# GFDL's CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations

STEPHEN M. GRIFFIES, MICHAEL WINTON, LEO J. DONNER, LARRY W. HOROWITZ

NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

STEPHANIE M. DOWNES

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

## **RICCARDO FARNETI**

Earth System Physics Section, ICTP, Trieste, Italy

# ANAND GNANADESIKAN, WILLIAM J. HURLIN

NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

HYUN-CHUL LEE

High Performance Technologies, Inc./GFDL, Princeton, New Jersey

## JAIME B. PALTER

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

BONITA L. SAMUELS, ANDREW T. WITTENBERG, BRUCE L. WYMAN

NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

## JIANJUN YIN

Center for Ocean-Atmospheric Prediction Studies, Florida State University

#### ABSTRACT

This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL). The climate model, known as CM3, is formulated with effectively the same ocean and sea ice components as the earlier GFDL climate model, CM2.1, yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large scale circulation and sea surface temperatures. There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified sea surface temperature bias pattern and reduced biases in the Arctic sea ice cover. We anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding AMIP simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absent in AMIP simulations. The ocean interior simulation in CM3 is generally warmer than CM2.1, which adversely impacts the interior biases.

#### This is the draft from June 14, 2010.

#### 1. Introduction

The purpose of this paper is to document elements of the ocean and sea ice simulations in a new coupled climate model developed at the Geophysical Fluid Dynamics Laboratory (GFDL). This paper is a companion to that of Donner et al. (2010), which focuses on the atmospheric formulation and simulation features of the climate model. In addition to being used to help address various hypothesis driven scientific research questions, the climate model, referred to as CM3 in the following, will be one of the primary models from GFDL contributing to the Intergov-

ernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5).

CM3 builds from the extensive experience garnered from the earlier CM2.1 climate model, which was documented by Delworth et al. (2006), Griffies et al. (2005), Gnanadesikan et al. (2006), Wittenberg et al. (2006), and Stouffer et al. (2006a). The development forward from CM2.1 took two paths. The first path emphasized the needs of earth system modeling, in which interactive ocean biogeochemistry, land vegetation, and interactive carbon cycling are critical. This path used nearly the same atmospheric model as in CM2.1, and it led to two new earth system models, known as ESM2M and ESM2G, that differ only by their ocean components. The second development path, leading

to CM3, is the focus of the present paper, as well as Donner et al. (2010). For CM3, priorities included aerosol-cloud interactions, chemistry-climate interactions, and links between the troposphere and stratosphere. Updates to the land model used for ESM2M/G were also incorporated. To help achieve a stateof-the-science climate model tool using the new atmospheric model, in time for the AR5, we chose to keep the ocean and sea ice components of CM3 effectively the same as in CM2.1. The presentation here focuses on salient aspects of the surface ocean climate in CM3, and an introduction to interior biases and volume transports.

#### a. Experimental design and analysis period

The coupled climate model experiments forming the main portion of this paper employ historical radiative forcing from the years 1860-2000. Model comparisons use the ensemble mean and time mean from a five member ensemble of historical experiments in CM2.1 and CM3 over the years 1981-2000. Each ensemble member was initialized from a different point during the constant 1860 radiatively forced spin-ups for the two respective models, with CM2.1 ensemble members initialized 40 years apart, and CM3 ensemble members initialized 50 years apart.

The analysis of historically forced simulations contrasts with the use of constant 1990 radiative forcing experiments by Delworth et al. (2006), Griffies et al. (2005), Gnanadesikan et al. (2006), and Wittenberg et al. (2006) used to document CM2.1. We chose to focus on historically forced simulations since they are, in principle, more amenable to direct comparisons to observed fields than 1990 or 1860 control simulations. Additionally, historical simulations represent a key element of the IPCC climate assessment. However, the historically forced simulations present nontrivial and unresolved difficulties related to model drift. We raise two points here in this regard.

There are insufficient 1860 ocean observations to directly initialize such "pre-industrial" climate simulations. Hence, we initialize the ocean based on present conditions (Steele et al. 2001), and run the climate model with constant 1860 radiative forcing for multiple centuries. This approach is similar to that discussed in Stouffer et al. (2004). The aim is to reach a quasiequilibrium prior to the changing "historical" atmospheric forcing from years 1860-2000. A key difficulty with this procedure is that equilibrium in the deep ocean is reached only after one or two thousand years (Stouffer 2004). Computational costs precluded this length of simulation, thus compromising the degree of ocean climate equilibration. Additionally, during spin-up of both CM3 and CM2.1, the two oceans absorb heat as they approach equilibrium. Hence, the global mean ocean temperature is increasing relative to the 1990 initial conditions, rather than decreasing. Such ocean warming drift is not uncommon for IPCC class climate models, as evidenced from the interior biases seen in the ensemble of historically forced climate models in Figure 8.9 of Randall et al. (2007) (we show such biases for CM2.1 and CM3 in Figure 14 discussed in Section 3a). CM3 has a larger net input of heat to the ocean, thus causing it to



FIG. 1. Time series of the global mean ocean potential temperature for CM2.1 and CM3 when run with constant 1990 radiative forcing. Note the increased warming from CM3, which is related to an increase in net heating of the CM3 ocean by about  $0.2 \text{ W m}^{-2}$  for this time period of the simulations.

warm faster than CM2.1. In particular, for an AMIP simulation<sup>1</sup> of the two atmospheric model components from CM2.1 and CM3, known as AM2 and AM3, respectively, the top of the atmosphere radiative imbalance for model years 1981-1998 is roughly 0.4 W m<sup>-2</sup> in AM2, whereas it is almost twice that in the AM3. These numbers from the AMIP simulations are modified upon coupling, but they are indicative of the enhanced warming occurring in CM3 relative to CM2.1. For example, we illustrate how the heating differences manifest in simulations where the ocean components are initialized from the same conditions, and the climate models are forced with constant 1990 radiative conditions. The time series of global mean ocean temperature in Figure 1 shows that CM3 warms more rapidly than CM2.1, with roughly 0.2 W m<sup>-2</sup> more heat entering the CM3 ocean.

Given that CM3 warms more rapidly than CM2.1, a related difficulty with a comparison of CM2.1 and CM3 historical experiments concerns the differing time used for the respective spin-up simulations. CM2.1 was run for about 300 years prior to initializing the historical simulations. As stated earlier, this is a rather short period, in which the ocean interior drifts relatively little with respect to present observations, and the model remains somewhat far from equilibrium. In contrast, for CM3, after spinning up with 1860 forcing for roughly 500 years with the same solar constant used for the CM2.1 simulations, we switched to a smaller constant (reducing the net solar fluxes reaching the earth by about 1 W m<sup>-2</sup>), as recommended for the AR5 assessment based on new solar irradiance measurements

<sup>&</sup>lt;sup>1</sup>AMIP simulations refer to atmosphere-land simulations with fixed sea surface temperature, run according to the protocol of the Atmospheric Model Intercomparison Project (Gates 1993).

(Kopp et al. 2005). CM3 was then run for roughly 300 years with the new solar constant prior to initializing the ensemble of historical simulations. The net effect is that CM3, having run for 800 years during the spin up phase, is closer to its equilibrium state than CM2.1 upon initializing the historical simulations. In turn, CM3 is significantly warmer in the global ocean mean at the start of its historical simulations, by roughly  $1^{\circ}C$ .

In summary, our aim to compare the historical simulations of CM3 to CM2.1 must be considered with the above caveats. Consequently, we focus on features, especially in the surface ocean, that appear robust across the historical simulations. For the ocean interior, it is especially important to retain an appreciation of the differences in spin up when assessing model differences. Additionally, though the interior bias patterns differ in scale, they exhibit a strong correlation since the ocean components are nearly the same.

#### b. Content of this paper

Section 2 begins the paper with a discussion of salient properties of the ocean surface, including sea surface temperature, salinity, sea ice, and sea level. Section 3 then considers some of the water mass biases seen in the ocean interior, with the dominant bias arising from the heat in CM3 associated with the initialization. We then present certain features of the volume transport for both the global and Atlantic overturning circulation, as well as the horizontal transport through selected straits and throughflows. Section 4 finishes the main text with concluding comments. Details of the ocean and sea ice model components are provided in Appendix A.

## 2. Ocean surface properties

The purpose of this section is to examine certain surface ocean properties, including sea ice, with comparisons made between CM2.1 and CM3 from years 1981-2000 in the historically forced simulations. In describing differences between the models, we identify salient changes in the atmospheric fluxes, as revealed by AMIP simulations of AM2-LM2 (GFDL GAMDT et al. 2005) and AM3-LM3 (Donner et al. 2010), which are the atmosphere and land model components from CM2.1 and CM3, respectively.

#### a. Sea surface temperature (SST)

Sea surface temperature (SST) is directly affected by coupling to the atmosphere, sea ice, and river runoff from land. SST bias patterns form a primary metric used to judge the integrity of a climate simulation, with biases impacted by the suite of ocean surface buoyancy and momentum fluxes, as well as the realism of surface ocean flow. Figure 2 shows maps of the SST biases for CM2.1 and CM3 relative to the climatology of Reynolds et al. (2002). The global mean bias is roughly the same for both models, and some large scale pattern features remain. However, there are some notable changes, as evidenced by the root-mean-square (rms) biases as categorized by latitude bands. In general, CM3 has a somewhat smaller rms error in the high latitudes, whereas CM2.1 has a smaller rms error in the tropics. In the remainder of this subsection, we discuss possible physical mechanisms impacting these biases, and connect regional bias patterns to these physical mechanisms.

#### 1) CORRELATING SST CHANGES WITH SURFACE FLUX CHANGES

Ocean surface temperatures differ between the coupled models due to either changes in surface boundary fluxes or through differences in oceanic heat transport from advection and subgrid scale processes. For example, as discussed in Donner et al. (2010), the changes made to the CM3 atmosphere result in a complex pattern of changes in radiative fluxes relative to CM2.1. In particular, Figure 3 shows the annual mean absorbed shortwave radiation at the top of the atmosphere for the atmospheric models AM2 and AM3, and the coupled climate models CM2.1 and CM3. A dominant change between the models is the reduced heating bias in the Southern Ocean for AM3 and CM3. We also note a slightly warmer North Pacific in CM3. Further details of these radiative changes are noted in Donner et al. (2010). Though details will be modified due to scattering by aerosols and clouds, these changes in the top of the atmosphere radiative fluxes reflect on the surface ocean fluxes.

To help attribute changes in SST, we distinguish regions where changes in surface ocean heat fluxes (turbulent and radiative) are important by examining differences in the diagnosed air-sea heat fluxes in AMIP simulations using fixed SST boundary conditions (Figure 4a). If the ocean were able to maintain these surface fluxes, the sea surface heat balance would allow the observed SSTs to persist. If the ocean component does not supply the expected flux under the atmosphere's forcing, the SST will drift.

The heat flux changes seen between the AM2 and AM3 atmospheric models correlate relatively well with the difference in SST seen in the climate models CM2.1 and CM3 for the regions between 40°S and 30°N, with a correlation coefficient of 0.59, and have some skill in predicting the SST changes between 30°N and 65°N. Poleward of 65°N, the correlations are much lower, and in the Southern Hemisphere they are essentially zero. This result suggests that much of the SST difference in the low latitudes is controlled by the atmosphere, whereas in the high latitudes changes in oceanic heat transport and sea ice properties dominate. Examining the correlation between changes in SST in the coupled models and the change in the coupled model net surface flux (Figure 4b) reveals that now the tropics are poorly correlated with the changes in the net flux. This result is consistent with the SSTs adjusting to changes in atmospheric forcing locally in the lower latitudes, so as to leave a small residual and hence a small correlation. By contrast, in high latitudes the SST changes are anticorrelated with changes in air-sea heat flux, suggesting that the changes are forced by oceanic heat transport and are damped by the atmosphere.



FIG. 2. Maps of the sea surface temperature (SST) from CM2.1 and CM3, minus the observational analysis of Reynolds et al. (2002). The model results are computed as ensemble means from the historically forced experiments over simulation years 1981-2000. Biases are in Kelvin. White regions indicate biases whose absolute values are less than one degree. Global and regional root-mean-square (RMS) errors are listed at the top of each figure.

#### 2) POLEWARD HEAT TRANSPORT

The ocean heat transport implied by surface fluxes in an atmospheric simulation with observed SSTs is useful for understanding the potential for climate model drift (Figure 5). Additionally, the atmosphere implied transports can be compared to observational and reanalysis estimates to assess their fidelity. Hence, it is useful to illustrate the heat transports for general purposes of model documentation, and to help interpret changes in the SST biases between the climate models.

In the Atlantic, Figure 5 indicates that both atmospheric models show somewhat weak implied oceanic heat transports as compared to the *in situ* measurements analyzed by Ganachaud and Wunsch (2003), though they are within the range determined by the two reanalysis products used by Trenberth and Caron (2001). When coupled, the transport in both models further reduces in the lower latitudes, with CM3 generally less than CM2.1. For the higher northern latitudes (north of  $40^{\circ}$ N), both models are more consistent with one another, and slightly greater than the reanalysis implied transports but consistent with *in situ* measurements. The warming of the SST in CM3 relative to CM2.1 is predominantly through the atmosphere in this region (see Figure 4).

For the Southern Ocean, there is a notable equatorward implied heat transport in AM2-LM2 within the latitude band centered just south of 40°S. This transport arises from a positive bias (directed into the ocean) in the Southern Ocean surface heat flux in AM2. This bias, in turn, is associated with a positive bias in absorbed shortwave radiation shown in Figure 3. As discussed by Delworth et al. (2006), radiative biases can amplify upon coupling due to cloud feedbacks, as seen in both the CM2.1 and CM3 radiative biases in the Southern Ocean. Figure 3 shows that AM3 has a greatly reduced bias in net absorbed shortwave within the Southern Ocean. Reducing this bias produces a slightly poleward implied heat transport within this latitude band.

In the Indo-Pacific, both atmospheric models imply less heat export from the tropics than the reanalysis products (Figure 5). In the North Pacific, the lower implied transport in AM3-LM3 relative to AM2-LM2 is consistent with the smaller cold bias in CM3 as the atmosphere extracts less heat from this region (Figure 5). The change in implied transport in the North Pacific is associated with an increase in shortwave absorption in AM3 and CM3 shown in Figure 3, with this increased radiation extending eastward from east Asia. The bias reduction in shortwave radiation is attributed to an improved treatment of aerosols and clouds in AM3 (Donner et al. 2010).

#### 3) NORTH ATLANTIC

A dominant pattern of North Atlantic SST bias is the cold spot east of Newfoundland and a warm bias next to the east coast of North America. This bias is associated with a poor representation of the North Atlantic Current as it extends northward from the Gulf Stream. Given the strong SST gradients in this region, a slight shift in the simulated current leads to a strong bias. There are related warm biases also found near southern Greenland. In a broad sense, both CM2.1 and CM3 have cool SSTs in the North Atlantic, with CM2.1 cooler north of 40°N.

#### 4) SOUTHERN OCEAN

The difference between the atmospheric model radiation shown in Figure 3 results in a reduction in the Southern Ocean warm bias in CM3 (Figure 2). However, reduction in Southern Ocean



FIG. 3. Observed and simulated annual-mean absorbed shortwave radiation at the top of the atmosphere. The observed values are taken from the CERES-EBAF product (Loeb et al. 2009), based on observed years 2000-2005. The errors are computed as model minus observations. Shown are model results from the AMIP simulations with AM2-LM2 and AM3-LM3 (climatology based on years 1983-1998), as well as the coupled model simulations CM2.1 and CM3 (ensemble mean for years 1981-2000). The global and regional root-mean-square (rms) errors are listed at the top of each figure. Note the pronounced reduction in shortwave bias in the Southern Ocean for AM3, as well as the slightly warmer North Pacific. Individual ensemble members from the climate models differ by no more than  $\approx 5 - 10 \text{ W m}^{-2}$ .



FIG. 4. Both panels show the difference in SSTs for CM3 minus CM2.1 in color, computed from the ensemble means for the two climate models over years 1981-2000. The contours show the difference in surface ocean heat fluxes from the AMIP simulations (left panel) and the fully coupled climate simulations (right panel), where heat fluxes include shortwave, longwave, sensible, and latent heat impacting the surface ocean (sign chosen so that a positive flux enters the ocean). The spatial correlations between the SST changes and the surface heat flux changes are noted on the left of each figure. The spatial correlations are computed separately over the bands south of  $40^{\circ}$ S, from  $40^{\circ}$ S to  $30^{\circ}$ N, from  $30^{\circ}$ N to  $65^{\circ}$ N, and poleward of  $65^{\circ}$ N. Note that the fluxes shown here are taken from atmospheric model output. Since the atmospheric model has a coarser resolution than the ocean model, the land-sea mask is coarsened relative to other maps shown on the ocean grid (e.g., SSTs in Figure 2).

SST warm biases are not as dramatic as may be expected based on the changes in shortwave heating. The reason relates to the warmth built into the CM3 initial conditions (Section 1a). This heat penetrates to the deep ocean predominantly through the North Atlantic deep water formation regions, and it is transported southward with the overturning circulation (see Figure 14 discussed in Section 3a). By 1981 of the historical experiments, this heat re-emerges to the Southern Ocean surface, thus impacting the SST biases in the Southern Ocean.

## 5) NORTH PACIFIC

The increased radiative heating of the North Pacific in CM3 helps to counteract the cold North Pacific bias found in CM2.1, which was associated with excessive sea ice cover (see Figure 9 discussed in Section 2c). As a result, the broadly cool North Pacific in CM2.1 has been pushed back to a weaker bias of the North Pacific gyre, with a slight warming extending along the coast of North America.

#### 6) WEST COAST OF AMERICA AND AFRICA

Both CM3 and CM2.1 exhibit warm biases off the west coast of the mid-latitude Americas as well as Africa. However, there is a noticeable reduction in this bias for CM3, especially next to South America. As seen in Figure 6, the reduction in warm bias off South America is associated with stronger upwelling of cold water near the coast, driven by stronger equatorward wind stress creating stronger Ekman divergence. There is also a slight increase in upwelling off the coast of West Africa in CM3 (not shown), though much of the warm bias off Africa in both CM2.1 and CM3 may also be associated with the absence of Agulhas eddies transporting waters into the Atlantic.

Stronger equatorward winds along the west coast of South America are part of an enhanced subtropical high pressure in the southern portion of the East Pacific, also associated with enhanced solar radiation (not shown). Additionally, there are potentially important differences in the atmospheric model grid arrangement and orography representation that may affect how coastal wind stresses impact the ocean: (A) the representation of the Andes is taller (and more realistic) in the AM3 configuration, (B) the AM3 model grid is slightly finer, with the zonal resolution in AM3 roughly 1.875° whereas it is 2.5° in AM2, (C) the AM3 grid is better aligned with the ocean grid, thus allowing for a transfer of fluxes between atmosphere and ocean to occur on a finer grid that provides less diffusion from grid averaging.

#### b. Sea surface salinity (SSS)

As for SST biases, the sea surface salinity (SSS) bias patterns reflect accuracy of the coupling between the ocean and other climate model components, as well as ocean circulation, with primary importance placed on the hydrological cycle. Given the very different feedback mechanisms impacting SST versus SSS (see, for example, Griffies et al. 2009b), it is useful to investigate both fields when characterizing the physical integrity of a simulation.

As the ocean models in CM2.1 and CM3 use real water fluxes, the global mean ocean salinity is modified through changes



FIG. 5. Left panels: implied ocean heat transport for the atmosphere-land models AM2-LM2 and AM3-LM3, when run in AMIP mode (Gates 1993), for the global, Atlantic, and Indo-Pacific basins. Results are computed as time means over simulations years 1983-1998. A small global net heat flux has been removed uniformly prior to estimating the implied transports in both atmospheric models. Right panels: Ocean heat transport for the coupled models CM2.1 and CM3 from ensemble means over simulation years 1981-2000. Observational estimates are also shown in all figures from *in situ* measurements analyzed by Ganachaud and Wunsch (2003), and the reanalysis estimates from Trenberth and Caron (2001) (using the period February 1985 to April 1989) from both the National Center for Environmental Prediction (NCEP)/NCAR (Kalnay et al. 1996) reanalysis and European Centre for Medium Range Weather Forecasts 40-year reanalysis (ERA40; Uppala et al. (2005)). Note the different scales for the vertical axes in each basin.



FIG. 6. Difference in the vertical transport (shaded) averaged over upper 100 meters from the ensemble mean of CM2.1 and CM3 over simulation years 1981-2000. Vectors on top of the vertical transport represent the difference in wind stress acting on the ocean. We focus here on the east Pacific region next to South America, where the enhanced coastal upwelling in CM3 leads to a smaller SST warm bias than in CM2.1 (Figure 2).

in ocean volume (through precipitation, evaporation, river runoff, and sea ice formation/melt), as well as exchange of salt with the sea ice model. These effects are relatively small, thus leaving the global mean salinity throughout the simulations quite close to the initial value of 34.72 taken from Steele et al. (2001). However, as for temperature, patterns of change in ocean salinity are important, as they provide a signature of problems with the boundary hydrological forcing and surface ocean currents. Figure 7 shows the climatological SSS difference from observations taken over model years 1981-2000. We now identify certain notable features in the SSS bias maps.

#### 1) INLAND SEAS

There is a large fresh bias in the Hudson Bay, the North Sea, and the East Asian Marginal Seas for both CM2.1 and CM3. Each of these biases reflects on the difficulty in a coarse resolution model of representing estuarine processes, requiring substantially finer grid resolution, and exchange with the open ocean. For the Hudson Bay and Baltic Sea, which are landlocked in the ocean model due to insufficient grid resolution, we employ the exchange scheme described by Griffies et al. (2005). The SSS biases for these regions expose limitations of this scheme, though we note that the more modest biases in the Mediterranean Sea illustrate that the scheme has some utility for this particular marginal sea.

## 2) ARCTIC OCEAN

There is a salty bias in the Arctic basin in both CM2.1 and CM3, with the biases extending into the basin from river mouths. There is no clear evidence that river runoff into the Arctic basin is greatly biased on the low side. It is possible that this bias in both CM2.1 and CM3 derives from inadequacies in the mixing of river runoff into the ocean.

#### 3) TROPICAL AND SUBTROPICAL OCEANS

There is a fresh bias in most of the subtropical oceans, with the exception of the Atlantic, which exhibits a salty bias arising from the weaker than observed outflow from the Amazon River. The fresh bias over the Indonesian Archipelego in CM2.1 has been reduced in CM3, with this reduction associated with a reduction in precipitation minus evaporation in both AM3 and CM3 (see Figure 8).

#### 4) NORTH ATLANTIC

As discussed in Delworth et al. (2006), Griffies et al. (2005), and Gnanadesikan et al. (2006), high latitude fresh biases were of great concern during the development of CM2.1, as they can weaken or destabilize the overturning circulation. A similar concern occurred during the development of CM3. Nonetheless, as seen in Figure 7, SSS biases in the North Atlantic are slightly salty near North America, though there is a notable fresh bias extending southward along the East Greenland Current from the



FIG. 8. The difference in precipitation minus evaporation between AMIP simulations using AM3-LM3 and AM2-LM2, as well as the same differences from years 1981-2000 from the ensemble means of CM3 minus CM2.1. Note the enhanced precipitation in AM3 and CM3 within the tropical Atlantic region, and the reduced precipitation over Indonesia.

Arctic. Both models display a strong salty bias centered near northeast South America, with this bias associated with a weak outflow from the Amazon River.

## 5) SOUTHERN OCEAN

SSS biases in the Southern Ocean are minor relative to those in the remainder of the World Ocean, with both models exhibiting a slight salty bias, except near the Antarctic coast. Near the coast, there is a slight fresh bias, especially in the Ross Sea. This bias may be related to the treatment of land-ice calving, which is dumped at the land-sea boundary without the transfer of icebergs away from land as occurs in nature.

#### c. Sea ice coverage and thickness

The simulation of sea ice provides another important surface ocean field that reflects on the integrity of the high latitude fluxes of momentum and buoyancy, with realistic sea ice extent a critical element in the use of a climate model for studying high latitude climate change. Figure 9 shows the bias in CM2.1 and CM3 climatological annual mean sea ice extents for the ensemble mean during simulation years 1981-2000. The following highlights salient aspects of sea ice in the two simulations.

#### 1) NORTH ATLANTIC AND ARCTIC

The overly large sea ice extent in the North Atlantic seen in CM2.1 remains a problem in CM3. Both model biases are related to the weaker than observed poleward heat transport in the Atlantic (Figure 5).

Arctic sea ice coverage has been the focus of much research in recent years, given the potential for an ice free period to appear in the Arctic within the next few decades (Serreze et al. 2007). The climatological seasonal cycle of ice area is shown in Figure 10. CM2.1 and CM3 have roughly the same annual mean ice cover, and their values correspond reasonably well to the observational estimate from Cavalieri et al. (2003). However, the seasonal cycles are different, with CM3 exhibiting an increase in summertime ice and a reduction in wintertime ice. Both changes represent an improvement in the simulation of the Arctic climate in CM3, agreeing quite well with the satellite observations from Fetterer et al. (2009).

The Arctic sea ice thickness in CM2.1 is quite thin relative to other AR4 climate models (Holland et al. (2008), see their Figure 2). While observations of sea ice thickness are scarce, CM2.1 is very thin relative to the available observational estimates. For example, Kwok and Rothrock (2009) show thickness of about 2 m in September near the North Pole based on submarine and satellite data. Annual mean thickness in this region is close to 1 m in CM2.1 (Figure 11). In CM3 this thickness is increased to about 2 m, in better agreement with the observed values. The pattern of ice thickness in CM3 is in good agreement with the observations of Bourke and Garrett (1987). While increased (and more realistic; see Table 2 in Appendix A) albedo has increased the thickness in CM3, some improvement in the pattern is also due to a better simulation of Arctic sea level pressure by the atmosphere model (Donner et al. 2010).

#### 2) NORTH PACIFIC

The North Pacific in CM2.1 had an over-abundance of winter sea ice, as evidenced by the bias in Figure 9. This positive ice bias is consistent with the cold SST bias shown in Figure 2. As previously discussed, the North Pacific cold bias has largely been eliminated in CM3, with the warmer SSTs reducing the sea ice bias. Indeed, the bias has been reduced sufficiently to allow for the use of more realistic (i.e., larger) sea ice albedos in CM3 than CM2.1 (see Table 2 in Appendix A).



FIG. 7. Ensemble mean sea surface salinity for CM2.1 and CM3 model years 1981-2000, minus the climatology from Steele et al. (2001). The RMS error is noted at the top of the figure, with these numbers computed for all ocean regions, excluding the Hudson Bay. The difference between CM3 and CM2.1 SSS is also shown, with these differences far smaller in magnitude than the differences from the observed climatology.

#### 3) SOUTHERN OCEAN

In the Southern Hemisphere, both models greatly underestimate the annual mean sea ice area, with a near elimination of summer ice (Figure 10). This low bias in the summer is slightly reduced in CM3, perhaps due to the increase in sea ice albedo in CM3 (see Table 2 in Appendix A). However, there is less wintertime ice in CM3. Hence, both models exhibit a low bias in sea ice cover that is associated with the warm SST biases in the Southern Ocean (Figures 2 and 4).

#### d. Sea level patterns and biases

Dynamic sea level (DSL) provides information about sea level deviation from the geoid,<sup>2</sup> with this field closely linked to ocean currents, surface thermohaline fluxes, and the density structure and mass distribution throughout the entire ocean domain. The modeled DSL is compared with a DSL climatology formed by combining observations of satellite altimetry, surface currents and winds with an approximation of the Earth's geoid from satellite gravity measurements (Maximenko and Niiler 2005). Although the ocean model components of CM2.1 and CM3 are formulated using the Boussinesq approximation, where volume rather than mass is conserved in the absence of net boundary fluxes, the simulated DSL can accurately represent the horizontal gradient of sea level, with a globally constant adjustment approximating the more accurate non-Boussinesq sea level (Greatbatch 1994). Besides being of interest for climate change science, an analysis of sea level provides a general overview of the large-scale features of the ocean circulation found in CM2.1 and CM3.

In the presence of sea ice, the ocean free surface is depressed. Consequently, we are more interested in the sea surface height that incorporates the equivalent water from sea ice,

$$h(x,y,t) = \eta(x,y,t) + \frac{M^{\text{ice}}(x,y,t)}{\rho_o}, \qquad (1)$$

where  $\eta$  is the free surface height of liquid water computed by the ocean model,<sup>3</sup>  $M^{ice}$  is the mass per unit area of sea ice, and  $\rho_o$  is the reference density for the Boussinesq approximation. It is *h*, as defined here, that we refer to as the DSL in the following.

The mean DSL based on observations from Maximenko and Niiler (2005) is shown in Figure 12. Simulations of the mean DSL by CM2.1 and CM3 display many of the same large scale features as the observed. Indeed, when compared to other models participating in the 3rd Coupled Model Intercomparison Project (Meehl et al. 2007), the analysis of Yin et al. (2010a) reveals that CM2.1 has one of the smallest rms DSL errors amongst the suite of climate models. By comparison, CM3 also remains amongst the better models based on this metric.

<sup>&</sup>lt;sup>2</sup>The geoid defines the static sea level, whose geometry is determined by the mass distributions and rotational properties of the earth. We take the geoid to be equal to the ocean model surface z = 0.

<sup>&</sup>lt;sup>3</sup>The ocean models in CM2.1 and CM3 compute the free surface,  $\eta$ , according to the explicit free surface method of Griffies et al. (2001).



FIG. 9. Maps of the annual mean and ensemble mean sea ice extent from CM2.1 and CM3 (averaged over years 1981-2000) minus a sea ice extent climatology based on observations. The observed ice extent climatology is computed from the monthly sea ice concentrations for years 1981-2000 made available by NCAR and was constructed following the procedure described by Hurrell et al. (2008). Sea ice extent is defined to be zero if the ice concentration is more than 15% for a grid cell area, and zero if there is less ice in a cell. Values between zero and one arise from time averaging. Note the reduced sea ice extent from CM3 in the North Pacific, whereas both CM2.1 and CM3 show far too much sea ice in the Greenland Sea. Some changes also arise in the Southern Ocean, though both models show generally too low ice cover there, which is partly associated with the warm SST bias in the south (see Figure 2).



FIG. 10. Climatological seasonal cycle computed from the ensemble mean over years 1981-2000 for CM3 and CM2.1 in the Northern Hemisphere and Southern Hemisphere. Observational estimates from Cavalieri et al. (2003) for the annual means are roughly  $12 \times 10^{12}$  m<sup>2</sup> for the Northern Hemisphere and  $11.5 \times 10^{12}$  m<sup>2</sup> for the Southern Hemisphere. Observational estimates for the seasonal cycle from Fetterer et al. (2009) are also shown. The annual means for the simulations are for the Northern Hemisphere: CM3=  $12.4 \times 10^{12}$  m<sup>2</sup>, CM2.1 =  $13.5 \times 10^{12}$  m<sup>2</sup>, and for the Southern Hemisphere: CM3 =  $4.4 \times 10^{12}$  m<sup>2</sup>, CM2.1 =  $3.8 \times 10^{12}$  m<sup>2</sup>.



FIG. 11. Maps of the annual mean sea ice thickness (in meters) from CM2.1 and CM3, as averaged over model years 1981-2000. Note the enhanced thickness in CM3. Also note that the white line across the Arctic is an artefact of the plotting software arising from the use of a non-spherical grid for regions poleward of  $65^{\circ}$ N.

The DSL is very low in the Labrador, Irminger, and Nordic Seas, with this low associated with subpolar cyclonic circulations and NADW formation. DSL is also low in the Southern Ocean due to the strong Antarctic Circumpolar Current (see Section 3d). It is high in the tropical and subtropical Pacific and Indian Oceans, especially towards the western part of ocean basins. The simulated basin mean DSL by CM3 is slightly higher than the observations in the Pacific and Indian Ocean, whereas it is lower than observations in the Atlantic and Arctic Oceans. Generally, the most notable observed DSL features, including a pronounced Atlantic-Pacific DSL difference and a strong equator to pole gradient, are well captured by CM2.1 and CM3.

A large DSL difference between CM2.1 and CM3 occurs in the Southern Ocean, related to the different simulations of the Antarctic gyre systems (not shown). However, the strong meridional gradient in the Southern Ocean is fairly realistic in both simulations. The largest DSL bias in both CM2.1 and CM3 occurs in the Canadian Basin associated with the Beaufort gyre (Figures 12). Note that this low bias in the Arctic is associated with a salty bias in the surface salinity (Figure 7). It is partially attributable to the bias of the basin wide DSL. On average, the simulated DSL by CM3 in the Arctic and Atlantic is respectively 0.25 m and 0.12 m lower than the observational estimate, a mismatch that may be induced by biased water mass formation and distribution. The mean strength of the AMOC during 1981-2000 is above 20 Sv in both CM2.1 and CM3 (see Figure 16 discussed in Section 3c), which is somewhat stronger than estimates from observations (Ganachaud 2003; Lumpkin and Speer 2003; Talley 2003, 2008), which in turn leads to a lower simulated Atlantic DSL in both models.

DSL gradients in the zonal direction are generally well simulated, including a skewing of positive DSL towards the western basins in the Atlantic, Pacific and Indian Oceans, with the highest DSL value found in the northwestern Pacific. The DSL exhibits a sharp gradient across the strong and narrow western boundary currents such as the Gulf Stream and Kuroshio. So along 30°N and 30°S, the DSL is characterized with a rapid increase and a subsequent gradual decrease in each ocean basin. The similarity between the simulated and observed DSL suggests realistic simulations, at least for this class of non-eddying models, of the western boundary currents and subtropical gyre circulation in both CM2.1 and CM3. In the high-latitude North Atlantic, the bowl-shape of the DSL associated with the subpolar gyre is pronounced. Meanwhile, the simulated DSL in the Hudson Bay is too high, associated with a fresh bias in CM2.1 and CM3 (Figure 7). The east-west DSL gradient at the equator is of importance for the equatorial current system and for El Niño variability. Although the simulation is close to the observational estimate at many longitudes along the equator, a positive deviation is evident in the western equatorial Pacific warm pool region.

#### e. Summary of surface properties

In general, surface ocean and sea ice properties in CM3 are about as good, if not improved, relative to CM2.1. The changes in SST biases, in particular a reduction in warm biases next to



FIG. 12. Comparison of ensemble mean sea level averaged over years 1981-2000 in CM2.1 and CM3, and the analyzed observations from Maximenko and Niiler (2005). Shown here is the effective sea level defined according to equation (1).

South America, can largely be attributed to improvements in the atmospheric model found in AMIP simulations. The overall improved atmospheric climatology with AM3 in turn allowed for the use of more realistic sea ice albedos which, along with the SST bias reduction in the North Pacific and improved Arctic sea level pressure patterns, rendered an improved sea ice simulation, especially in the Arctic. The sea surface salinity in CM3 is largely the same as in CM2.1, though there are some changes associated with modifications of the precipitation patterns in AM3 relative to AM2 (see Figure 8). Increased freshening in the North Atlantic led, in early versions of CM3, to a concern that the overturning circulation may trend to an unrealistically weak state. However, this concern was not borne out, as evidenced by the strong overturning shown in Figure 16 (see Section 3c). Finally, a characterization of the sea level patterns in CM2.1 and CM3 rendered a broad overview of the large-scale currents in the two models, with both models generally exhibiting similar patterns.

## 3. Interior properties and volume transports

The purpose of this section is to expose some of the interior temperature and salinity patterns found in the ensemble mean during simulation years 1981-2000. As expected, many of the differences between the models arise from the different initial conditions, discussed in Section 1a. Additional warming arises in CM3 relative to CM2.1 due to an increase in net heating of the ocean associated with differences in the atmospheric and land components, as revealed in Figure 1.

The interior biases are largely the result of the transport of heat and salt signals from the surface into the interior, and laterally throughout the ocean basins. We quantify aspects of such mass transport (or volume transport in a Boussinesq model) for selected straits and throughflows in this section, as well as discuss spatial and temporal features of the overturning circulation.

#### a. Temperature and salinity bias patterns

Figure 13 shows the bias patterns for temperature and salinity averaged over the upper 1500m of ocean. This figure reveals the extent to which both models warm due to a combination of ocean heat uptake during model spin-up and the heat uptake due to increasing radiative forcing through the 20th century. CM3, as anticipated, also shows enhanced warming relative to observations due to the heat built into the initial conditions (Section 1a). Figures 14 and 15 show the latitude-depth zonal mean bias patterns for temperature and salinity. The CM3 ocean is much warmer than CM2.1, though the patterns exhibit similar features, as may be expected since the ocean model components are configured the same. To quantify the similarities in patterns, we compute the pattern correlations, which are listed in the respective figure captions. For each figure, the correlations are 0.84 or larger, suggesting that the main difference between the oceans is just the magnitude of the temperature and salinity differences with respect to the observations, rather than changes in details of the pathways for these changes. Note in particular that pattern correlations in the Atlantic basin are the highest, with this basin also seeing the largest biases relative to observations.

It is in the Atlantic basin that deep water formation provide a conduit for warm and salty water to enter the ocean interior. The meridional overturning circulation, as well as other transport processes such as diffusion, then spread this heat southward and downward.

Over the upper 1500m, the bias patterns for salinity are comparable between CM2.1 and CM3, though CM3 exhibits slightly larger biases, as more clearly revealed through the zonal mean patterns. Both models possess large fresh biases near high latitude coasts and inland seas; a basin-wide salty bias in the Atlantic; and a slight salty bias in the North Pacific gyre.

#### b. Vertically integrated volume transports

Table 1 summarizes the volume transports in selected straits and throughflows for the ensemble mean in CM2.1 and CM3 over years 1981-2000. Reference values from observations are given where available. In general, the two simulations are in broad agreement with each other, and with data. The largest differences are related to the increased transport in CM3 through the Drake Passage, with further discussion given in Section 3d.

#### c. Meridional Overturning Circulation

The time-mean meridional-depth overturning circulation (MOC) depicts the interhemispheric oceanic circulation associated with both wind-driven and thermohaline forcings. The nature of the wind-driven circulation (which can be explained entirely by the surface wind stress) is nearly identical in the two models, and gives rise to similar transports. This feature arises from the very similar wind stress patterns found in the two coupled models (Donner et al. 2010). The thermohaline component of the MOC is a consequence of both surface and internal processes, and thus more difficult to characterize.

Figure 16 shows the time mean (for years 1981-2000) and ensemble mean global and Atlantic overturning streamfunctions for CM2.1 and CM3. Both models exhibit similar overturning streamfunction patterns, with minor differences in the strength of the shallow overturning in the Northern Hemisphere tropical cell and the degree of upwelling in the tropical Atlantic. For the Atlantic, the downward branch in the north reaches to around 3000m-3500m, with CM3 somewhat deeper.

The maximum of the Atlantic streamfunction occurs near 45°N, with the strength about 3-4Sv larger in CM3 than CM2.1. However, the poleward heat transport is slightly weaker in CM3 (Figure 5). Less heat transport with stronger overturning circulation arises in CM3 since there is less top to bottom temperature difference due to the enhanced warm bias at depth (Figure 14).

Fluctuations of the overturning circulation in the Atlantic are of special interest for studies of climate variability and predictability. For simulations with constant radiative forcing (either 1860 or 1990), both CM3 and CM2.1 exhibit roughly the



FIG. 13. Maps of the potential temperature and salinity bias as averaged between the ocean surface and 1500m, relative to Steele et al. (2001). Differences are in degrees Celsius and psu. After subtracting the mean from the respective anomaly patterns, the spatial correlation between the temperature maps is 0.91 and between the salinity maps is 0.96.

| CURRENT/STRAIT           | OBS (SV)    | REFERENCE                                           | CM2.1  | CM3    |
|--------------------------|-------------|-----------------------------------------------------|--------|--------|
| Barents Opening          | 1.5-2.0(e)  | -                                                   | 2.5    | 2.0    |
| Bering Strait            | 0.8(n)      | Roach et al. (1995)                                 | 0.8    | 1.0    |
| Davis Strait             | 0.7-2(s)    | Sadler (1976); Fissel et al. (1998); Melling (2000) | 0.6    | 0.7    |
| Denmark Strait           | 3(s)-0.8(n) | Osterhus et al. (2005); Olsen et al. (2008)         | 9(s)   | 9(s)   |
| Drake Passage            | 135(e)      | Cunningham et al. (2003)                            | 130    | 160    |
| Eq. undercurrent (155°W) | 24-36(e)    | Lukas and Firing (1984); Sloyan et al. (2003)       | 30     | 24     |
| Fram Strait              | -           | Schauer et al. (2004)                               | 2.9(s) | 2.5(s) |
| Indonesian Throughflow   | 12(s)       | Gordon et al. (2008)                                | 13     | 15     |
| Mozambique Channel       | -           | -                                                   | 16(s)  | 18(s)  |
| Taiwan-Luzon Strait      | -           | Yaremchuk et al. (2009)                             | 7(w)   | 7(w)   |
| Windward Passage         | _           | _                                                   | 0.7(n) | 0.5(n) |

TABLE 1. Volume transports through selected straits and currents in CM2.1 and CM3. These values were computed from the ensemble mean of the simulations over years 1981-2000. Directions are noted by n-north, e-east, and s-south. These transports are suggested by the CLIVAR Working Group for Ocean Model Development for use in the Climate Model Intercomparison Project (Griffies et al. 2009a).



FIG. 14. Biases in zonal mean potential temperature, computed as the ensemble mean from CM2.1 and CM3 over years 1981-2000, and differenced from the climatology of Steele et al. (2001). Note the generally warmer biases in CM3, with the dominant biases in the Atlantic basin, where ventilation in the north is the main pathway for heat to penetrate to the deep ocean. The vertical axis is stretched in the upper 1500m. After subtracting the mean from the respective anomaly patterns, the spatial correlations between the two models are the following: Global = 0.84, Atlantic = 0.95, Indian-Pacific = 0.84.



FIG. 15. Biases in zonal mean salinity, computed as the ensemble mean from CM2.1 and CM3 over years 1981-2000, and differenced from the climatology of Steele et al. (2001). Note the enhanced biases in the Atlantic basin. The vertical axis is stretched in the upper 1500m. After subtracting the mean from the anomaly patterns, the spatial correlations between the two models are the following: Global = 0.91, Atlantic = 0.94, Indian-Pacific = 0.86.

same time scale and amplitude of fluctuations in the Atlantic maximum overturning, with around 1.5-2Sv amplitude and power concentrated around 20 years (not shown). The historical runs are more complex, with the overturning in the two models responding differently to changes in atmospheric greenhouse gas and aerosol forcing, due to the use of different atmospheric models. Such behavior is the topic of ongoing study.

## d. Southern Ocean

The Southern Ocean accomplishes interbasin water exchange via the Antarctic Circumpolar Current (ACC), as well as the transformation of inflowing NADW into lighter Sub-Antarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW), and into denser AABW. We characterize aspects of CM2.1 and CM3 in the Southern Ocean by exhibiting volume transports in this region. To begin, we note that the volume transport through the Drake Passage (Table 1) is statistically stationary (on centennial time scales) for the unforced 1860 and 1990 control simulations, as well as for the ensemble of historical simulations. The zonal mean winds are very similar between CM2.1 and CM3 (Donner et al. 2010). Hence, the stronger Drake Passage transport in CM3 implies changes in other aspects of the Southern Ocean circulation, such as those setting the meridional density gradient across the ACC. For example, the zonal mean bias pattern in Figure 14 is enhanced in CM3 within the Southern Ocean, consistent with a stronger baroclinic component to help increase the ACC transport.

Russell et al. (2006) and Sloyan and Kamenkovich (2007), described the ability of the IPCC AR4 models to simulate the Southern Ocean mean climate and water mass properties, and both concluded that CM2.1 performed quite well, though not without biases. Sloyan and Kamenkovich (2007) showed CM2.1 could reproduce the inverse model transports across the Indian, but CM2.1 transports were weaker across the Atlantic and Pacific basins. Russell et al. (2006) showed good agreement between the observed and CM2.1 zonal wind strength and position, density gradient across the Southern Ocean, and sea surface temperature. Few of the 18 IPCC models assessed by Russell et al. (2006), including CM2.1, could simulate the observed surface heat flux and the salinity in the upper 100 m, both of which are important in determining water mass formation rates.

These persistent issues in simulating the Southern Ocean in coupled models prompt us to look at how individual water masses in the Southern Ocean are transported around the globe in the ACC. Here we compare estimates of water mass transports across the section around 30°S to those of Talley (2008) (Figure 17). The comparison is made with respect to neutral density surfaces, upon which water masses flow easily, requiring no work by buoyancy forcing (McDougall 1987; Jackett and McDougall 1997). Figure 17 provides an estimate of the dianeutral transformation occurring south of 30°S and summarizes the fidelity of the simulated water masses in each basin relative to the observational estimate.

Russell et al. (2006) illustrated the ability for CM2.1 to ad-

equately simulate the Talley (2003) observational estimates of meridional volume transport across 32°S in the Atlantic Ocean. This ability is evident for both CM2.1 and CM3, as illustrated in Figure 17, though the bottom water export is very weak compared to Talley (2008). Figure 17 indicates that the level of agreement between the models and observational estimate is considerably poorer in the Indian and Pacific basins. The models have a weak deep counter-clockwise overturning cell in the Indian and Pacific basins, also reflected in the global overturning circulation in Figure 16, where the strength of the deep water cell north of 50°S is less than 5 Sv between a depth of 3 and 5 km. By comparison, observational studies estimate a zonal average overturning transport of 14-20 Sv for this deep, counter-clockwise cell (Orsi et al. 2002; Talley 2003; Lumpkin and Speer 2007). We also find that the warmer bias in the abyssal CM3 (Figure 14) influences the density at which deep water is transported in the Atlantic basin: in CM3, the southward transport of NADW is concentrated in the 27.5 to  $28.0 \text{ kg m}^{-3}$  density range, whereas the same transport is shared over the 27.5-28.0 and 28.0-28.1 kg m<sup>-3</sup> density ranges in CM2.1.

CM2.1 and CM3 have similar Indonesian Throughflow (ITF) transports (see Table 1), and the basin total Ekman transports are generally in good agreement with observations, except where they are slightly higher in the Pacific sector. Talley (2008) assumes a 10 Sv ITF transport and uses NCEP-Reanalysis wind stress estimates to calculate the Ekman transport. In both CM2.1 and CM3, the upper layer in the Pacific transports approximately 5 Sv more than estimated from observations. Talley (2008) suggests that the transport through the ITF originates from surface, intermediate and deep layers. However, in CM2.1 and CM3, there is little northward flow from the intermediate and deep water masses, hence the upper layer transport is higher in order to feed a similar ITF transport.

#### 4. Concluding comments

We have presented basic simulation features of the ocean and sea ice components within a new coupled climate model, CM3, developed at NOAA's Geophysical Fluid Dynamics Laboratory. Selected model diagnostics and metrics were compared to observations and to the earlier simulation from CM2.1.

CM3 represents an evolutionary step beyond CM2.1, with emphasis on improving formulational aspects and capabilities of the atmosphere and land components. Consequently, as detailed in Appendix A, the ocean and sea ice components of CM3 remained largely unchanged relative to CM2.1. We should thus expect many of the ocean simulation features in the two climate models to remain similar, as indeed they are, with important exceptions noted below. We believe that it is not possible to generally assume that any particular ocean feature in a climate model will remain robust across two fundamentally distinct atmospheric models. Exposing where the models agree and differ assists in the quest to understand the robustness of climate model simulations. Such efforts in turn help to reduce the un-



FIG. 16. Time mean (years 1981-2000) and ensemble mean global and Atlantic overturning streamfunctions for CM2.1 and CM3 from the historically forced simulations. Top left panel: CM2.1 global (contour interval = 3 Sv). Top right panel: CM3 global (contour interval = 3 Sv). Lower left panel: CM2.1 Atlantic (contour interval = 2 Sv). Lower right panel: CM3 Atlantic (contour = 2 Sv). Transport is included from both the resolved Eulerian velocity field as well as the eddy driven transport parameterized according to Gent and McWilliams (1990). Note the expanded vertical scale for the upper 1000m, and the different color scale for the Atlantic and global overturnings.



FIG. 17. Meridional volume transports (Sv) on neutral density surfaces ( $\gamma^n$  in kg m<sup>-3</sup>) across 32°S (Indian and Atlantic Oceans), 28°S (Pacific Ocean), and 30°S (Zonal total). Ensemble means from years 1981-2000 for the coupled models CM2.1 (blue) and CM3 (purple) are compared with observational estimates from Talley (2008) (white bars). Positive transports indicate northward flow, and negative are southward. Corresponding water masses from Talley (2008) are listed on the right hand side of each plot: Upper Thermocline Waters (Upper), Sub-Antarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW), Indian Deep Water (IDW), Circumpolar Deep Water (CDW), Lower Circumpolar Deep Water (LCDW), Pacific Deep Water (PDW), North Atlantic Deep Water (NADW), Antarctic Bottom Water (AABW). Note: the density bins differ in each basin. Densities are between the ocean surface (Surf) and ocean bottom (Botm). The Ekman transport is subtracted from the Upper layer.

certainty in projections for future climate change.

As a climate model, CM3 is on par oceanographically with CM2.1, with certain features improved and others remaining largely unchanged. We are particularly pleased with improvements in both the high latitude sea ice thickness (Figure 11), which will enhance CM3's utility for North Pacific and Arctic sea ice studies (e.g., Holland et al. 2008). Such bias reductions relate to the use of more physically appropriate sea ice albedos in CM3 than used in CM2.1 (see Table 2 in Appendix A), improved Arctic sea level pressure patterns (Donner et al. 2010), and increases in shortwave heating in the North Pacific (Figure 3). Furthermore, reduced warm SST biases off the coast of South America (Figure 2) is associated with enhanced wind stresses leading to more coastally concentrated upwelling (Figure 6). Such features may be of use for downscaling studies of relevance for fisheries (Stock et al. 2010). The sizable reductions in the Southern Ocean shortwave biases (Figure 3) should assist in studies of the Southern Ocean.

An attempt was made to attribute the various changes seen between CM3 and CM2.1, especially with respect to SST. Unambiguously determining such attribution is complex and well beyond the scope of this paper. Nonetheless, through analysis of the direct correlations discussed in relation to Figure 4, we hypothesize that the SST changes in latitudes equatorward of roughly  $40^{\circ}$  can largely be predicted by analysis of the atmospheric fluxes at the ocean surface seen in the AMIP simulations with AM2 and AM3. In contrast, higher latitudes in the coupled model responded in manners quite unexpected from the AMIP simulations, consistent with these regions being dominated by oceanic fluxes and sea ice effects.

Different model initialization procedures (i.e., different spin up time) and different rates of heat absorption by the ocean models handicapped our ability to provide a clean comparison between the historical simulations with CM2.1 and CM3. Such issues with model drift are present with any climate model comparison using realistic forcing, in which climate drift, mostly occurring in the ocean interior over multiple centuries, can lead to sizable differences in the simulations. By exposing such differences within the context of two climate models with the same ocean component, we add motivation to understand the mechanisms of this drift, a goal that is both central and urgent for climate modeling. The accuracy of observed air-sea fluxes, which are on the order of tens of W  $m^{-2}$  (Large and Yeager 2009), is insufficient to constrain the simulated fluxes to the degree necessary to identify sources of climate drift. Instead, the problem of climate drift must be addressed with extensive model sensitivity experiments. It is critical to make progress on this issue, as doing so will greatly assist in the goal of developing realistic and accurate climate models suitable for both decadal to centennial climate projections, where changes in boundary conditions are of primary importance, and decadal climate forecasts, where proper initial conditions are essential. Such represents a topic of ongoing research.

## Acknowledgments.

The authors wish to thank the entire staff of GFDL, whose focused efforts over recent years have led to the development of the CM3 coupled climate model. We particularly thank V. Ramaswamy, GFDL's director, for his encouragement and support. We also thank Tom Delworth, Tony Rosati, and Ron Stouffer for comments on a draft of this paper.

## APPENDIX A

#### Ocean and sea ice model formulation

The purpose of this appendix is to summarize the formulation of the physical parameterizations and numerical methods for both the sea ice model and the ocean model. As discussed in Donner et al. (2010), the key goal of the CM3 project is to enhance the atmospheric representation of physical and chemical processes relative to CM2.1, with focus given to clouds, stratosphere, aerosols, and chemistry. As a strategy to help achieve this goal, we made minimal changes from the CM2.1 ocean and sea ice configurations, which allowed us to focus attention on changes to the atmosphere and land model components. Hence, we may consider the ocean and sea ice components to be effectively identical to that used in CM2.1. The few changes made to these components are described in this Appendix.

## Ocean model

The ocean model component of CM3 uses the MOM4p1 code (Griffies 2009), whereas the ocean component of CM2.1 used the MOM4.0 code (Griffies et al. 2004). The physical parameterizations and grid resolution for the CM3 ocean are the same as that used in CM2.1, as detailed in Griffies et al. (2005) and Gnanadesikan et al. (2006). The single change made for CM3 concerns the numerical formulation of the vertical coordinate, discussed below. Tests with the new vertical coordinate in CM2.1 showed trivial changes to the climate simulation. Hence, for purposes of the present paper, the ocean component can be considered the same as that used in CM2.1.

In both CM2.1 and CM3, the ocean model resolution is 1° in latitude and longitude, with refined meridional resolution equatorward of 30° so that it reaches 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 levels of 10m thickness (with a resting ocean) each in the top 220m. A tripolar grid with poles over Eurasia, North America, and Antarctica is used to avoid polar filtering over the Arctic (Murray 1996). River flow into the ocean is predicted and is based upon a predetermined river drainage map determined from available global river networks and topographic maps. Any runoff from land cells is routed to an ocean discharge point, with a delay that varies from basin to basin. The water is injected into the ocean evenly over the top four levels (roughly 40m) of ocean. There are six inland seas (Hudson Bay, Black Sea, Mediterranean Sea, Red Sea, Baltic Sea, and the Persian Gulf) that are connected to the World Ocean only via mixing processes at the connecting points between the inland seas and the open ocean (Griffies et al. 2005).

## NEW VERTICAL COORDINATE

The MOM4p1 code generalizes the vertical discretization of its levels. We chose in CM3 to exploit this added generality by using the  $z^*$  vertical coordinate of Stacey et al. (1995) and Adcroft and Campin (2004), defined according to

$$z^* = H\left(\frac{z-\eta}{H+\eta}\right). \tag{A1}$$

In this equation,  $z = \eta(x, y, t)$  is the deviation of the ocean free surface from a state of rest at z = 0, and z = -H(x, y) is the ocean bottom. Whereas a geopotential ocean model places all free surface undulations into the top model grid cell, a  $z^*$  model distributes the undulations throughout the ocean column. All grid cells thus have a time dependent thickness with  $z^*$ . Surfaces of constant  $z^*$  differ from geopotential surfaces according to the ratio  $\eta/H$ , which is generally quite small. Hence, surfaces of constant  $z^*$  are quasi-horizontal, thus minimizing difficulties of accurately computing the horizontal pressure gradient (see Griffies et al. 2000, for a review). The  $z^*$  vertical coordinate is analogous to the "eta" coordinate sometimes used for atmospheric models (Black 1994).

We chose  $z^*$  for CM3 because of its enhanced flexibility when considering two key applications of climate models beyond those considered in this paper. The first application concerns large surface height deviations associated with tides and/or increased loading from sea ice (e.g., a global cooling simulation). The  $z^*$  model allows for the free surface to fluctuate to values as large as the local ocean depth,  $|\eta| < H$ , whereas the geopotential model is subject to the more stringent constraint  $|\eta| < \Delta z_1$ , with  $\Delta z_1$  the thickness of the top grid cell with a resting ocean. The ocean models in CM2.1 and CM3 set a minimum depth to  $H \ge 40$ m, whereas  $\Delta z_1 = 10$ m (note that there is no wetting and drying algorithm in MOM4p1). This flexibility with  $z^*$  is further exploited if considering even finer vertical grid resolution. The second application where  $z^*$  is useful concerns increased land ice melt that adds substantially to the sea level, as in the idealized studies of Stouffer et al. (2006b), Kopp et al. (2010), and Yin et al. (2010b). Placing all of the surface expansion into the top model grid cell, as with the free surface geopotential model, greatly coarsens the vertical grid resolution in this important portion of the ocean, whereas the  $z^*$  model does not suffer from this problem since the expansion is distributed throughout the column.

## REAL WATER FLUXES

As in CM2.1, the CM3 ocean model uses a true freshwater flux boundary condition. Hence, the transport of water across the ocean boundary is associated with a change in ocean volume (as per the Boussinesq approximation). As discussed in Huang (1993), Griffies et al. (2001), Griffies et al. (2005), and Yin et al. (2010b), the real water boundary condition provides for the following improvements in model formulation and behavior:

- Salt within the ocean is constant, except for the small amounts exchanged with the sea ice model (which uses a constant salinity of 5ppt).
- There are more realistic feedbacks associated with rivers, precipitation, and evaporation.
- The Goldsbrough-Stommel circulation is admitted, as it is driven by hydrological forcing.
- There are barotropic signals and mass redistributions associated with the exchange of water with other climate components. As highlighted by Kopp et al. (2010), the ability to exchange mass with other climate components facilitates studies of how mass redistributions in the climate system impact the earth's gravity field and rotation, both of which are critical for understanding and quantifying sea level change.

Many climate models do not use the real water boundary condition, even those that employ a free surface in which the introduction of water is algorithmically trivial. Instead, they use the virtual salt flux commonly used in rigid lid ocean models (Huang 1993; Griffies et al. 2001). The above listed reasons in favor of the real water boundary condition serve as strong motivation to favor it over virtual tracer fluxes.

#### Sea ice model

The CM3 sea ice model is identical to that used for CM2.1, as documented in Delworth et al. (2006) and Winton (2000), and it uses the same horizontal grid arrangement of the ocean model. Importantly, improvements in regional climate biases, many of which are discussed in Section 2, allowed the ice and snow-onice albedos to be tuned brighter in CM3 than CM2.1 (see Table 2), which brings them to more realistic settings (Perovich et al. 2002). In Section 2c, we illustrate the improvements in sea ice coverage in CM3 relative to CM2.1.

## REFERENCES

- Adcroft, A. and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. *Ocean Modelling*, 7, 269–284.
- Black, T. L., 1994: The new NMC mesoscale eta model: description and forecast examples. *Weather and Forecasting*, 9, 265–278.
- Bourke, R. H. and R. P. Garrett, 1987: Sea ice thickness distribution in the Arctic Ocean. *Cold Regions Science and Technology*, **13**, 259–280.

| PARAMETER                                      | CM2.1     | CM3       |  |
|------------------------------------------------|-----------|-----------|--|
| Snow albedo (dry/wet)                          | 0.80/0.68 | 0.85/0.73 |  |
| Ice albedo (dry/wet)                           | 0.58/0.51 | 0.68/0.61 |  |
| transition $\Delta T$ (Kelvin) from dry to wet | 10        | 1         |  |

TABLE 2. Albedos used in the sea ice model for CM2.1 and CM3. The transition from dry to wet albedos occurs linearly, starting at 10K below freezing for CM2.1 and 1K below freezing for CM3. This transition range was a much larger (and less realistic) in CM2.1 to counteract biases that rendered too much Northern Hemisphere sea ice in CM2.1, especially in the North Pacific. The albedos in CM2.1 were similarly set low to reduce the excessive ice cover.

- Cavalieri, D., C. Parkinson, and K. Vinnikov, 2003: 30year satellite record reveals conrasting Arctic and Antarctic decadal variability. *Geophysical Research Letters*, **30**, doi:10.1029/2003GL018031.
- Cunningham, S., S. Alderson, B. King, and M. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. *Journal of Geophysical Research*, **108**, Art. 8084.
- Delworth, T. L., et al., 2006: GFDL's CM2 global coupled climate models - Part 1: Formulation and simulation characteristics. *Journal of Climate*, **19**, 643–674.
- Donner, L. J., et al., 2010: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3. *Journal of Climate*, **submitted**.
- Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2009: Sea ice index. Tech. rep., National Snow and Ice Data Center, Boulder, USA.
- Fissel, D., J. Birch, H. Melling, and R. Lake, 1998: Non-tidal flows in the Northwest Passage. *Canadian Technical Report of Hydrography and Ocean Sciences*, Institute of Ocean Sciences, Sidney, Canada, 142pp.
- Ganachaud, A., 2003: Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. *Journal of Geophysical Research*, **108**, doi:10.1029/2002JC001 565.
- Ganachaud, A. and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. *Journal of Climate*, 16, 696–705.
- Gates, W., 1993: AMIP: The Atmosphere Model Intercomparison Project. *Bulletin of the American Meteorological Society*, 73, 1962–1970.
- Gent, P. R. and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. *Journal of Physical Oceanography*, 20, 150–155.

- GFDL GAMDT, J. L. A., et al., 2005: The GFDL Global Atmospheric Model Development Team: The new GFDL global atmosphere and land model AM2/LM2: Evaluation with prescribed SST simulations. *Journal of Climate*, **17**, 4641–4673.
- Gnanadesikan, A., et al., 2006: GFDL's CM2 global coupled climate models-Part 2: The baseline ocean simulation. *Journal of Climate*, **19**, 675–697.
- Gordon, A., R. Susanto, A. Ffield, B. Huber, W. Pranowo, and S. Wirasantosa, 2008: Makassar Strait throughflow, 2004 to 2006. *Geophysical Research Letters*, **35**, L24 605, doi:10.1029/2008GL036 372.
- Greatbatch, R. J., 1994: A note on the representation of steric sea level in models that conserve volume rather than mass. *Journal of Geophysical Research*, **99**, 12767–12771.
- Griffies, S., et al., 2009a: Sampling physical ocean fields in WCRP CMIP5 simulations. ICPO Publication Series 137, WCRP Informal Report No. 3/2009.
- Griffies, S. M., 2009: *Elements of MOM4p1: GFDL Ocean Group Technical Report No. 6*. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA, 444 pp.
- Griffies, S. M., M. J. Harrison, R. C. Pacanowski, and A. Rosati, 2004: A Technical Guide to MOM4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA, 337 pp.
- Griffies, S. M., R. Pacanowski, M. Schmidt, and V. Balaji, 2001: Tracer conservation with an explicit free surface method for *z*-coordinate ocean models. *Monthly Weather Review*, **129**, 1081–1098.
- Griffies, S. M., et al., 2000: Developments in ocean climate modelling. *Ocean Modelling*, **2**, 123–192.
- Griffies, S. M., et al., 2005: Formulation of an ocean model for global climate simulations. *Ocean Science*, **1**, 45–79.
- Griffies, S. M., et al., 2009b: Coordinated Ocean-ice Reference Experiments (COREs). *Ocean Modelling*, **26**, 1–46, doi:10. 1016/j.ocemod.2008.08.007.
- Holland, M., M. Serreze, and J. Stroeve, 2008: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. *Climate Dynamics*, doi:10.1007/s00382-008-0493-4.
- Huang, R. X., 1993: Real freshwater flux as a natural boundary condition for the salinity balance and thermohaline circulation forced by evaporation and precipitation. *Journal of Physical Oceanography*, 23, 2428–2446.
- Hurrell, J., J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. *Journal of Climate*, 21, 5145–5153.

- Jackett, D. R. and T. J. McDougall, 1997: A neutral density variable for the worlds oceans. *Journal of Physical Oceanog-raphy*, **27**, 237–263.
- Kalnay, E. M., et al., 1996: The NMC/NCAR 40-year reanalysis project. *Bulletin of the American Meteorological Society*, 77, 437–471.
- Kopp, G., G. Lawrence, and G. Rottman, 2005: The total irradiance monitor (TIM): Science results. *Solar Physics*, 230, 129–139.
- Kopp, R. E., J. X. Mitrovica, S. M. Griffies, J. Yin, C. C. Hay, and R. J. Stouer, 2010: The impact of greenland melt on regional sea level: a preliminary comparison of dynamic and static equilibrium eects. *Geophysical Research Letters*, submitted.
- Kwok, R. and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICE-Sat records: 19582008. *Geophysical Research Letters*, **36** (L15501), doi:10.1029/2009GL039035, doi: doi:10.1029/2009GL039035.
- Large, W. G. and S. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. *Climate Dynamics*, 33, 341–364, doi:10.1007/s00382-008-0441-3.
- Loeb, N., B. Wielicki, D. Doelling, G. Smith, D. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Towards optimal closure of the Earth's top-of atmosphere radiation budget. *Journal of Climate*, 22, 748–766.
- Lukas, R. and E. Firing, 1984: The geostrophic balance of the Pacific equatorial undercurrent. *Deep-Sea Research*, **31**, 61–66.
- Lumpkin, R. and K. Speer, 2003: Large-scale vertical and horizontal circulation in the North Atlantic Ocean. *Journal of Physical Oceanography*, **33**, 1902–1920.
- Lumpkin, R. and K. Speer, 2007: Global ocean meridional overturning. *Journal of Physical Oceanography*, 37, 2550–2562.
- Maximenko, N. and P. Niiler, 2005: Hybrid decade-mean global sea level with mesoscale resolution. *Recent Advances in Marine Science and Technology 2004*, N. Saxena, Ed., PACON International, Honolulu, 55–59.
- McDougall, T. J., 1987: Neutral surfaces. *Journal of Physical Oceanography*, **17**, 1950–1967.
- Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007: The wcrp cmip3 multimodel dataset: A new era in climate change research. *Bulletin of the American Meteorological Society*, 88, 1383– 1394.

- Melling, H., 2000: Exchanges of freshwater through the shallow straits of the North American Arctic. *The freshwater budget of the Arctic Ocean*, Kluwer Academic Publisher, 472–523.
- Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. *Journal of Computational Physics*, **126**, 251– 273.
- Olsen, S., B. Hansen, D. Quadfasel, and S. Osterhus, 2008: Observed and modelled stability of overflow across the Greenland-Scotland ridge. *Nature*, **455**, doi:10.1038/nature07 302.
- Orsi, A. H., W. M. Smethie Jr, and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. *Journal of Geophysical Research*, **107** (C8), 3122, doi:10.1029/2001JC000976.
- Osterhus, S., W. Turrell, S. Jonsson, and B. Hansen, 2005: Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. *Geophysical Research Letters*, **32**, doi:10.1029/2004GL022 188.
- Perovich, D., T. C. Grenfell, B. Light, and P. V. Hobbs, 2002: Seasonal evolution of the albedo of multiyear Arctic sea ice. *Journal of Geophysical Research*, **107**(C10), 8044, doi:10. 1029/2000JC000438.
- Randall, D., et al., 2007: Climate models and their evaluation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Reynolds, R. W., N. Rayner, T. M. Smith, D. Stokes, and W. Wang, 2002: An improved *in situ* and satellite SST analysis for climate. *Journal of Climate*, **15**, 1609–1625.
- Roach, A., K. Aagard, C. Pease, S. Salo, T. Weingartner, V. Pavlov, and M. Kulakov, 1995: Direct measurements of transport and water properties through bering strait. *Journal* of Geophysical Research, 100, 18443–18457.
- Russell, J., R. Stouffer, and K. Dixon, 2006: Intercomparison of the southern ocean circulations in the ipcc coupled model control simulations. *Journal of Climate*, **19**, 4560–4575.
- Sadler, H., 1976: Water, heat and salt transports through Nares Strait, Ellesmere Island. *Fisheries Research Board of Canada*, 33, 22862295.
- Schauer, U., E. Fahrbach, S. Osterhus, and G. Rohardt, 2004: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements. *Journal of Geophysical Research*, **109**, doi:10.1029/2003JC001 823.
- Serreze, M., M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic sinking sea-ice cover. *Science*, **315**, 1533–1536, doi:doi:10.1126/science.1139426.

- Sloyan, B., G. Johnson, and W. Kessler, 2003: The pacific cold tongue: A pathway for interhemispheric exchange. *Journal of Physical Oceanography*, 33, 1027–1043.
- Sloyan, B. and I. Kamenkovich, 2007: Simulation of subantarctic mode and antarctic intermediate waters in climate models. *Journal of Climate*, **20**, 5061–5080.
- Stacey, M. W., S. Pond, and Z. P. Nowak, 1995: A numerical model of the circulation in Knight Inlet, British Columbia, Canada. *Journal of Physical Oceanography*, 25, 1037–1062.
- Steele, M., R. Morfley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high-quality Arctic Ocean. *Journal* of Climate, 14, 2079–2087.
- Stock, C. A., et al., 2010: On the use of IPCC-class models to assess the impact of climate on living marine resources. *Progress in Oceanography*, submitted.
- Stouffer, R. J., 2004: Time scales of climate response. *Journal* of *Climate*, **17**, 209–217.
- Stouffer, R. J., A. Weaver, and M. Eby, 2004: A method for obtaining pre-twentieth century initial conditions for use in climate change studies. *Climate Dynamics*, 23, 327–339.
- Stouffer, R. J., et al., 2006a: GFDL's CM2 global coupled climate models: Part 4: idealized climate response. *Journal of Climate*, **19**, 723–740.
- Stouffer, R. J., et al., 2006b: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. *Journal of Climate*, **19**, 1365–1387.
- Talley, L., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. *Journal of Physical Oceanography*, 33, 530–560.
- Talley, L., 2008: Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. *Progress in Oceanography*, **78**, 257–303.
- Trenberth, K. and J. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. *Journal of Climate*, **14**, 3433–3443.
- Uppala, S., et al., 2005: The ERA-40 reanalysis. *Quarterly Journal of the Royal Meteorological Society*, **131**, 2961–3012.
- Winton, M., 2000: A reformulated three-layer sea ice model. Journal of Atmospheric and Oceanic Technology, 17, 525– 531.
- Wittenberg, A., A. Rosati, G. Lau, and J. Ploshay, 2006: GFDL's CM2 global coupled climate models - Part 3: Tropical Pacific climate and ENSO. *Journal of Climate*, **19**, 698– 722.

- Yaremchuk, M., J. McCreary, Z. Yu, and R. Furue, 2009: The South China Sea throughow retrieved from climatological data. *Journal of Physical Oceanography*, **39**, 753–767.
- Yin, J., S. Griffies, and R. J. Stouffer, 2010a: Spatial variability of sea-level rise in 21st century projections. *Journal of Climate*, accepted.
- Yin, J., R. Stouffer, M. Spelman, and S. Griffies, 2010b: Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections. *Journal of Climate*, 23, 80–96.