Identifying and forecasting deep stratospheric ozone intrusions over the western United States from space

Meiyun Lin

Princeton University & NOAA GFDL

Collaborators: A. M. Fiore, L. W. Horowitz, X. Liu, L. L. Pan, O. R. Cooper, A. O. Langford, P. J. Reddy

Stratospheric intrusions drive a substantial portion of springtime high surface O₃ events in U.S. West

Daily max 8-hr average surface O_3 at Boulder (~2 km a.s.l.), Colorado

Insights from a global Hi-Res model and multi-platform obs [Lin et al., 2012; Langford et al., 2012]

- Stratospheric intrusions can episodically increase surface MDA8 O_3 by 20-40 ppb, including on days when observed O_3 exceeds the standard (75 ppbv)
- The policy challenge: 1) Screening of "exceptional events"
 - 2) Advanced warning of incoming intrusions
- → Can Aura (OMI) and Aqua (AIRS) sensors help to predict these events?

Total column O_3 retrievals capture the <u>dynamical variability</u> of O_3 due to a stratospheric intrusion $(N \rightarrow S)$

AIRS captures <u>day-to-day progression</u> of upper dynamics conducive to deep stratospheric intrusions over the western U.S.

Western U.S. is prone to deep intrusions \rightarrow Co-varying O₃ enhancements in the UT/LS and in the lower trop

Spatial pattern: Surface O_3 is highest to the SE of where OMI column and mid-trop O_3 are enhanced (May 23-25, 2008 example)

Towards a predictive relationship: Correlations of daily AIRS UT/LS ozone and surface ozone

Correlation coefficient of observed O_3 and AM3 O_3 S at CHA surface site, respectively, with AIRS 300 hPa O_3 at each 1°x1° grid using daily datasets from April-May in 2011

Forecasting surface destinations of transported O₃-strat:

AIRS variability ~5°x5° NW of a receptor site indicates incoming intrusions

Stronger potential for accurate prediction in ~1 day as to where the intrusion will reach the surface

The spatial pattern of correlations varies interannually: Links to ENSO

Correlation coefficient of AM3 surface O₃S at Grand Canyon NP with AIRS total O₃ at each 1°x1° grid, 0-3 days prior using datasets from April-June

This first scoping study suggests potential for developing spacebased indicators for day-to-day variability in stratospheric influence at WUS surface sites

Potential AQ Applications:

- ◆ Screening of "exceptional events"...combined with suborbital observations
- ◆ Advanced warning of regional high O₃-Strat events with a lead time of ~1-3 days (more skill in 1 day)
- \rightarrow Qualitatively promising ...ongoing work for a quantitative relationship ($\triangle O_3$)
- → Utility of other Aura ozone products, e.g. MLS and TES?

Additional info for Q&A

Lin, M., A. M. Fiore, O. R. Cooper, L. W. Horowitz, A. O. Langford, H. Levy II, B. J. Johnson, V. Naik, S. J. Oltmans, and C. J. Senff (2012), *Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions*, *J. Geophys. Res.*, 117, D00V22, doi:10.1029/2012JD018151.

e90 tropopause tracer and O₃-Strat tagging in GFDL AM3: showing a deep intrusion over Hawaii on March 9, 2004

Dynamically varying e90 tropopause tracer [Prather et al., 2011]:

- 1) Emitting at the surface uniformly and statically; 90-day e-folding lifetime
- 2) Differentiate stratospheric (< 85 ppb) vs. tropospheric (>= 85 ppbv) air

Stratospheric O₃ tracer (O₃S) [Lin et al., 2012b]:

- 1) Set to simulated O₂ in stratospheric air; allowing multiple tropopauses
- 2) Subject to chemical and depositional loss in tropospheric air

...Transport of O_3 , O_3S , and e90 fully driven by meteorology...