the smoothed PC1 of the objectively analyzed144

detrended North Atlantic Tsub anomalies among the class of AR models of higher orders.145

A lower order AR model also has the advantage of reduced risk of overfitting associated146

with higher order models. Our chosen AR2 model can be represented as:147

Xt = φ1Xt−1 + φ2Xt−2 + εt (1)

D R A F T September 28, 2009, 11:52am D R A F T



MAHAJAN ET AL.: AMOC FINGERPRINTS X - 9

where, Xt represents the value of the time-series at time t, ε represents white noise with148

a mean of zero, and φ1 and φ2 represent the auto-regressive parameters estimated from a149

least squares fit to the PC1 of the observed North Atlantic Tsub anomalies.150

Validation of the AR2 model from hindcasts is shown in the supplementary material.151

A similar AR2 model, fit to the first 500 years of modeled Tsub PC1 from the 1000-years152

GFDL CM2.1 control simulation, is applied to the second 500 years of modeled Tsub PC1,153

SSH PC1, and AMOC Index of the control simulation to make predictions. The two AR154

models show comparable skills (Figure 2a) in predicting observed Tsub PC1 and modeled155

Tsub PC1, SSH PC1 and modeled AMOC Index. This comparison justifies the application156

of the AR2 model, constructed from Tsub PC1, to highly correlated quantities (SSH PC1157

and AMOC Index) to make predictions. Figures 2b and 2c show examples of hindcasts158

of standardized Tsub PC1 of the GFDL CM2.1 control simulation using the AR2 model,159

and the comparison with modeled standardized AMOC anomalies. The modeled Tsub160

PC1 is in phase with modeled AMOC variations. AR2 model skills are found to be better161

than persistence and damped persistence (AR1) forecasts of GFDL CM2.1 AMOC index162

from the GFDL CM2.1 control simulation.163

Figure 2d shows the AR2 model predictions of PC1 of the objectively analyzed Tsub164

anomalies for the next ten years. Also, shown are the 66% and 95% prediction confidence165

intervals based on the stochastic prediction error and the sampling error of the least166

squares fit to estimate model parameters assuming Gaussian white noise (Wilks [1995],167

supplementary material). A decline in the time-series is predicted, implying a decline168

in AMOC strength in the near future [Zhang, 2008]. Both forecasts of PC1 of the CDA169
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Tsub PC1 and altimetry SSH PC1 from 2008 onwards, using the same AR2 model (Figures170

2e, f) predict a decline, implying a decline in AMOC strength in the coming years. It171

should be noted that all three forecasts have different initial conditions. A consistent172

prediction from all three independently derived timeseries indicates the robustness of the173

predictions. Predictions from the leading mode of variability from the SVD analysis of the174

cross-covariance matrix of CDA Tsub and altimetry SSH anomalies also reveal a decline175

in the AMOC in the coming years (not shown).176

However, it should be noted that all class of sample AR model predictions asymptotically177

lead to the mean of the sample time-series with increasing lead times, while the variance178

of prediction approaches the variance of the sample time-series itself [Wilks, 1995]. Hence,179

the statistical AR model for the AMOC then performs no better than the climatological180

predictions. The large variance of the prediction as seen in the confidence intervals of181

the forecasts at increasing lead times indicate that the possibility of a stronger AMOC in182

the coming years cannot be completely ruled out. Dynamical constraints on the AMOC183

variability could reduce the prediction uncertainty associated with stochastic AR models,184

emphasizing the need for coupled climate models to predict the AMOC variability more185

precisely.186

5. Summary and Discussion

The potential impacts of AMOC on global and regional climate, including hemispheric187

scale surface temperature variations [Zhang et al., 2007a], Atlantic hurricane activities,188

Sahel and Indian summer monsoons [Knight et al., 2006; Zhang and Delworth, 2006],189

North American and West European precipitation [Enfield et al., 2001; Sutton and Hod-190
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son, 2005], make it crucial to accurately monitor and predict the AMOC variability to191

improve global and regional climate predictions. Recent modeling and observational stud-192

ies suggest the existence of the low frequency variability of the AMOC in the 20th century,193

and its fingerprints are tangible in observational data. The task of estimating the AMOC194

variability directly from observations suffers from poor sampling of direct observations of195

the circulation in the past. Hence, we rely on its fingerprints. Here, we extend the anal-196

ysis initiated in [Zhang, 2008], to use the leading modes of the North Atlantic Tsub and197

SSH anomalies as fingerprints of the AMOC by analyzing more up to date data including198

the recent Argo sub-surface temperature data. Our analysis suggests that the current199

Argo network, along with satellite altimetry SSH data could be used to estimate AMOC200

variability.201

A simple auto-regressive statistical model derived from these fingerprints predicts that202

the AMOC would decline in the near future. A weakening AMOC would tend to reduce203

oceanic heat transport and cool the North Atlantic, although radiative forcing changes204

could overwhelm that tendency. It should be noted, however, that our model is simply205

based on historical observations of only the past five decades, which is considerably short206

for estimating decadal scale variability, and our predictions should be considered with207

that caveat.208

Global climate models predictions of the AMOC variability depend critically on the209

initial state of the AMOC in the model climate. However, model biases and lack of an210

accurate knowledge of the initial state of the global climate lead to large uncertainties in211

the prediction of AMOC variability in the real world and climate model predictions are212
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expensive. While our predictions are clearly not near the ultimate goal of a prediction213

system for AMOC, they certainly serve as a first step in that direction. The robust214

fingerprints of the AMOC variability established by [Zhang, 2008] and in this study can215

be used to establish better initial conditions of the AMOC anomalies in coupled climate216

models. Constraining the AMOC variability in coupled climate models to that of the real217

world provides an opportunity to improve climate model predictions and projections.218

Observations of SST alone have a weak AMOC signal to background noise ratio, as219

the surface is considerably influenced by the atmosphere and radiative forcings. Monitor-220

ing the AMOC variability using subsurface measurements, emphasizes the necessity for221

subsurface observing networks like ARGO in addition to satellite network. Analyses of222

the North Atlantic SSH and Tsub would provide independent indirect estimates of the223

low-frequency AMOC variability to compare with direct observations using the ongoing224

RAPID moorings measurements [Cunningham et al., 2007].225
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6. Figure Captions

Figure 1. EOF1 of (a) Objectively analyzed Tsub anomalies at 400m for 1955-2003, (b)283

CDA Tsub anomalies at 400m for 1993-2008, (c) altimetry SSH anomalies for 1993-2008,284

and the corresponding (d) standardized PC1s. The cross correlations between PC1s are285

listed in (d).286

287

Figure 2. AR2 model predictions. (a) Skill of the AR2 model constructed from the ob-288

jectively analyzed Tsub PC1 to predict the objectively analyzed Tsub PC1 (black), skill289

of the AR2 model constructed from Tsub PC1 of GFDL CM2.1 control simulation to pre-290

dict Tsub PC1 (blue), AMOC index (red) and SSH PC1 (green) of the control simulation,291

and skill of persistence (dashed gray) and damped persistence (solid gray) forecast of the292

AMOC index. (b, c) Ten years hindcasts (solid red line with triangles) of standardized293

Tsub PC1 from GFDL CM2.1 control simulation (diamonds, solid green line) and the 66%294

and 95% confidence intervals (dashed and solid red lines) starting at simulation year 503295

and 516 respectively. The black line represents the modeled standardized AMOC index296

in the control simulation. (d, e, f) Ten years predictions (solid red lines with triangles) of297

standardized PC1s of objectively analyzed Tsub, CDA Tsub and altimetry SSH, and the298

66% and 95% confidence intervals (dashed and solid red lines).299
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a. b.

c. d.

Figure 1.
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a. b. c.

d. e. f.

Figure 2.
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