

2Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ

Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

¹Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540, USA ⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO

5NOÂA Earth System Research Laboratory, Boulder, CO

Meivun Lin^{1,2}, A. M. Fiore^{2,3}, O. R. Cooper^{4,5}, L. W. Horowitz², V. Naik^{2,6}, H. Levy II², A. O. Langford⁵, B. J. Johnson⁵, S. J. Oltmans⁴, C. J. Senff^{4,5}

At the surface, the model estimates a 50-60%

contribution from stratospheric O₃ on May 29

May 28 30 40 50 60 70 80 90 100 110 120 130 140 150 O3 [ppb]

University and NOAA GFDL. Satellite data analysis is funded by NASA Air Quality Applied Science Team (AQAST). We thank the AIRS science team and EPA CASTNet for making observations available.