Key drivers of Western U.S. surface O_3 variability during 1980-2050: From extreme transport events to background trends

Meiyun Lin

Acknowledgements:

NOAA: L.W. Horowitz, O.R. Cooper, A.O. Langford, S. J. Oltmans

Others: A.M. Fiore and H. Rieder (Columbia), D. Tarasick (Environment Canada)

Mae Gustin and Rebekka Fine (Univ of Nevada)

Major challenges for Western U.S. air quality managements

MAJOR CHALLENGES:

- -Frequency of stratospheric intrusions in spring [e.g. Langford et al., 2009; Lin et al., 2012b]
- -Rising Asian emissions and global CH₄ [e.g. Jacob et al. 1999; Cooper et al. 2010; Fiore et al. 2012]
- -More frequent wildfires in summer [e.g. Westerling et al. 2006; Pfister et al. 2008; Jaffe 2011]
- -High winter O₃ pollution in an oil and natural gas basin [e.g. Edwards et al. 2014]

NEED PROCESS-LEVEL UNDERSTANDING ON DAILY TO MULTI-DECADAL TIME SCALES

Stratospheric intrusions push observed surface ozone in S. Nevada above the 75 ppbv NAAQS threshold

New Measurements:

- -Nevada Rural Ozone Initiative (NVROI), July 2011-present (M. Gustin & R. Fine)
- -Las Vegas Ozone Study, May-June 2013 (A.O. Langford)

- Consistent with modeling results from Lin et al (JGR, 2012b)
- How do such events vary from year to year and what controls its variability?

Strong stratospheric influence on year-to-year variability of high-elevation Western U.S. surface O₃ during April-May

- In contrast, the influences from wildfire emissions and Asian pollution are minimal (See paper)
- Large IAV may complicate the attribution of observed O₃ trends in short records (See also *Lin et al.*; Nature Geosci, 2014a)

The high tail of the observed daily surface O₃ distribution over Western U.S. increases during La Niña springs

 See my talk A51Q-07 on Friday (9:30am, Moscone West 3006) for explanations on the physical mechanisms

Following La Niña conditions, deep STT may occur with sufficient frequency as to confound NAAQS attainment

1999 (La Niña)

Frequent deep STT events

1992 (Pinatubo)

Weaker events, lower mean values

Following La Niña conditions, deep STT may occur with sufficient frequency as to confound NAAQS attainment

Developing seasonal predictions with a few months of lead time to aid Western U.S. AQ planning?

The time lag could allow regional preparations, e.g.

- Conducting daily forecasts for public health alerts
- Deploying targeted measurements aimed at identifying "exceptional events"

Apr

Mar

Jun

Year 1999

Jul

May

Long-term U.S. surface ozone trends: Did regional NO_x reductions work?

The model is nudged to "real" winds, sampled at site elevation and filtered to remove local influence -- more representative of observed conditions at remote WUS sites

Must consider variability in atmospheric circulation when interpreting observed changes in baseline O₃

Weaker variability in the 2000s attributed to changes in background rather than in N.A. pollution

Projections of near-term changes in WUS lower trop. ozone in spring (March-April-May)

Summarizing drivers of WUS O₃ variability

- The frequency of deep STT affects year-to-year variability in springtime high-O₃ events
 - → Linked to La Niña in the previous winter
 - → Potential for seasonal forecast
- Rising Asian emissions and global CH₄ are likely the major drivers of long-term changes in mean baseline ozone, but
- Ozone measurements contain signatures of circulation variability:
 - → Short records may complicate the attribution of trends
 - → Must ensure an apple-to-apple comparison btw model and obs

Contact: Meiyun.Lin@noaa.gov

Additional slides for Q & A

The GFDL AM3 Model Hindcasts for 1978-2012

Experiment	Meteorology	Forcings (radiation)	CH ₄ (chemistry)	Aerosol and O ₃ precursors	Fire emissions
BASE	Nudged to NCEP U&V	Historical	Historical	Historical and RCP 8.5 beyond 2005	Historical
PRB	as BASE	Historical	Historical	Shut off over NA; as BASE elsewhere	Historical
FIXEMIS	as BASE	Historical	2000	Fixed	Fixed
IAVFIRE	as BASE	Historical	2000	Fixed	Historical
IAVASIA	as BASE	Historical	1980	Varying in Asia only	Fixed
IAV_CH ₄ Chem	as BASE	Historical	Historical	Fixed	Fixed

Model setup similar to *Lin et al.* [2012a, b], but at 2°x2° resolution

Designed to isolate the role of changes in meteorology, background, STE, wildfires, methane, and Asian vs. North American anthropogenic emissions

Summarizing drivers of U.S. ozone trends In the historical period (1980-2012)

GFDL AM3 (2003-2012 minus 1981-1990)

Increases in total ozone over WUS despite reductions in local emissions

Rising Asian emissions contribute ~50% of total background increases

Western US surface O₃ variability correlates poorly with O₃ burdens in the UTLS but strongly with that in the Free Trop

Niño 3.4 Index

12-mon running mean UTLS O_3 anomaly (%) $r^2(UTLS, Surface) = 0.07$

Apr-May mean
FreeTrop & Surface
O₃ anomaly (ppb)
r²(FreeTrop, Surface) =0.74

