Multi-scale Mechanisms Affecting Hemispheric Chemistry & Transport

Meiyun Lin

Center for Sustainability and the Global Environment
University of Wisconsin-Madison

November 23, 2009
NOAA GFDL & Princeton University
Regional air pollution meteorology

- Enhanced incoming marine flow by sea breezes
- Pollution lofting through upslope/up-valley flow

Adapted from NOAA CalNex 2008
Regional air pollution meteorology

- Low-level jet
- Interacts with downslope
- Entrain possibly polluted FT air to BL

Adapted from NOAA CalNex 2008
Challenges in evaluating air quality impacts from large-scale GCM-CTMs

Strengths:
- General atmospheric circulations
- Describe changes in the background and in intercontinental transport

Limitations & Challenges:
- Coarse spatial/temporal resolutions
- Possibly simplified model physics
- Inadequate to simulate small-scale met. features and its sensitivity to climate change
- Inadequate to resolve chemical non-linearities relevant to air quality
Dynamic downscaling with RCM-CTMs

Global Met. Analysis (NCEP/NCAR, FNL ...)

Regional Climate-Chemistry Models (MM5, WRF-Chem)

Regional AQM (CMAQ)

Global CTMs (MOZART ...)

Nudging Met. IC/BC

Chem. IC/BC

Archived. Met.
Motivating Questions:

How do regional atmos. processes affect
-urban air quality
-pollution export/import
-effect of climate change?

- Correlations of ozone with regional weather
- Surface pollutants export processes
- Transpacific transport & chemical evolution
Vertical stratification of urban pollution

Afternoon O₃ in June

Nighttime chemistry:
- Nocturnal VOC oxidation
- N₂O₅ hydrolysis
- Ozone loss and formation of secondary aerosols

Lin et al., 2009, ACP
Strong correlation of elevated ozone with stagnant weather

- Influence of up-slope/up-valley polluted airflow during the day
- De-couple of dry dep. at mountain sites above the nocturnal inversion

Lin et al., 2009, ACP
21st century climate change

- Decrease in mid-latitude cyclone frequency
- Increase in the frequency and duration of stagnation/heat wave episodes

Differences in annual mean surface temperatures for 2080-2099 vs. 1980-1999

IPCC AR4 (Climate Change 2007: The Physical Science Basis)
Effect of climate change on ozone in polluted regions

The hottest summer on record, 1988

D. J. Jacob and D. A. Winner, 2009
Implications for ozone changes in polluted regions

- Climate change increases surface ozone in polluted regions
- Stronger emission controls will be needed to meet a certain air quality standard

But how many? Uncertainties in large-scale models?

- Missing extreme events?
- Non-linear chemical processing?
- Nocturnal inversion & nighttime chemistry
Changes in the background?

Surface-to-free troposphere exchange affecting continental outflow from Asia

(MOZART vs. WRF-Chem)
United Nations Task Force on Hemispheric Transport of Air Pollution (HTAP; www.htap.org)

- ~20 global models participated in the HTAP source-receptor relationships experiments

- Will S/R relationships change if we use high-resolution models?
Mid-latitude cyclones & pollutants lofting

CO mixing ratios and horizontal flux at 5-km, 2001-03-07

WRF-Chem

[ppbv]
Enhancement of deep convection in the leading edge of the convergence band is missing in MOZART Global Model (2x2°, driven with 6-hr NCEP reanalysis).

Online Regional Model (36x36 km, 3-min climate modeling driven with 6-hr NCEP FNL analysis).
Comparison with TRACE-P measurements

02UTC
04UTC
06UTC
08UTC

MOZART CO

WRF-Chem CO

ppbv

Altitude (km)

Altitude (km)

2001-03-07 (UTC)
Differences in zonal fluxes in the middle & upper troposphere

Figure 2. Comparison of MOZART and WRF-Chem calculated zonal fluxes of CO and PAN along 140°E that is integrated over 4-8.5km altitudes and 25°-40°N latitudes. Episodes of cold frontal passages in March 2001 are highlighted in gray.

Lin et al., 2009, ACP
Implications for changes in the background

- Large-scale models tend to underestimate Asian outflow through rapid convective transport.

- The pollutants lofted to the upper troposphere can undergo long-range transport.

- The range of intercontinental S-R estimates with global models is likely to underestimate the true uncertainty.

For details, please refer to:

Lin, M., Holloway, T., Carmichael, G., Fiore, A., 2009, ACP, to be submitted
Transpacific Transport & Chemical Evolution

- Cold frontal passages
- Orographic forcing
- Deep convection
- Escape of SO$_2$ from cloud processing
Low-level (altitude) outflow of SO$_2$ from China

- EANET Obs
 - MM5-CMAQ/81km
 - Nested MM5-CMAQ/27km

Lin et al. 2008a, AE
Transpacific Transport & Chemical Evolution

- Transport in the warm conveyor belts
- Splitting over the northeast Pacific
- Additional O_3 production driven by PAN decomposition
Chemical evolution over the Pacific

INTEX-B
April–May 2006

Transpacific Transport & Chemical Evolution

- Orographic effects
- Recirculation through land-ocean breezes
- FT→BL entrainment
- Mixing with local short-lived species
Asian pollutant plumes over the NA west coast

INTEX-B
April–May 2006

Remarkable difference in model performance over land and ocean
Uncertainties in hemispheric transport

Likely underestimate
Uncertainties in hemispheric transport

TRACE-P/INTEX-B Flight Tracks

Generally well reproduced
Uncertainties in hemispheric transport

Not well understood
Uncertainties in hemispheric transport

TRACE-P/INTEX-B Flight Tracks

Hemispheric WRF-Chem (36x36km)

Nested WRF-Chem (12x12km)
Conclusions

• Strong correlation of air quality with regional/local meteorology & non-linear chemistry
• This presents a particular challenge in evaluating the effect of climate change on regional air quality using GCM-CTMs
 -- sensitivities in regional climate
 -- air quality effects in polluted regions
 -- changes in the background

Recommended approaches for future research

• Global high-resolution GCM-CTMs
 - *resolution vs. physics induced uncertainties*
• Dynamic downscaling with RCM-CTMs
 - *two-way nesting*
 - *maintain consistency in model physics*
Thank You!

Meiyun Lin (mlin26@wisc.edu)

- Holloway group, University of Wisconsin – Madison
- Arlene Fiore, NOAA Geophysical Fluid Dynamics Laboratory
- Louisa Emmons, National Center for Atmospheric Research
- Peter Hess, Connell University
- Greg Carmichael, University of Iowa
- NASA TRACE-P & INTEX-B science team
- EANET / ADORC, Japan