Establishing **process-oriented** constraints on global models for ozone source attribution:

Lessons from **GFDL-AM3**

Meiyun Lin

(Princeton University/GFDL)

GFDL AM3 Global Simulations for HTAP2

Horizontal and vertical resolution:

- C90 cube sphere grid, ~1.0x 1.25 degrees
- 48 vertical levels, from surface to 86 km altitude

Using HTAPv2 anthropogenic emissions

- HTAP2 emissions and RETRO VOC speciation
- HTAP2 aircraft emissions distributed vertically based on ratios in ACCMIP
- Daily FINN fire emissions emitted at the model surface level
- MEGAN v2.1 biogenic isoprene emissions
- Interactive stratospheric & tropospheric chemistry
- Nudged to NCEP GFS winds
- Citations for model documentation
 - Donner L. J. *et al*. [J. of climate, 2011]
 - Lin M.Y. et al [JGR2012a; JGR2012b; Nature Geosci, 2014]

http://data1.gfdl.noaa.gov/nomads/forms/HTAP2/AM3_HTAP2_MODEL_DESCRIPTION.pdf

GFDL AM3 for HTAP2 regional boundary conditions

 Available at NOAA GFDL data portal: http://data1.gfdl.noaa.gov/nomads/forms/HTAP2/

Relatively long-lived chemical species (3-hourly & 3-D output)
 Ozone, CO, PAN, sulfate, nitrate, BC, OC, dust, NO, NO2, SO2, NH3, ethane, propane, acetone

BASE	Base emissions, methane=1798 ppb (2008-2013)	get data
CH4INC	Base emissions, methane=2121 ppb (2008-2010)	get data
GLOALL	20% decrease of all anthropogenic emissions globally	get data
NAMALL	20% decrease of all anthropogenic emissions	get data
EASALL	20% decrease of all anthropogenic emissions	get data
EURALL	20% decrease of all anthropogenic emissions in HTAP2 Tier1 domain for Europe	get data

^{*}Known issues: The response is noisy and lack of a coherent spatial pattern

^{*}Contact: Meiyun.Lin@noaa.gov for authorization

Evaluation of GFDL AM3 with **EANET** observations

Mean surface ozone concentrations during April-June, 2010

Evaluation of GFDL AM3 with **EANET** observations

Mean surface ozone concentrations during April-June, 2010

Evaluation of GFDL AM3 with **EANET** observations

Mean surface ozone concentrations during April-June, 2010

Need measurement data in China for additional model evaluation!!

Evaluation of GFDL AM3 with CASTNET observations

20

with NA anthropogenic emissions set to zero

Jan Feb Mar/Apr May Jun Jul Aug Sep Oct Nov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Comparison of mean O₃ profiles with ozonesondes for April and May

Hindcast simulations (1979-2012) with anthrop & wildfire emissions set to climatology

The GFDL AM3 model explains 50-90% of observed daily O₃ variability in Point Reyes sonde

Sonde

AM3/C180 (~50 km) AM3/C48 (~200 km)

All sites: 40-90%

Evaluation of Source Attribution

- Deep STT
- Regional anthropogenic pollution
- Wildfires

Simulating deep stratospheric intrusions: role of model resolution (May 28, 2010 example)

- 0.5° model better captures vertical structure
- 2° model reproduces the large-scale view (suitable for exploring IAV)

Lin MY et al (JGR, 2012b): Springtime high surface ozone events over the western US: Quantifying the role of stratospheric intrusions

Attribution of WUS high-O₃ events: Observations

Anomalously frequent high-O₃ events were measured in Apr-May 2012 (Lin *et al.*, Nature Commun. 2015)

MY Lin et al (in prep, 2015)

Attribution of WUS high-O₃ events: GFDL AM3

Meiyun Lin et al (in prep, 2015)

Long-term trends in US surface ozone

Selection of model baseline to be more representative of observed conditions at WUS mountain sites

Within a ~2°x2° global model grid

Problem: -Model limitations in resolving observed baseline conditions

-Local pollution influence in the model grid perturbs the small baseline signal

Approach: -Sample the model at site elevation

-Filter the model to remove the influence from fresh local pollution (i.e. removing data on days when N. American COt ≥ 33th percentile)

15

Simulated ozone trends with/without selection of baseline conditions in the model

Model Baseline

SPRING U.S. surface O₃ trends: Do domestic NO_x reductions work?

WUS Model filtered to be more representative of observed conditions High background, thus little response to local NO_x reductions

SUMMER U.S. surface O₃ trends: Do domestic NO_x reductions work?

Some final thoughts on process-oriented model evaluation

- Leveraging high-quality observational constrains (e.g. daily ozonesondes, hourly meteorological parameters)
- Evaluating ability to quantitatively relate pollutant concentrations to their sources and transport on synoptic time scales
- Investigating ability to capture variability on daily to decadal time scales and from the regional to local scales
- Examining the **full range** of pollutant distribution (e.g. 95th, 75th, 50th, 25th, 5th)
- → Ensure an apple-to-apple comparison btw OBS and Models

Thank you!! (Meiyun.Lin@noaa.gov)

