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1. Introduction

The most active region at northern mid-latitudes for deep stratosphere-to-troposphere ozone transport (STT) in
winter and spring is located off North American west coast, with strong influence extending into the western
USA [Sprenger and Wernli, 2003]. Understanding STT is crucial for setting attainable ozone standards for this
region. Quantifying STT in space and time is along standing issue in current models due to limitations in model
resolution, the representation of atmospheric circulation and chemistry both in the stratosphere and in the
troposphere, the definition of tropopause, and tracking stratospheric ozone in the troposphere [e.g. Stohl et al.,
2003; Prather et al., 2011].

[Cooper et al., 2011]

We focus on the CalNex campaign period (May-June 2010) to:

« Improve process understanding of regional STT variability on multiple spatial (50 to 200 km horizontal) scales
« Quantify the role of STT on springtime high surface ozone events

« Develop space-based criteriato aid in identifying the exceptional eventsfor regional air quality management

Altitude (km)

12

®

e

-

~

May 11, 2010

2. High-resolution GFDL AM3 better captures structure of stratospheric intrusions
IONS-2010 sites
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. . . - Label O, above thermal tropopause as “ stratospheric”
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Sonde sites from north-to-south in California - Subject to chemical and depositional loss in the troposphere|
o v - Better for diagnosing variability than absolute magnitude
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* Full stratosphere-troposphere-aerosol chemistry
[Donner et al., 2011

* Nudged to NCEP GFS U and V
(Weaker strength with decreasing pressure)
[Linetal., 2011]

«|Stratospheric ozone tracer (0;S)

3. A proof-of-concept approach to forecast deep stratospheric intrusions impacting ground-level ozone using space-based column measurements of O;
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® AIRS total O;retrievals (color) [Susskindet al, 2003]
capture southeastward intrusions of polar strat. air
o Consistent with 300 hPa PV (contour, PVU)
from FNL analysis

© Model O, profiles and stratospheric O; tracer confirm
injections of stratospheric O; into the mid- and lower troposphere
o Consistent with ozonesonde observations along the California coast
o Six events verified by daily ozonesondes during May 10-June 19, 2010

Correlation of AIRS total O; at each 1°x1° grid with stratospheric enhancement to surface daily max 8-hr
O3 (MDAB8) at western U.S. high-elevation sites in AM3 lagged by 1-3 days

Southwest U.S. (Grand Canyon NP example) Northwest U.S. (Rocky Mountain NP example)
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AIRS total %a mass in the grids coinciding w/ 300 hPa PV
greater than 1.5 in FNL over the western USA (black box)
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*Only very deep intrusions traversing California are

« Injection of stratospheric O; is a key driver of high-O;

likely to influence the SW US surface (Section 4) events in the intermountain regions

4. Deep stratospheric ozone intrusions may affect surface air quality in 5. Summary of the results for the U.S. Mountain West (Apr-Jun 2010)
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