Strong stratospheric impacts on surface ozone episodes over the western U.S. in spring: Not-so-rare events?

Meiyun Lin Princeton University & NOAA GFDL

PI: Arlene Fiore (Columbia/LDEO), Co-I: Meiyun Lin AQ Managers: Joe Pinto (EPA NCEA); Pat Dolwick (EPA OAR) AQ Outcomes: Contributions to the ozone ISA

Lin M., A. M. Fiore, O. R. Cooper, L. W. Horowitz, A. O. Langford, Hiram Levy II, B. J. Johnson, V. Naik, S. J. Oltmans, C. Senff (2012): *Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions*, submitted to <u>J. of Geophys. Res.</u>

The NEW GFDL AM3 model:

- 1) Cubed-sphere grid at ~50x50 km² (CalNex 2010)
 48 vertical levels (surface → 86 km)
- 2) Nudged to NCEP GFS winds [Lin et al., 2012a; JGR]

(weakening the nudging strength with decreasing pressure)

- 3) Fully coupled strat & trop chem [Donner et al., 2011] as opposed to using Linoz or Synoz tracers in prior CTMs
- 4) Stratospheric O₃ tracer (O₃S) defined relative to a dynamically-varying tropopause [e90; Prather et al., 2011]

Maximum strat. impacts on surface O₃ in Apr-Jun 2010 (8-hour average; bias-corrected)

Thirteen intrusions in Apr-Jun 2010 enhanced daily max 8-hour ozone to 60-85 ppbv at WUS surface sites

Events	Synoptic conditions in satellite imagery	Descent captured in ozonesondes, lidar, aircraft	Major surface impact regions
Apr. 6-7	AIRS /GFS PV	Not measured	Colorado, New Mexico, Wyoming
Apr. 9-10	AIRS/GFS PV	Not measured	Wyoming
Apr. 12-15	AIRS/GFS PV	Not measured	Arizona, Colorado, Utah
Apr. 21-23	AIRS/GFS PV	Not measured	Colorado, Nevada
Apr. 28-29	AIRS/GFS PV	Not measured	Colorado, Wyoming
May 11-13	AIRS/GOES-West	Sonde, P-3 aircraft	Arizona, New Mexico, W. Texas
May 17-20	AIRS/GOES-West	Sonde	California, Wyoming
May 22-24	AIRS/GOES-West	Sonde and lidar	New Mexico and Colorado
May 27-29	AIRS/GOES-West	Sonde and lidar	Arizona, California, Nevada
Jun. 7-8	AIRS/GOES-West	Sonde	Idaho, Utah, Wyoming
Jun. 10-15	AIRS/GOES-West	Sonde	Spread in Southwest
Jun. 16-17	AIRS/GOES-West	Sonde	Colorado
Jun. 22-23	AIRS/GFS PV	Not measured	Colorado

 \rightarrow Five events directly led to exceedances of the NAAQS

 \rightarrow In discussion with EPA R8 managers to flag events + quantify baseline

Stratospheric intrusions drive a substantial portion of the observed synoptic variability of surface ozone

- AM3 captures some high-O₃ events due to stratospheric influence
- But limitations, due to resolution of meso-scale meteorology

Observing stratospheric intrusions from space: Consistent with AM3 lidar and (May 23, 2010)

Southern California

5 NASA/Aqua AIRS Ascending orbit (~1:30 pm) Altitude (km ASL) 2 Lidar (a) A new storm arrived SL) O₃S Altitude (km 3 2 Total column ozone (DU) AM₃ -(b) 1 280 320 360 400 440 480 34.75 34.75 34.75 34.25 33.75 34.25 Latitude Contours (GFS PV at 300 hPa) O_3 [ppb]

30

50

70

90

110

130

150

Subsidence of stratospheric O₃ to the lower trop of S. California (May 28, 2010)

 \rightarrow O₃-strat contributes ~75% to enhanced O₃ >100 ppbv at 2-5 km a.s.l. \rightarrow Consistent with observed low humidity; NA emissions contribute little

Transport of stratospheric O₃ to the surface (e.g. May 29, 2010)

Observed

Stratospheric (AM3)

- High O₃-strat coincides with regions experiencing peak surface O₃ levels (+ sharp decreases in humidity and dew point temperature)
- Stratospheric intrusions elevate baseline levels (~15 ppbv) and can contribute 35-55 ppbv to MDA8 O₃ during events, up to 2-3 times higher than previously reported!

• Background O_3 can reach 60-75 ppbv for ~25% of observed high- O_3 >=70 ppbv

• A major role for strat. intrusions in driving high-O₃ events (spring; west)

→ Enhanced knowledge needed to forecast and identify events

New IP: Can NASA satellite provide an advanced warning of potential O₃ action days due to a stratospheric intrusion?

 \rightarrow Enhanced observed O₃ and model O₃S in surface air southeast of the intrusion as seen by AIRS (consistent with ozonesondes)

Questions?

Median stratospheric impacts on surface O₃ in spring 2010

Likely NE US, but further evaluation needed; IONS 2004/2006/2008 and DISCOVER AQ data may help.

Key Points:

- \rightarrow Stratospheric intrusions can episodically contribute 50-60% to surface O₃
- \rightarrow Regularly influence the high-elevation WUS in late spring
- \rightarrow NASA near real-time ozone products may provide an advanced warning

For further discussions, please contact Meiyun.Lin@noaa.gov

Additional slides for Q&A

Observed

Case #3: Stratospheric intrusions drive a substantial portion of the observed synoptic variability of surface O₃

Stratospheric impacts on the Four Corners region

Stratospheric ozone tracer in AM3

- →Distinguish stratospheric vs. tropospheric air using the e90 tropopause tracer proposed by Prather et al. [2010]; allowing double tropopause
- → Set O_3 S equal to O_3 in stratospheric (e90<85 ppb) air masses; subject to chemical and depositional loss in tropospheric (e90>85 ppb) air masses
- \rightarrow Transport of O₃S and e90 both driven by meteorology

Lin, et al., 2012, submitted to JGR