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ABSTRACT

Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This

study is concerned with identifying and removing from global-mean temperatures the signatures of natural

climate variability over the period January 1900–March 2009. A series of simple, physically based method-

ologies are developed and applied to isolate the climate impacts of three known sources of natural variability:

the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-

latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions.

After the effects of ENSO and high-latitude temperature advection are removed from the global-mean

temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly

apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series

reveals a nearly monotonic global warming pattern since ;1950. The results also reveal coupling between the

land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic erup-

tions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by

;2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea

surface temperature perturbations over the Atlantic Ocean.

1. Introduction

The time history of observed twentieth-century

global-mean surface temperature reflects the combined

influences of naturally occurring climate variations and

anthropogenic emissions of greenhouse gases and sul-

fate aerosols. A technique used extensively in the In-

tergovernmental Panel on Climate Change (IPCC)

assessment reports for distinguishing the signal of an-

thropogenic forcing from natural variability involves

comparing (a) the observed spatial signature of climate

change with (b) the signature of anthropogenic climate

change inferred from climate models forced with pre-

scribed increasing greenhouse gas concentrations [i.e.,

the ‘‘optimal fingerprinting’’ technique; Hegerl et al.

(2007) and references therein]. Here, we infer the an-

thropogenic signal and other key aspects of twentieth-

century global-mean surface temperature variability by

subtracting from the observed global-mean land and

ocean temperature records the variance associated with

known sources of natural climate variability.

Previous studies have estimated the variance in

global-mean temperature attributable to natural climate
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variability but have relied largely on statistical fits to

prescribed climate indices. The signal of the El Niño–

Southern Oscillation (ENSO) in global surface tem-

peratures has been estimated using linear regression

based on lagged indices of the Southern Oscillation in-

dex or equatorial Pacific sea surface temperatures (e.g.,

Jones 1988; Mass and Portman 1989; Robock and Mao

1995; Kelly and Jones 1996; Wigley 2000; Santer et al.

2001; Trenberth et al. 2002), maximum covariance anal-

ysis between surface temperatures in the tropical Pacific

and over the continents (Yang and Schlesinger 2001),

complex ‘‘patterns-based filters’’ derived from linear in-

verse models (Penland and Matrosova 2006; Compo and

Sardeshmukh 2008, manuscript submitted to J. Climate),

and regression analyses with geographically dependent

lag (Chen et al. 2008). The signal of volcanic eruptions

has been prescribed as linear cooling followed by expo-

nential warming (Wigley 2000; Santer et al. 2001).

In this study we exploit a series of novel methodolo-

gies to identify and filter out of the unsmoothed monthly

mean time series of global-mean land and ocean tem-

peratures the variance associated with ENSO, dynam-

ically induced atmospheric variability, and volcanic

eruptions. The impacts of ENSO and volcanic eruptions

on global-mean temperature are estimated using a sim-

ple thermodynamic model of the global atmospheric–

oceanic mixed layer response to anomalous heating. In

the case of ENSO, the heating is assumed to be pro-

portional to the sea surface temperature anomalies over

the eastern Pacific; in the case of volcanic eruptions, the

heating is assumed to be proportional to the strato-

spheric aerosol loading. The impacts of dynamically

induced atmospheric variability on global-mean tem-

perature are estimated on the basis of the covariance

between the land–sea temperature difference in the

Northern Hemisphere and the sea level pressure field.

The filtering methodology reduces the high-frequency

variability in global-mean temperatures not by smooth-

ing the data, but rather by subtracting out physically

based estimates of the time-dependent signatures of

known sources of natural climate variability. Hence, the

resulting residual global-mean temperature time series

has the same monthly time resolution as does the orig-

inal data.

The results of the filtering process provide several new

insights into twentieth-century global-mean temper-

ature variability. After ENSO and the dynamically

induced variability are removed from global-mean tem-

peratures, the residual time series highlights a spurious

drop in SSTs in 1945 and sharpens substantially the

signal of major volcanic eruptions in surface tempera-

tures. After the signature of the volcanic eruptions is

removed, the residual global-mean temperature time

series exhibits nearly monotonic warming since ;1950.

The results also 1) reveal a significant level of coupling

between ocean and land temperatures that remains even

after the effects of ENSO and volcanic eruptions have

been removed; 2) serve to highlight the improvements

in the quality of the time series of global-mean land

temperatures with the increase in the areal coverage of

the station network from 1951 onward; and 3) yield

a residual time series in which the signature of anthro-

pogenically induced global warming is more prominent.

The paper is organized as follows: In section 2 we

provide a brief review of the data used in the analysis. In

section 3 we describe the methodologies used to remove

from the global-mean temperature time series the im-

pacts of ENSO and dynamically induced variability. In

section 4 we examine the signal of volcanic eruptions in

the residual time series from which the effects of ENSO

and dynamically induced variability have been removed.

Section 5 describes the methodology used to remove the

impacts of volcanic eruptions from the global-mean

temperature time series, and section 6 discusses key

aspects of global-mean temperature variability high-

lighted by the residual time series. Section 7 provides

a summary of the key results.

2. Data and analysis details

The temperature data used in the study are version 3 of

the Climate Research Unit’s land surface air temperature

dataset (CRUTEM3; Brohan et al. 2006), version 2 of

the Hadley Centre’s Sea Surface Temperature data-

set (HadSST2; Rayner et al. 2006), and version 3 of

the Hadley Centre–Climate Research Unit’s combined

land surface temperature and SST dataset (HadCRUT3;

Brohan et al. 2006). All temperature datasets are avail-

able from the Climatic Research Unit at the University

of East Anglia in monthly mean form on a 58 3 58

latitude–longitude mesh and are expressed as anomalies

with respect to the 1961–90 base period. The sea level

pressure (SLP) data are provided by the National Cen-

ter for Atmospheric Research’s Data Support Section

and are also formatted as monthly means on a 58 3 58

latitude–longitude mesh, as described in Trenberth and

Paolino (1980). The seasonal cycle is removed from the

SLP data by subtracting the long-term mean calculated

for the period 1950–2006 from the data as a function of

calendar month.

Time series are shown for the period January 1900–

March 2009. Unless otherwise noted, all analyses per-

formed in developing the filtering algorithms (including

correlations and regressions) are based on detrended

data limited to the period January 1950–December 2006

and are thus unaffected by the discontinuity in sea
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surface temperatures in 1945 described by Thompson

et al. (2008). Detrending ensures that the algorithms are

not biased by the global warming of the past few de-

cades. The effective sample size used in significance

estimates is given by Eq. (31) in Bretherton et al. (1999).

The fitted and residual time series generated in the

analyses outlined here are available online (www.atmos.

colostate.edu/;davet/ThompsonWallaceJonesKennedy).

3. Removing the signatures of ENSO and
dynamically induced variability from
global-mean temperatures

a. Estimating the signal of ENSO in global-mean
temperatures

As noted in the introduction, previous studies have

defined the ENSO signal in the global-mean tempera-

ture record on the basis of lagged values of the east–west

SLP gradient in the tropical Pacific (e.g., the Southern

Oscillation index), or lagged values of SSTs averaged

over the eastern tropical Pacific cold-tongue region

(e.g., the ‘‘cold-tongue index’’ or Niño-3.4). Here, we

define the ENSO signal as being linearly proportional

to the damped thermodynamic response of the global

atmospheric–oceanic mixed layer to the SST variability

and associated surface heat fluxes in the eastern equa-

torial Pacific cold-tongue region. We focus on the re-

sponse to variability only in the cold-tongue region for

the following reasons: 1) the ENSO signal in global-

mean temperature is derived primarily from the exchange

of heat between the subsurface ocean and the global

atmospheric–oceanic mixed layer, 2) ENSO primarily

perturbs the flux of heat between the subsurface ocean

and the global atmospheric–oceanic mixed layer in the

region of ocean upwelling in the eastern equatorial Pa-

cific, and 3) SST anomalies outside the cold-tongue re-

gion exhibit considerable decadal variability, much of

which is not linked to ENSO dynamics.

The approach is analogous to that exploited by

Hasselman (1976) to examine the ocean response to

stochastic atmospheric forcing, and by Yulaeva and

Wallace (1994) to examine the tropical-mean response

to ENSO. The global-mean surface temperature re-

sponse to variability in ENSO is modeled as

C
d

dt
T

ENSO
(t) 5 F(t)�

T
ENSO

(t)

b
, (1)

where TENSO denotes the simulated response of global-

mean surface temperatures to ENSO variability, F(t) is

the anomalous flux of sensible and latent heat in the

eastern tropical Pacific, b is a linear damping coeffi-

cient, and C is the effective heat capacity of the global

atmospheric–oceanic mixed layer per unit area.

The anomalous heat fluxes given by F(t) are assumed

to be linearly congruent with variability in sea surface

temperatures in the dynamically active cold-tongue re-

gion. That is, the ocean dynamics force variability in sea

surface temperatures in the cold tongue, and this vari-

ability is communicated to the atmosphere via the

anomalous fluxes of heat at the ocean surface. The heat

fluxes are estimated by 1) subtracting monthly mean SST

anomalies averaged over the globe from SST anomalies

averaged over the dynamically active cold-tongue region

to form the difference cold-tongue index (CTI; the cold-

tongue region is defined as 58N–58S, 1808–908W) and

2) multiplying the difference CTI time series by (a) the

fractional area of the globe covered by the cold-tongue

region (assumed to be 2%) and (b) a coupling coef-

ficient of 10 W m22 K21 (cf. Fig. 17 from Barnett et al.

1991).

The linear damping coefficient b is a measure of the

climate sensitivity. Observationally and numerically de-

rived estimates of b range from ;0.4 to 1.2 K (W m22)21

and the value of b depends on both the time scale and

nature of the forcing (e.g., Cess 1976; Hansen et al. 1985;

Forster and Gregory 2006; Knutti et al. 2008; Solomon

et al. 2007). Here, we set b to 2/3 K (W m22)21. In

practice, the results are not sensitive to the choice of the

air–sea coupling coefficient or b provided that the values

fall within the range that is physically reasonable.

The effective heat capacity of the model was de-

termined empirically so that the correlation coefficient

between TENSO and the time series of global-mean

surface temperature anomalies is maximized based on

detrended data from 1950 through 2006. The optimal

effective heat capacity (C;1.84 3 10 7 J m22 K21) im-

plies that the ENSO-related heat fluxes warm the entire

atmosphere plus an equivalent of ;2 m of the global

ocean. Note that the resulting heat capacity is a global

average and that, locally, ENSO perturbs the oceanic

mixed layer much deeper than ;2 m. The model was

initialized with anomalies in the cold-tongue region

starting in 1870 and the output TENSO was retained for

the period January 1900–March 2009.

The difference cold-tongue index and the output of

Eq. (1) (TENSO) are shown in the top panel of Fig. 1. The

simple thermodynamic model acts to low-pass filter the

input series and lag it by several months. The output

time series yields a substantially improved represen-

tation of the signal of ENSO in global-mean tempera-

tures: the global-mean temperature time series is more

strongly correlated with TENSO than with the difference

cold-tongue index (r 5 0.41 versus r 5 0.31). We will

show the residual time series obtained by subtracting the

TENSO time series from the global-mean temperature

time series later in this section.
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b. Estimating the signal of dynamically induced
variability in global-mean temperatures

Temporal variations in the atmospheric circulation

contribute to the variability of global-mean temperatures

because of the large differences between the heat ca-

pacities of the ocean and land areas. For example, winter

months when the surface westerlies are stronger than

normal over middle and subpolar latitudes of the North-

ern Hemisphere (NH) are marked by anomalously strong

warm advection over the NH continents and anomalously

strong cold advection over the oceans. Since the land

surface has a lower heat capacity than the oceanic mixed

layer, the resulting temperature anomalies tend to be

larger over the continents than over the ocean areas so

that the global-mean temperature tends to be anoma-

lously high, and vice versa. The impacts of dynamically

induced variability on surface temperatures are most

pronounced in the NH where the land areas account for

a substantial fraction of the hemisphere, and during the

winter season when the surface winds and the land–sea

contrast in surface temperatures are largest.

Previous studies have estimated the impacts of dy-

namically induced variability on area-averaged tem-

peratures using two somewhat different approaches.

The first approximates the dynamically induced contri-

bution to global-mean temperatures on the basis of

preferred patterns of internal atmospheric variability.

For example, the Northern Annular mode–North At-

lantic Oscillation (NAM–NAO) accounts for a compo-

nent of the dynamically induced variability in NH-mean

temperatures by virtue of its strong influence on tem-

perature over Eurasia and North America (e.g., Hurrell

1996; Thompson et al. 2000). The second method ap-

proximates the dynamically induced contribution to

variations in global-mean temperatures on the basis of

the cold-ocean–warm-land pattern (the COWL pattern;

Wallace et al. 1995). The COWL pattern is defined by

regressing the departure surface temperature field onto

the time series of NH mean temperature, where the

departure field is defined as the spatially varying tem-

perature minus the NH mean. By construction, the ex-

pansion coefficient time series of the COWL pattern

explains more variance of NH-mean temperatures than

the time series associated with any other surface tem-

perature pattern with a spatial mean of zero.

There are disadvantages to both of the above methods.

The NAM–NAO is an important pattern of internal at-

mospheric dynamics, but is not necessarily the most im-

portant structure in terms of driving dynamically induced

variability in hemispheric and global-mean temperatures.

The COWL pattern explains a substantial fraction of the

month-to-month variability in hemispheric and global-

mean temperatures (Wallace et al. 1995), but the COWL

pattern projects onto the predicted surface temperature

response to greenhouse-induced warming and hence in-

cludes a component of the radiative response to increasing

greenhouse gases (Broccoli et al. 1998).

FIG. 1. (a, top) Time series of SST anomalies in the eastern

tropical Pacific used to drive Eq. (1) (i.e., the CTI), and (a, bottom)

the output of Eq. (1) (TENSO). Tick marks are 1 K for the CTI and

0.1 K for TENSO. (b) Time series of the contribution of dynamically

induced variability to global-mean temperatures. (top) The Tdyn

time series found as the expansion coefficient time series of SLP

regressed on TNHLand-NHSST. (second from top) The linear sum

of the first 10 PCs of the NH SLP field, where the PCs are weighted

by the regression coefficient with TNHLand-NHSST. (second from

bottom) The expansion coefficient time series of SLP regressed

on high-pass values of TNHLand-NHSST. (bottom) The expansion

coefficient time series of surface temperature regressed on

TNHLand-NHSST. See text for details of the calculations. All sub-

sequent analyses are based on the top Tdyn time series.
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Here, we estimate the contribution of dynamically in-

duced variability to variations in global-mean temperature

by adapting the COWL methodology to the SLP field.

The resulting SLP pattern is not restricted to patterns of

internal atmospheric variability, and it does not project

onto the radiative response to increased carbon diox-

ide. The corresponding estimate of dynamically induced

variability includes an anthropogenic component only to

the extent that anthropogenic forcing drives large-scale

changes in the Northern Hemisphere SLP field.

The analysis is performed as follows. First, we find

the pattern in NH sea level pressure anomalies most

strongly coupled to the difference between tempera-

tures averaged over the NH land and ocean areas

poleward of 308N. The pattern is found by regressing

SLP anomalies onto the land–ocean difference time

series (hereafter TNHLand-NHSST) rather than NH mean

temperature since we are interested in isolating the

pattern in SLP that contributes most to out-of-phase

variations between the land and ocean areas. The

TNHLand-NHSST basis index is detrended before calcu-

lating the regression coefficients and the analysis is re-

stricted to the NH since land accounts for a relatively

small fraction of the SH. The SLP maps are found for

3-month seasons centered on all calendar months so that

the resulting patterns can vary from one season to the

next (e.g., the SLP map for January is based on monthly

mean data for the months December–February, the map

for February on data for the months January–March,

etc). The analysis is based on the period 1950–2006.

The SLP loadings are found as

A(x, M) 5 SLP(x, t) �
T

NHLand-NHSST
(t)

s
T(t)

, (2)

where A denotes the regression coefficients given as

a function of grid point x and calendar month M (e.g.,

February corresponds to M 5 2); SLP denotes the SLP

data; t corresponds to months M 2 1, M, and M 1 1 for

all years 1950–2006; TNHLand-NHSST (t)/sT(t) denotes the

detrended TNHLand-NHSST surface temperature time se-

ries for months t divided by its standard deviation; and

the overbar denotes the time mean.

The patterns derived from Eq. (2) are summarized in

the top panels in Fig. 2. The contours in the top panels in

Fig. 2 show the A(x, M) regression maps averaged over

the cold (left) and warm (right) season months. The

patterns are similar during the two seasons, but the cen-

ters of action are lower in amplitude and shifted pole-

ward during summer. The wintertime SLP pattern bears

resemblance to the signature of internal atmospheric

variability in the North Pacific sector (i.e., it resembles

the Pacific–North America pattern), but differs from the

pattern of the NAM–NAO over the Eurasian sector; that

is, whereas the center of action of the NAM–NAO is

focused over the Arctic and North Atlantic, the Eurasian

center of action in the top panels of Fig. 2 is located

farther to the east, along the Russian Arctic coast. The

peculiar shape of the SLP pattern can be understood by

superposing it on the climatological mean surface tem-

perature pattern, indicated by the shading in the top

panels of Fig. 2, which is derived from the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

data. During both seasons, the SLP pattern is situated so

that the inferred geostrophic flow is oriented perpendic-

ular to the climatological-mean temperature gradients

over large areas of western North America and Russia.

The SLP patterns are thus situated to maximize the

anomalous temperature advection over the continents.

The expansion coefficient time series of the seasonally

varying SLP patterns found in Eq. (2) is found by pro-

jecting the SLP data for all months onto the respective

regression map (i.e., the time series for January is found

by projecting the January SLP data onto the January

regression map, etc.). Hence for calendar month M, the

expansion coefficient time series is found to be

T
dyn

(t) 5 SLP(x, t)
A(x)

s
A(x)

" #
, (3)

where SLP(x, t) denotes the anomalous SLP field for

calendar month M; A(x) is the SLP pattern for month M,

as found in Eq. (2); sA(x) denotes the (cosine weighted)

spatial standard deviation of A(x) for month M; and the

brackets denote the (cosine weighted) spatial average

over the NH poleward of 408N. The regression maps

A(x) are standardized by sA(x) separately for each cal-

endar month since the seasonally varying amplitude of

the SLP data is contained in SLP(x, t) [i.e., if A(x) were

not standardized as a function of calendar month, then

the seasonally varying amplitude in the SLP data would

be weighted twice in the projection]. The time series for

each month are concatenated to form a single expansion

coefficient time series.

By construction, the expansion coefficient time series

generated in Eq. (3) (hereafter labeled Tdyn) is more

strongly correlated with variations in TNHLand-NHSST

than the expansion coefficient time series associated with

any other pattern in the SLP field. The correlation be-

tween Tdyn and TNHLand-NHSST calculated for all months

in the detrended data between 1950 and 2006 is r 5 0.72.

We examined whether other patterns in the SLP field

contribute to TNHLand-NHSST by repeating the analy-

sis in Eqs. (2) and (3), but for the case where the Tdyn

index is linearly regressed from TNHLand-NHSST before
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calculating A(x). The resulting SLP pattern (not shown)

is more polar-centric than that shown in Fig. 2 and its

associated expansion coefficient is not correlated with

TNHLand-NHSST (r 5 0.02).

The efficiency of Tdyn in capturing the covariability

between the SLP field and TNHLand-NHSST is exemplified

by Fig. 3. The solid horizontal line corresponds to the

correlation between TNHLand-NHSST and Tdyn (r 5 0.72).

The circles show the cumulative correlations between

TNHLand-NHSST and the principal component (PC) time

series of the NH (308–908N) SLP field. The PCs are

calculated as a function of calendar month, and the

correlation associated with PC n denotes the cumulative

correlation between TNHLand-NHSST and principal com-

ponent time series 1/n (the total correlation is found

as the square root of the sum of the squares of the cor-

relations). As is evident in Fig. 3, Tdyn explains as much

variance in TNHLand-NHSST as the first ;6 PC time series

of the SLP field, and higher-order PC time series con-

tribute little additional information to the correlation.

Figure 1b documents the Tdyn index time series and

compares it with variants of the methodology outlined

FIG. 2. Patterns formed by regressing SLP and surface temperature onto the time series of the difference between NH mean land and

ocean temperatures (TNHLand-NHSST). (top) The regression coefficients for SLP (contours) superposed on the climatological mean iso-

therms (shading). (bottom) The regression coefficients for surface temperature. (left) The results averaged over the cold season months

(October–March). (right) The results averaged over the warm season months (April–September). Contour intervals are 0.5 and

0.2 hPa for the cold and warm seasons, respectively. Solid contours denote negative SLP anomalies; minima are labeled in hPa.
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above. The top time series shows the Tdyn index extended

back to 1900 using the projection given by Eq. (3).

The extended Tdyn index is dominated by variability on

month-to-month time scales but also exhibits weak de-

cadal variability consistent with trends toward falling

SLP over the Arctic through the mid-1990s (e.g., Hurrell

1995; Thompson et al. 2000). The decadal variability in

Tdyn is contained entirely in the SLP field. Hence, while

Tdyn may reflect the effects of increasing greenhouse

gases and/or decreasing stratospheric ozone, it does so

only to the extent that such forcing is manifested in the

variability of the atmospheric circulation.

The time series labeled variant 1 in Fig. 1b shows the

linear combination of the leading 10 PCs of the SLP field

(i.e., the PC time series used to generate the correlations

in Fig. 3). In the summation, the individual PCs are

weighted by their respective regression coefficients with

TNHLand-NHSST. The resulting combined PC time series

is largely indistinguishable from Tdyn (cf. the top two

time series in Fig. 1b), and the correlation between the

time series for the period 1950–2006 is r 5 0.88.

The time series labeled variant 2 examines the impacts

of decadal variability in the temperature field on the

development of the Tdyn index. In this case, the fifth-

order polynomial fit is removed from TNHLand-NHSST

before calculating the SLP patterns in Eq. (2). The re-

sulting SLP patterns (not shown) are virtually identical

to those derived from the unfiltered TNHLand-NHSST time

series, and the associated expansion coefficient time

series (third from top time series in Fig. 1, bottom panel)

exhibits decadal variability comparable to that found in

Tdyn. The correlation between Tdyn and the third from

the top time series is r 5 0.99.

The time series labeled variant 3 shows results derived

by replacing the gridded SLP data in Eqs. (2) and (3)

with gridded surface temperature data. The corre-

sponding cold and warm season regression maps are

shown in the bottom panels of Fig. 2. The regression maps

are physically consistent with the patterns of temperature

advection inferred by the SLP patterns in the top panels

of Fig. 2; that is, temperatures are warmest in regions of

warm advection. Note that the cold season surface tem-

perature pattern in the bottom panels of Fig. 2 is analo-

gous to the COWL pattern found in Wallace et al. (1995),

but is based on regressions, not onto the hemispheric mean

temperature, but rather onto the difference time series

given by TNHLand-NHSST.

The expansion coefficient time series for the

temperature-based results is found using the projection

in Eq. (3) (except that the SLP data are replaced

with the surface temperature data). The resulting time

series (variant 3 in Fig. 1b) is highly correlated with

TNHLand-NHSST (r 5 0.91) and exhibits a marked trend

over the past few decades, consistent with the enhanced

warming of the land areas relative to the ocean areas

since ;1980. The high correlation (r 5 0.91) between

TNHLand-NHSST and variant 3 reveals that the tempera-

ture field is more efficient than the SLP field in explaining

variability in TNHLand-NHSST, particularly on month-to-

month time scales. However, the low-frequency variabil-

ity in variant 3 is likely impacted by the thermodynamic

surface response to greenhouse gas forcing. For this

reason, we view the index based on the SLP field as being

a more reliable estimate of the impacts of atmospheric

dynamics on surface temperatures.

c. Removing the effects of ENSO and dynamically
induced variability from global-mean temperatures

The TENSO and SLP-based Tdyn index time series

derived in the previous sections are removed from three

global-mean temperature time series: the combined

global-mean land and ocean time series (hereafter Tg),

the global-mean land time series (TLand), and the global-

mean ocean time series (TSST).

The components of the global-mean time series that

are linearly congruent with TENSO and Tdyn are given by

x
fitted

(t) 5 a � x(t) where a 5
x9(t) � T9(t)

x92(t)
, (4)

FIG. 3. Cumulative correlations (circles) between the leading PC

time series of the NH SLP field and the TNHLand-NHSST temperature

time series. For example, the correlation for PC 3 denotes the total

correlation between PCs 1–3 and TNHLand-NHSST. The horizontal

line denotes the correlation between Tdyn and TNHLand-NHSST.

Results based on monthly mean data 1950–2006.
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in which the overbars denote the long-term mean,

primes denote departures from the long-term mean, T(t)

denotes the respective global-mean temperature time

series, x(t) denotes the TENSO or Tdyn index time series,

a corresponds to the regression of x(t) onto T(t), and

xfitted(t) corresponds to the component of T(t) that is

linearly congruent with variations in TENSO or Tdyn. The

regression coefficients (a) are calculated for detrended

monthly mean data for 1950–2006 and are calculated

separately for TENSO and Tdyn since the time series are

effectively uncorrelated (r 5 0.03). Note also that the

signal of dynamically induced variability is not filtered

from the ocean time series since Tdyn and TSST are not

correlated (r 5 0.00). The results of the fitting are robust

with respect to changes in the periods of the analyses

and are not noticeably affected by the detrending.

Figures 4 and 5 show the effects of removing the TENSO

and Tdyn time series from all three global-mean time se-

ries. The Tdyn time series evidently accounts for a com-

ponent of the month-to-month variability in Tg and TLand

(Figs. 4 and 5b), whereas TENSO accounts for much of the

interannual variability in all three time series (Figs. 4, 5a,

and 5b). The TENSO and Tdyn residual time series (bottom

time series in all panels) provide a comparatively smooth

rendition of the global-mean temperature variability,

and they also serve to highlight a number of sudden

drops in surface temperatures over the past century. The

drop in late 1945, which is largely restricted to the Tg and

TSST time series, is attributable to changes in SST

measurement methods, as discussed in Thompson et al.

(2008). Many of the other major drops are coincident

with large tropical volcanic eruptions (indicated by the

dashed vertical lines) and are considered in the follow-

ing section.

4. The volcanic signal in the TENSO and Tdyn

residual data

In this section we document the volcanic signal in the

data formed by subtracting from global-mean temper-

atures the effects of ENSO and dynamically induced

variability. In section 5 we will outline a methodology

for removing the signal of volcanic eruptions from

global-mean surface temperature time series.

Large volcanic eruptions impact climate primarily via

the injection of sulfur-rich volatiles into the atmosphere

FIG. 4. (top) The time series of global-mean, monthly mean surface temperature anomalies

based on the HadCRUT3 combined SST and land surface air temperature data (Tg). (second

from top) The component of Tg that is linearly congruent with TENSO. (second from bottom)

The component of Tg that is linearly congruent with Tdyn. (bottom) The residual global-mean

surface temperature time series found by removing the linear contributions of TENSO and Tdyn

from Tg. The vertical lines denote the month of August 1945 and volcano eruption dates (from

left to right) of Santa Marı́a, Mount Agung, El Chichón, and Mount Pinatubo. The horizontal

lines denote the mean for the period 1961–90 (i.e., the base period for the temperature data).

15 NOVEMBER 2009 T H O M P S O N E T A L . 6127



[see the review by Robock (2000) and references

therein]. Within a few months of the eruption, the vol-

atiles condense to form sulfuric-acid aerosols, and the

resulting aerosol cloud scatters shortwave radiation

while absorbing longwave radiation. The scattering of

shortwave radiation acts to cool the surface whereas the

absorption of longwave radiation acts to warm the

stratosphere (e.g., Stenchikov et al. 1998). In the case of

large tropical eruptions, the meridional gradients in

stratospheric heating give rise to anomalously westerly

flow at middle latitudes not only in the lower strato-

sphere, but also at the earth’s surface (Robock and Mao

1992; see also the discussion in Robock 2000).

The impacts of volcanic eruptions on global climate

depend primarily on 1) the amounts of volatiles that reach

stratospheric levels and 2) the latitudes of the eruptions.

Volatiles that remain in the troposphere are scavenged

within a few months of the eruption and thus do not have

a long-lasting impact on global climate; volatiles ejected

by high-latitude eruptions are restricted primarily to the

eruption hemisphere by the predominantly poleward

meridional Brewer–Dobson circulation in the middle-

latitude stratosphere. On the basis of such criteria,

previous studies have identified the most climatically im-

portant volcanic events of the twentieth century to be the

eruptions of Mounts Pelée–Soufrière–Santa Maria (in

Martinique, St. Vincent, and Guatemala, respectively)

between May and October 1902, Mount Agung (on the

Indonesian island of Bali) in March 1963; El Chichón in

April 1982 (in Mexico); and Mount Pinatubo in June 1991

(on the island of Luzon in the Philippines) (Robock 2000).

The surface cooling following the largest eruptions of

the twentieth century has been widely documented (e.g.,

see Jones et al. 2003 and references therein). However, the

amplitude and time scale of the cooling associated with

individual eruptions is difficult to ascertain for two rea-

sons: 1) the eruptions are superimposed upon temperature

variations due to nonvolcanic causes and 2) over the NH

continents, the radiatively driven cooling is opposed by

the dynamically induced warming associated with volcanic

eruptions (Robock and Mao 1992). Previous studies have

examined the volcanic signal in data adjusted for the ef-

fects of ENSO and trends in surface temperatures (e.g.,

Mass and Portman 1989; Santer et al. 2001). But to our

knowledge, no previous study has examined the signal of

volcanic cooling in temperature data after accounting for

the effects of dynamically induced variability.

The obfuscation of the volcanic cooling by dynam-

ically induced variability is exemplified in the response

of global-mean temperatures to the June 1991 eruption

of Mount Pinatubo. The left and middle panels in Fig. 6

are excerpts from the combined land and ocean global-

mean temperature time series (Tg) and residual Tg time

series from Fig. 4 but focused on the period surrounding

the June 1991 eruption of Mount Pinatubo. The right

panel in Fig. 6 shows the residual Tg time series after the

30-yr trend centered on the June 1991 eruption date has

been removed from the data. The cooling following the

eruption of Mount Pinatubo is barely discernible in Tg

(Fig. 6, left) because it is masked by ENSO-related and

dynamically induced variability in the record. The vol-

canic signal is evidently much clearer in the residual

global-mean time series (Fig. 6, middle) but is distorted

by the pronounced global warming trend of the past few

decades. The volcanic signal is most clearly isolated

when the low-frequency global-scale warming of the

FIG. 5. As in Fig. 4, but for (a) global-mean SSTs from the

HadSST2 dataset and (b) the global-mean surface land data from

the CRUTEM3 dataset. Note that Tdyn is not significantly corre-

lated with the global-mean SST time series and hence is not filtered

from the SST data.
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past decades has been removed from the residual time

series (Fig. 6, right). The results in the right panel in Fig. 6

suggest global-mean temperatures dropped by nearly

0.4 K after the eruption of Mount Pinatubo, an amplitude

that is comparable to the independently derived estimate

found in Santer et al. (2001).

The refinement of the Mount Pinatubo eruption signal

in Fig. 6 is also evidenced in association with the other

large volcanic eruptions of the twentieth century. Figure 7

shows temperatures averaged across the four largest

eruptions of the twentieth century for raw time series (left

column), residual time series (middle column), and de-

trended residual time series (right column; results for

individual eruptions are presented in appendix A). The

top panels in Fig. 7 show the results for Tg, the middle

panels for TLand, and the bottom panels for TSST . The

composites are shown with respect to the climatology

for the 4-yr period prior to the eruptions, and are refer-

enced with respect to the first January following the

eruptions to account for the phase locking of the vol-

canic signal with the annual cycle (e.g., Robock and

Mao 1992). As in Fig. 6, the results in the right column

of Fig. 7 are detrended by removing the 30-yr trend

centered on the eruption dates. Tick marks are shown

for Januarys, and the first January following the erup-

tions is denoted as lag 1. The 95% confidence levels

(horizontal dashed lines) are calculated separately for

each time series and denote values that are exceeded

only 5% of the time in 104 randomized sortings of the

composite dates.

The composites in the left column in Fig. 7 are remi-

niscent of similar analyses shown in previous studies (see

Jones et al. 2003 and references therein). The results re-

veal significant global-mean cooling following the erup-

tion date, but the cooling spans only ;2 yr and is

matched by similarly large values ;6 yr prior to the

eruption date. The cooling over the land areas is slightly

larger than that over the ocean areas, but the temperature

response over land is noisy and only weakly significant.

The warming of the NH continents during the first winter

following the eruptions is apparent as weak warming at

lag 1 in the TLand composite [Fig. 7, middle panel of left

column; see also Robock and Mao (1992)], but this fea-

ture is not significant in the global mean.

The composites based on the data filtered for the

effects of ENSO and dynamically induced variability

(Fig. 7, middle column) give a clearer representation of

the radiatively driven surface cooling associated with

volcanic eruptions. The noise in the composite results is

greatly reduced, and the cooling following the eruption

date is both smoother and more statistically significant.

The emergence of the radiatively driven volcanic cooling

is particularly pronounced over land where the filtering

methodology accounts for not only random dynamically

induced variability but also the warming of the conti-

nents due to the dynamical impact of volcanic eruptions.

As in Fig. 6, the eruptions stand out even more clearly

when the 30-yr trends centered on the eruption dates are

removed from the data (Fig. 7, right column).

The results in the right column of Fig. 7 provide the

cleanest rendition of the radiative cooling due to vol-

canic eruptions that we are aware of in the existing lit-

erature based on the instrumental record. They are

similar in some respects to a composite of 50 volcanic

eruptions between 1400 and 1940 presented by Hegerl

et al. (2003) in which the timing of the eruptions is in-

ferred from records of ice-core aerosol optical depth and

year-to-year variations in Northern Hemisphere tem-

perature are inferred from tree-ring reconstructions.

The results presented in this study and Hegerl et al.

FIG. 6. (left and middle) The global-mean and residual time series from Fig. 4 but focused on the period surrounding the June 1991 eruption

of Mount Pinatubo. (right) As in the middle panel but the 30-yr trend centered on the eruption date has been removed from the data. The

vertical lines denote the June 1991 eruption date; the horizontal lines denote the mean for the 4-yr period preceding the eruption date.
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(2003) both suggest that the recovery time scale is on the

order of 7 yr: considerably longer than the ;2–3 yr

suggested in the composites in the left panel of Fig. 7.

The ;7 yr recovery time is evident not only over the

oceans but over land areas as well (Fig. 7, right column).

In the following section, we provide a methodology

for removing the volcanic signal from the global-mean

temperature data, and demonstrate that the ;7 yr time

scale is physically consistent with the damped thermo-

dynamic response of the oceanic mixed layer to com-

paratively short-lived volcanic radiative forcing.

5. Removing the volcanic signal from global-mean
temperatures

The methodology used to remove the volcanic signal

from global-mean temperatures is analogous to that used

in section 3 to remove ENSO. In the case of ENSO, we

drove the Hasselman climate model with the time series

of estimated anomalous heat fluxes in the eastern trop-

ical Pacific; in the case of volcanic eruptions, we drive the

same equation with the time series of estimated volcanic

radiative forcing. The response of the global ocean–

atmosphere system to volcanic forcing is thus modeled as

C
d

dt
T

Volcano
(t) 5 F(t)�

T
Volcano

(t)

b
, (5)

where TVolcano denotes the simulated response of monthly

mean global-mean surface temperature anomalies to

the forcing associated with volcanic eruptions, F(t) is

the global-mean volcanic radiative forcing, b is the cli-

mate sensitivity used in Eq. (1), and C is the heat ca-

pacity of the global atmospheric–oceanic mixed layer

per unit area.

The global-mean volcanic forcing is shown as the top

time series of Fig. 8. The forcing is derived from optical

FIG. 7. Composite response to the eruptions of Santa Marı́a, Mount Agung, El Chichón, and Mount Pinatubo. (left) results calculated

for raw (i.e., unfiltered) global-mean surface temperature data from Figs. 4 and 5. (middle) Results calculated for the TENSO and Tdyn

residual global-mean data from Figs. 4 and 5. (right) As in the middle column but for data detrended for the 30-yr period centered on the

eruption dates. Results are averaged as a function of calendar month and values of zero denote the mean for the 4 yr before the eruption

date. Lag 1 denotes the first January after the eruption date. Horizontal lines denote the 5% and 95% confidence levels for individual

months with respect to the mean for the 4 yr before the eruption date.
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depth measurements given by Sato et al. (1993), and the

optical depth data are multiplied by a factor of 24 W m22

per unit optical depth to convert them to an equivalent

radiative forcing (Hansen et al. 2005). The volcanic

forcing data were obtained from the National Aero-

nautics and Space Administration’s Goddard Institute

for Space Studies (NASA GISS). The estimated forcing

is most reliable over the past few decades when satellite

measurements are widely available, but the general

characteristics of the forcing are broadly reproducible

over the last half of the twentieth century in other major

reconstructions (e.g., Ammann et al. 2003). The global-

mean forcing peaks at around 23 W m22 during the

period immediately following the eruption of Mount

Pinatubo.

As was done for ENSO, the effective heat capacity in

Eq. (5) is determined empirically so that the correlation

coefficient is maximized between detrended values of

TVolcano and Tg. In the case of volcanic eruptions the

correlation is maximized for the period surrounding

the eruption of Mount Pinatubo (1988–2000) since 1) the

forcing is well known for this eruption and 2) the period

immediately following the eruption is not complicated

by the superposition of a large ENSO event, as is the

case for the eruption of El Chichón. The resulting ef-

fective heat capacity (C ; 4.8 3 107 J m22 K21) is

equivalent to the global atmosphere plus ;9 m of the

global oceanic mixed layer. Note that the larger heat

capacity used to drive Eq. (5) relative to Eq. (1) is

consistent with the longer time scale of the forcing

associated with volcanic eruptions than with in-

dividual ENSO events. The TVolcano time series was fit

to the three residual global-mean time series in Figs. 4

and 5 using the regression methodology outlined in

Eq. (4).

The global-mean fit to TVolcano is shown as the bottom

time series in Fig. 8. Both the forcing and the global-

mean temperature response are dominated by the

eruptions of Mounts Pelée–Soufrière–Santa Maria (be-

tween May and October 1902), Mount Agung (March

1963), El Chichón (April 1982), and Mount Pinatubo

(June 1991). But the Sato et al. (1993) time series also

reflects lesser loadings due to the smaller eruptions of, for

example, Mount Katmai (1912) in Alaska, Fernandina

Island (1968) in the Galápagos Islands of Ecuador, and

Mount Fuego (1974) in Guatemala. As is the case for

ENSO, the thermodynamic model acts to low-pass filter

and lag the input forcing time series.

The quality of the fit between the observed global-

mean temperatures and TVolcano is exemplified by Fig. 9.

The jagged lines in the top and bottom curves are re-

productions of the global-mean and detrended residual

global-mean time series from the left and right panels

of Fig. 6, respectively; the smooth curves show the esti-

mate of the response provided by TVolcano. As noted in

section 4, the eruption of Mount Pinatubo is difficult to

discern in the raw data (Fig. 9, top) but is readily ap-

parent in the ENSO and Tdyn residual time series (Fig. 9,

bottom). As is evident in Fig. 9, the TVolcano time series

provides an excellent fit to the refined volcanic signal

provided by the residual data.

Figure 10 shows the eruption residual time series ob-

tained by subtracting TVolcano from the three global-

mean temperature time series considered in this study:

Tg, TLand, and TOcean. The methodology evidently ac-

counts for virtually all of the decreases in the global-mean

temperatures following the eruptions of El Chichón and

Mount Pinatubo, but not all of the decreases in temper-

atures following the 1902 eruptions of Mounts Pelée–

Soufrière–Santa Maria and the 1963 eruption of Mount

Agung. The shortcomings of the fit in 1902 are not sur-

prising since both the temperature data and the forcing

are less reliable for that time. As noted in the following

section, the apparent signal of Mount Agung in the

eruption residual data may reflect changes in SST in-

strumentation or an underestimate of the forcing

FIG. 8. (top) Volcanic radiative forcing based on updated data

described in Sato et al. (1993) and obtained from NASA GISS.

(bottom) The response of global-mean temperatures to the radia-

tive forcing in the top curve, as estimated by Eq. (5).

FIG. 9. The jagged black lines show the (top) raw and (bottom)

detrended residual global-mean temperature time series repro-

duced from Fig. 6. The smooth curves show the response to vol-

canic radiative forcing reproduced from Fig. 8.
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FIG. 10. Subtracting the volcanic signal from the Tdyn and TENSO residual global-mean data.

In all panels, the top time series is a reproduction of the appropriate Tdyn and TENSO residual

time series from Figs. 4 and 5, the middle series is the volcanic fit, and the bottom is the resulting

Tdyn, TENSO, and volcanic residual time series. (a) The results for the combined global-mean

land and SST time series. (b) The results for global-mean SST data. (c) The results for global-

mean land temperature data. Note that Tdyn is not filtered from the SST time series (see Fig. 5

caption and text).
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associated with the eruption. The implications of the

volcanic eruption residual time series for the in-

terpretation of twentieth-century climate variability are

discussed in the following section.

6. Discussion and implications

The results of the filtering methodology provide a re-

markably clean rendition of twentieth-century global-

mean temperature variability. When the ENSO and

dynamically induced variability are removed from the

global-mean temperature time series, the analyses

highlight the spurious drop in SSTs in 1945 and draw out

the signal of major volcanic eruptions in surface tem-

peratures (Figs. 4 and 5). When the signal of volcanic

eruptions is subsequently removed from the data, the

time series are dominated by century-long warming that

is punctuated primarily by 1) the step in global-mean

temperatures in ;1945 and 2) a brief cooling in the

1970s (Fig. 10). In this section we discuss three aspects of

twentieth-century temperature variability highlighted

by the residual data: the long-term trends, the coupling

between the ocean and land time series on the in-

terannual time scale, and a change in the properties of

the land time series around 1945–50.

a. Long-term trends

Figure 11a summarizes the implications of the meth-

odology outlined here for the interpretation of long-

term trends in global-mean temperature. The top panel

in Fig. 11 shows the raw and residual time series of

global-mean temperature Tg repeated from Figs. 4 and

FIG. 11. (a, top series) The raw (unfiltered) combined land and ocean global-mean temperature time series (reproduced from Fig. 4).

(a, bottom series) The residual global-mean temperature time series formed by regressing Tdyn, TENSO, and the volcanic signal from the

global-mean data (reproduced from Fig. 10). (b) The residual temperature time series reproduced from the top panel alongside the

percentage of SST observations derived from U.S. ships.
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10a, respectively, where the residual time series is fil-

tered for the effects of ENSO, dynamically induced

variability, and volcanic eruptions. The residual time

series is dominated by variability on very long time

scales, namely the rise in temperatures during the first

half of the century, the sudden drop in global-mean

temperatures in late 1945, and the nearly monotonic rise

since ;1950. The drop in 1945 is consistent with changes

in SST measurement techniques as recorded in the ar-

chive of SST measurements (Thompson et al. 2008). But

a concurrent—albeit much weaker and shorter lived—

dip is also apparent in the residual land time series (Fig.

10c). The nearly monotonic warming from ;1900 to

1945 and from ;1950 to the current day is reflected in

both the residual land and ocean time series in Figs. 10b

and 10c.

The nearly monotonic warming in the residual time

series since ;1950 is punctuated most notably by 1) a

drop in temperatures in ;1963, 2) brief cooling in the

middle 1970s, and 3) a flattening since the late 1990s.

The drop in 1963 coincides with a decrease in the

number of SST measurements derived from U.S. ships

(Fig. 11b). As discussed in Thompson et al. (2008), U.S.

SST measurements were biased warm relative to SST

measurements from the United Kingdom in the middle

twentieth century, and might have been biased warm

relative to SST measurements from other countries in

the 1960s. Hence, the drop in 1963 may reflect changes

in the mix of SST measurements. However, the drop in

1963 also coincides with the eruption of Mount Agung

and is weakly apparent in the residual global-mean land

time series (Fig. 10c). Hence, it is also plausible that the

drop in 1963 reflects an underestimate of the amplitude

of the eruption by the Sato et al. (1993) volcanic forcing

used here. The slight decline in the residual time series

from 1970 to about 1977 is not coincident with known

changes in measurement techniques, nor is it clearly

tied to the only large eruption that occurred during the

1970s (Mount Fuego; Fig. 11b). As shown later, the

flattening of global-mean temperatures since the late

1990s is derived primarily from the SST data. To what

extent the flattening is affected by recent changes in SST

measurements is currently under investigation (Worley

et al. 2005; Rayner et al. 2006; Forest and Reynolds

2008).

b. Coupled ocean–land temperature fluctuations

The residual data also highlight the existence of

temperature variations on the interannual time scale

that exhibit a high degree of coupling between the land

and ocean areas that is not attributable to ENSO and

volcanic eruptions. The top time series in Fig. 12 are

superposed values of the raw global-mean land and SST

time series transcribed from Figs. 5a and 5b; the bottom

pair are the corresponding superposed values of the

TENSO/Tdyn/volcano residual time series transcribed

from Figs. 10b and 10c. The raw time series are highly

correlated, in large part because ENSO and volcanic

eruptions affect both land and ocean temperatures

(Fig. 12, top). But surprisingly, the residual time series

are also strongly correlated, even after detrending. The

residual land and ocean time series in Fig. 12 track each

other remarkably well throughout much of the twentieth

century with two notable exceptions: the large drop in

SSTs in 1945 and the amplified warming of the land

areas since ;1980. The correlations between detrended

values of the global-mean land and SST time series

calculated for the period 1950–2006 are r 5 0.63 for the

raw data and r 5 0.49 for the residual data (both exceed

the one-tailed 99% confidence level).

Figure 13 illustrates the coupling between the raw and

residual global-mean time series in Fig. 12 in more de-

tail. The curves labeled ‘‘all timescales’’ in the top panels

of Fig. 13 represent lag correlations between detrended

values of the global-mean land and SST time series for

the raw (left) and residual (right) data. Negative lags

denote the land time series leading SSTs, and vice versa.

For both the raw and residual data, the correlations peak

near lag 0 but are not symmetric about their maximum

values. At a given lag they are larger when the SST field

leads. The amplitudes of the correlations are larger for

FIG. 12. The (top) raw and (bottom) residual land and SST time

series (gray and blue, respectively). The raw time series are re-

produced from Fig. 5; the residual time series are reproduced from

Fig. 10. The correlations for the period January 1950–December

2006 are r 5 0.84 (r 5 0.63 after detrending the data) for the top

time series and r 5 0.85 (r 5 0.49 after detrending the data) for the

bottom time series.
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the raw data, but the asymmetry of the correlations

about lag 0 is more striking for the residual data.

The asymmetry in the correlations is accentuated in

lag correlations calculated for 1–20-yr (i.e., 12–240

month) bandpass-filtered versions of the time series

(labeled ‘‘interannual’’ in the top panels in Fig. 13).

Similar results are obtained for high cutoff frequencies of

6, 12, and 24 months (not shown). For both the raw and

residual data, the correlations based on interannual data

have substantially higher amplitudes and peak when the

SST time series leads by ;2–3 months. However, the

asymmetry in the lag correlations is more pronounced in

the residual data. Both the significant covariability and

the ;2–3 month lag between the ocean and land time

series are visually apparent in the interannual versions of

the time series (Fig. 13, bottom panels).

As noted earlier, covariability between the raw

global-mean land and SST time series is to be expected

since ENSO projects onto both land and ocean areas.

But the coupling between the residual time series is

surprising since ENSO has been linearly removed from

both the land and SST time series. The observed cou-

pling documented in Fig. 13 provides observational

support for analogous coupling found in climate simu-

lations forced by prescribed SST anomalies (e.g., Zhang

et al. 2007; Compo and Sardeshmukh 2008; Hoerling

et al. 2008; Dommenget 2009).

Is the observed covariability between the residual

global-mean land and SST time series derived from any

particular region of the globe? Figure 14 shows the

correlation map formed by regressing gridded SST data

onto the residual interannual global-mean land time

series (i.e., the gray time series in Fig. 13, bottom right;

note that ENSO, volcanic eruptions, and dynamically

induced variability are removed from the global-mean

land time series but not from the gridded SST data since

the filtering methodology is only applicable to area av-

erages). The correlation map reveals scattered areas of

positive correlations over all three oceans, but in general

the correlations are most coherent over the tropical and

northern North Atlantic; that is, much of the covariance

between the residual land and ocean time series in Figs.

12 and 13 is derived from SST variability in the Atlantic

Ocean north of the equator. The correlations between

1–20-yr bandpass-filtered SST anomalies averaged over

the North Atlantic Ocean poleward of the equator and

the global-mean residual land time series are statistically

significant but are largest at zero lag (r 5 0.39; exceeds

FIG. 13. (a) Lag correlations between detrended values of the raw (i.e., unfiltered) land surface temperature and SST time series from

Fig. 12. Results are shown for interannual and all time scales (where interannual is defined as 1–20-yr bandpass filtered). (b) The in-

terannual versions of the raw land surface temperature and SST time series. (c),(d) As in (a),(b), but for analyses based on the residual land

and SST time series from Fig. 12.

15 NOVEMBER 2009 T H O M P S O N E T A L . 6135



the 97.5% significance level), not when the SST field

leads (results not shown).

c. The drop in high-frequency variance in
global-mean land temperature data in the 1940s

Another aspect of global-mean temperature vari-

ability highlighted by the filtering technique is the

change in the mean value and month-to-month vari-

ability of the residual land temperature time series

around ;1945–50. The timing of the apparent change in

the statistical properties of the land data is of particular

interest since it coincides with the sudden drop in SSTs.

The top time series in Fig. 15 shows the residual land

time series transcribed from Fig. 10c. The decrease in

variance ;1945–50 is visually apparent in the residual

global-mean time series but is objectively verified by

plotting the derivative and the absolute value of the

derivative of the time series (Fig. 15, second and third

time series from the top). Taking the time derivative

amplifies the high-frequency sampling variability in the

record, much of which is attributable to the incomplete

spatial coverage of the station network, and taking the

absolute value of the derivative reveals its evolution

more clearly. The outstanding features are the decline in

sampling variability during the late 1940s and the

weaker increase after ;1990.

The curve at the bottom of Fig. 15 shows the fraction

of the globe covered by the gridded land data (defined as

the cosine-weighted global percentage of grid boxes

with at least one reporting station). The drop in variance

in the land time series in the late 1940s is broadly con-

sistent with the time history of the coverage of the land

surface temperature observing network. We test this

hypothesis by showing the same temperature time series

in Fig. 16, but calculated only from grid boxes with at

least 50% coverage between 1900 and 1940. Freezing

the spatial coverage to the pre-1940 era eliminates most,

albeit not all, of the decrease in the sampling variability

during the mid–twentieth century.

7. Concluding remarks

The purpose of this paper is to develop and apply

a robust, simple, and physically based methodology for

the removal from global-mean temperatures of the

FIG. 14. Correlations between the raw (i.e., unfiltered) SST data and the residual global-

mean land temperature time series. The residual land time series is the Tdyn/TENSO/volcanic

residual time series, and is filtered to retain only interannual variability between 1 and 20 yr

(i.e., it is the land time series from the bottom right of Fig. 13).

FIG. 15. (top) The residual global-mean surface land tem-

perature time series from Fig. 10. (second from top) The time de-

rivative of the top time series. (second from bottom) The absolute

value of the time derivative. (bottom) Time history of the per-

centage of station coverage used in the CRUTEM3 data (defined

as the cosine-weighted global percentage of grid boxes with at least

one reporting station).
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variability associated with known climate phenomena.

Previous studies have estimated the signals of ENSO,

volcanic eruptions, and internal atmospheric variability

in global-mean temperatures using various regression

methodologies. But as far as we know, this is the first

study to 1) represent the signals of ENSO and volcanic

eruptions using a simple thermodynamic model of the

climate system, 2) use the SLP pattern most strongly

coupled to the global-mean temperature time series to

represent the effects of dynamically induced variabil-

ity, and 3) explicitly remove (or filter out) the temporal

signatures of these three sources of natural variability

from global-mean temperature time series. The filter-

ing methodology does not degrade the time resolution

of the data. Hence, unlike filtering schemes based on

temporal smoothing, this new approach yields a residual

time series in which discrete changes in the time history

of global-mean temperatures, including changes in in-

strumentation and explosive volcanic eruptions, are fully

resolved.

The central findings highlighted by the filtering

methodology include the following:

1) Filtering global-mean temperature time series to re-

move the effects of known sources of natural vari-

ability enriches the signal of the anthropogenically

induced warming over the past century (Fig. 11a).

The trends in the raw and residual data for the period

January 1950–March 2009 are comparable (;0.12 K

decade21); but the standard deviation of the (de-

trended) residual data is only 2/3 as large as the

standard deviation of the raw data (;0.10 versus

;0.15 K). The residual time series shows more

clearly the enhanced warming of the land areas rel-

ative to the ocean areas over the past few decades

(Fig. 12). To what extent the differences between

ocean and land warming reflect the cooling bias in

SSTs due to the recent transition from ship- to buoy-

derived SSTs remains to be determined (Worley

et al. 2005; Rayner et al. 2006; Forest and Reynolds

2008).

2) The residual time series show more clearly the signal

of volcanic eruptions in surface temperature. For ex-

ample, the signal of the eruption of Mount Pinatubo is

barely discernible in the raw global-mean tempera-

ture time series (Fig. 6, left), but is clearly visible in the

data filtered for the effects of ENSO and dynamically

induced variability (Fig. 6, middle and right). The

refined volcanic signal, with its longer decay time

scale, should be more suitable for estimating climate

sensitivity from observations of the climate system

response to volcanic forcing.

3) The analyses reveal the existence of observed coupling

between global-mean land and ocean temperatures on

the interannual time scale, even after the effects of

ENSO and volcanic eruptions are filtered out of the

temperature time series. The observed coupling is

largest when the SST field leads by ;2–3 months

(Fig. 13) and is most prominent in the sea surface

temperature variability in the North Atlantic Ocean

(Fig. 14).

4) The analyses highlight the spurious discontinuity in

global-mean temperatures in late 1945 (Fig. 11), and

they also reveal a marked decrease in variance in the

land temperature time series during the late 1940s

(Fig. 15). The discontinuity in 1945 is derived largely

from the SST field and appears to be related to the

difference in SST measurement techniques between

U.S. and U.K. ships in combination with an abrupt

transition in the mix of marine observations from

predominantly U.S. ships during World War II

(WWII) to predominantly U.K. ships in the postwar

years (Thompson et al. 2008). The drop in variance in

the land data is coincident with rapid increases in the

size of the observing network from ;1951 onward. It

is worth noting that the land data also exhibit a small

drop in the mean ;1945, although this decline is

much smaller than that found in the residual SST

time series (Fig. 10). The SST data corrected for in-

strument changes in the mid–twentieth century are

expected to become available in 2010, and it will be

interesting to see how the corrections affect the time

history of global-mean temperatures, particularly in

the middle part of the century.

The thermodynamic model used to estimate the signal

of ENSO and volcanic eruptions provides a framework

for deriving a ‘‘transfer function’’ that yields the global-

mean temperature response to a prescribed forcing based

FIG. 16. As in the top three time series in Fig. 15, but for the

residual global-mean land surface temperature time series calcu-

lated for grid points with at least 50% coverage between 1900 and

1940.
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on a simple least squares best fit. In addition to the fitted

time series, the procedure yields an effective heat ca-

pacity, that is, the value of C that corresponds to the least

squares best fit. Given a climate sensitivity of b5
2/3 K (W m22)21, the effective heat capacity was found to

be equivalent to the atmosphere plus a 2-m-deep ocean

in the case of ENSO, and a 9-m-deep ocean in the case

of volcanic eruptions. These estimates are only approxi-

mate in the sense that if they are doubled or halved, the

fit between the observations and the model is degraded

only slightly. Furthermore, the estimates do not imply

that the signals of ENSO and volcanic eruptions are

limited everywhere to the top 2 and 9 m of ocean, re-

spectively; that is, the model is based on a globally av-

eraged heat capacity and neglects the flux of heat into

the deep ocean. In principle, the thermodynamic model

can be used in a diagnostic manner to derive information

about both the effective heat capacity and the climate

sensitivity, b. But we have not attempted to do that here

because C and b are both dependent on the time scale of

the forcing.

The filtering methodology should prove useful for

investigating variations in global-mean temperature

due to phenomena other than ENSO, variations in the

high-latitude NH winter circulation, and volcanic

eruptions (e.g., solar variability, variations in the oce-

anic thermohaline circulation, the effects of tropo-

spheric aerosols, etc.). It could also be extended to

include known sources of variability other than those

considered here. For example, the pervasive negative

correlations between surface temperature and pre-

cipitation over low-latitude regions, where local con-

trol of temperature via the evaporation from the

underlying surface (Nicholls et al. 1996; Trenberth and

Shea 2005) might be exploited to filter out additional

variance of the temperature time series.

FIG. A1. As in Fig. 6, but for the raw, residual, and detrended residual SST time series focused on the period surrounding the four largest

eruptions of the twentieth century. Year 1 denotes the first January after the eruption date.
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APPENDIX

Figures A1 and A2 document the volcanic signal in the

global-mean SST and land data, respectively, for the four

largest eruptions since 1900. The average of the results

shown in Figs. A1 and A2 corresponds to the ocean and

land composites in Fig. 7. As in Fig. 6, the left columns in

Figs. A1 and A2 show the results for the raw data, the

middle columns show the results for the residual data, and

the the right columns the results for the detrended re-

sidual data. The data are detrended by removing the

30-yr linear trend centered on each eruption date. As was

done for Fig. 6, the residual SST data are formed by re-

moving the ENSO signal from the data; the residual land

data are formed by removing the signatures of ENSO and

dynamically induced variability from the data. Year 1

denotes the first January after each eruption.

FIG. A2. As in Fig. A1, but for the raw, residual, and detrended residual land surface temperature time series focused on the period

surrounding the four largest eruptions of the twentieth century. Year 1 denotes the first January after the eruption date.
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