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The Model for Ozone and Related Chemical Tracers (MOZART-2) was used as
part of the Intercontinental Transport and Chemical Transformation field
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States and eastern Pacific. MOZART, a global chemical transport model, was
used to forecast future chemical conditions, including the distributions of CO,
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understanding of factors contributing to model performance

MOZART-2 was run in analysis and forecast mode using meteorological inputs from
the NCEP Aviation Model (AVN). Meteorological fields every three hours were
produced, using the AVN analysis and 3-hour forecast fields supplied four times
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