
1. Transport and mixing

1.1 The material derivative

Let be the velocity of a fluid at the point and time . Consider also
some scalar field  such as the temperature or density.  We are interested not only in the
partial derivative of  with respect to time, , but also in the time derivative following the
motion of the fluid, .  The latter is the so-calledmaterial derivative:

. (1.1)

In Cartesian coordinates, ,  and

. (1.2)

We will also be using spherical coordinates. The notation is conventional for the
(eastward, northward, radially outward) components of the velocity field. In addition to the radial
distance from the origin, , we use the symbol for latitude ( at the south pole, at the
north pole) and  for longitude (ranging for zero to ).  The gradient operator in these coordi-
nates is

, (1.3)

so that

. (1.4)

The material derivative of a vector, such as the velocity  itself, is defined just as in 1.1.
But care is required when considering the material derivative of a component of a vector if the
unit vectors of one’s coordinate system are position dependent, as they are in spherical coordi-
nates. For example, the radial component of the material derivative of the velocity is not equal to
the material derivative of the radial component of the velocity; rather,

. (1.5)

The second term on the rhs is sometimes referred to as themetric term.  After obtaining
expressions for , etc., one arrives at the spherical-coordinate expression for the acceleration
of a fluid parcel (see Problem 1.1):
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. (1.6)

Another case of interest is the material derivative of an infinitesimal material line segment.
Suppose that  and  are infinitesimally close to each other, with the vector  pointing
from one point to the other, and let  be the evolution of this vector assuming that its end-
points move with the flow.  Then, from the figure below, . To make sure
that we understand this notation, suppose that the line segment is oriented vertically at the time in
question.  Then, in Cartesian coordinates,

.

We refer to the third term as stretching, as it lengthens or shortens the line segment, and the other
two terms as tilting, as they change the orientation of the line segment without changing its
length. This equation and the terminology will be important when we discuss vorticity dynamics.

The fractional rate of the change of the length of a infinitesimal vector pointing in thex-
direction, moving with the fluid, is and similarly fory andz. Therefore, the fractional rate
of change in the volume of an infinitesimal piece of fluid per unit time is

(1.7)

in Cartesian coordinates, or, more generally,

. (1.8)

With this physical interpretation in mind, the expression for the divergence in spherical
coordinates can be seen to take the form
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, (1.9)

using .

1.2 Conservation of mass

If  is the density of the fluid, the statement that mass is neither created nor
destroyed can be written in two equivalent forms:

(1.10)

. (1.11)

The first (flux) form is more convenient when considering a fixed volume in space, since, using
Gauss’s Theorem, it immediately yields

, (1.12)

whereV is any volume,S its surface, and a unit vector normal toS and directed outwards. The
latter (advective) form is more convenient when following the fluid, and expresses the fact that the
divergence is equal to the fractional change, per unit time, in the density of an infinitesimal
parcel of fluid: .

For any other scalar field  with sourceS per unit mass, we can write the equation in
either advective form,

, (1.13)

or flux form,

. (1.14)

1.3 Eulerian vs. Lagrangian descriptions of fluid flow

Consider a point moving with the velocity field . We refer to such a point as a fluid par-
ticle.  If  is the position of this particle at time , its position at any later time is

. (1.15)
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Rather than consider fields such as  and  as functions of  and  (theEulerian description),
one can instead consider these fields to be functions of  and : .  The
material derivative  is then simply .  ThisLagrangian description is occasionally
convenient because of its closer analogy with the classical mechanics of point masses. While we
will be working with the Eulerian equations of motion exclusively, it will often be important, if
not critical, to maintain a Lagrangianperspective, to think not only about fields evolving in and
, but also about the trajectories of fluid particles and how quantities of interest evolve following

the flow.

Simple Eulerian flows do not necessarily produce simple particle trajectories.  Given the
velocity field , the advection of a passive tracer is formally a linear problem:

. Yet this linear problem can also be solved by first solving the nonlinear prob-
lem of computing trajectories: .  The latter problem is identical in form to that
of a general dynamical system, except that here the “phase space” of the system is three-dimen-
sional physical space.  Autonomous systems (steady flow, in this context) with three degrees of
freedom can produce chaotic, extremely complex, trajectories.  Non-autonomous systems
(unsteady flows) in two dimensions can possess a similar level of complexity.  In contrast, auton-
omous systems in two dimensions cannot produce trajectories more complicated than limit cycles,
that is, simple closed streamlines.

Consider a 2-dimensional flow with Cartesian components  that is non-divergent in
thex-y plane.  Such a flow is efficiently described in terms of a streamfunction, , where

 and .  Note also that this is a Hamiltonian system with  as the
Hamiltonian andx andy as conjugate variables.  We analyze 2-dimensional flows more exten-
sively in Chapter 4.

1.4 Diffusion and friction

In the atmosphere there is a tremendous disparity between the scales of motion that con-
tain the bulk of the energy in the flow, on which our interest will be focused, and scales at which
molecular diffusion and viscosity become significant.

If we consider some field  that is advected by the flow  as well as diffused with the
constant kinematic diffusivity , then

. (1.16)

If the characteristic scale of the velocities in the flow is , then for variations in on the scale ,
the characteristic ratio of diffusion to advection is measured by thePeclet number,

. (1.17)

The time required to diffuse away a feature of scale  in the absence of flow is ; Pe is the
ratio of this diffusive time scale to the advective time . If is one component of the velocity
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field itself, so that  is replaced by the kinematic viscosity , then the corresponding ratio is
, theReynolds number.

The order of magnitude of  or  in the atmosphere near the earth’s surface is
.  Large-scale flows in the earth’s atmosphere typically have velocity scales of

 and vertical scales larger than , leading to Peclet or Reynolds numbers at least of
the order of . A weak gust of wind near the surface with a speed of and a modest ver-
tical scale of still has advection dominating diffusion or viscosity by a factor of . Only
on scales of a millimeter or so do the latter come into play directly. Molecular diffusivities in the
ocean are even smaller (see Problem 1.4).

One should not assume on this basis that molecular diffusion and dissipation can be
ignored.  The atmosphere is a forced, dissipative system through which energy is flowing.  The
generation of kinetic energy integrated over the depth of the atmosphere is estimated to be

, averaged over the globe. Dissipation by molecular viscosity must balance this gen-
eration in a steady state.  The kinetic energy per unit mass of the atmosphere is roughly

on average, and the total mass of an atmospheric column is , so one might
estimate that this energy, if not constantly replenished, would be dissipated (converted into heat)
within a few days.

In fact, this naive estimate of spin-down time for the atmosphere is misleading, since much of this kinetic
energy is intimately related to a part of the potential energy of the flow, and would be replenished by this potential
energy as it decayed.  Since this potential energy reservoir is an order of magnitude larger than the kinetic energy, a
better estimate of a spin-down time for the atmospheric circulation is an order of magnitude longer.

Yet this does not imply that the energy level in the atmosphere is dependent on the precise
value of the molecular viscosity of air.  On the contrary, the hope and expectation is that a theory
for the circulation of the atmosphere would not involve the value of the molecular viscosity in any
significant way. This expectation is based on the analogy with fully developed three-dimensional
turbulence at very high Reynolds numbers, for which it is found that the rate at which energycas-
cades to small scales determines the rate of dissipation, while the value of the viscosity simply
determines the scale at which the dissipation takes place.  In fact, this is more than an analogy,
since all significant dissipation in the atmosphere (below heights of  at least), is pre-
sumed to occur in patches of fully developed turbulence.

1.5 Eddy fluxes and turbulent diffusion

In describing and analyzing a complex fluid flow we define various kinds of averages: time
averages at a fixed point; averages over one or more spatial dimensions at a fixed time; or coarse-
grain averages obtained by smoothing over a certain horizontal scale. For any variable we shall
write the average in question as  and the deviations from this average, sometimes referred to
aseddies, as .

Consider time-averaging for example. Suppose that is a scalar conserved following the
flow, except for the source/sink S, and assume that the flow is non-divergent, , for sim-
plicity.  In a statistically steady state, averaging over time and neglecting molecular diffusion, we
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have

. (1.18)

There will be a three-way balance among the source/sinkS, the advection by the mean flow ,
and the convergence of the transient eddy flux .

If the transient eddy flux were negligible, one could hope to understand the structure of
 from knowledge of  and the mean flow .  Steady-state models can often illuminate

aspects of the atmospheric circulation, and are rather common in oceanography.  While this is
convenient at times, it is rarely the case that the transient eddies are negligible, however, and they
often dominate the entire problem.

As another illustration of averaging, consider averages over longitude, an important con-
struction in discussions of the general circulation.  If the earth’s surface were uniform, there
would be no physical distinction between one longitude and another, and the earth’s climate
would be independent of longitude, that is, zonally symmetric.  In reality there are substantial
zonal asymmetries in the climate, due to the land-ocean configuration and the topography of the
land surface.  But in a rough first approximation, one can still think of the climate as varying pri-
marily with latitude, rather than longitude, and one can hope to interpret this latitudinal structure
using theoretical models in which the climate is zonally symmetric. It is with these ideas in mind
that we are often moved to decompose variables of interest into their zonal means and the depar-
ture from the zonal mean.

Consider an incompressible flow once again, and ignore spherical geometry for simplicity.
The advection equation for a tracer with source/sinkS, averaged overx, reduces to

. (1.19)

In the second line the vectors are two-dimensional, in they-z plane.

In the case of a nearly conservative tracer, for which the source/sinkS is negligible in the
region of interest, one is often tempted to think of the eddy fluxes as providing a downgradient
turbulenteddy diffusion, at least if the flow is sufficiently complex -- i.e.,

. (1.20)

The terminology is based on an analogy with molecular diffusion, with eddies of fluid replacing
molecules as the transporting agents. The dimensions of kinematic diffusivityD are length2/time,
and one estimates the effective diffusivity with the product of a characteristic velocityV and a
mixing lengthL, or a velocity squared and the inverse of a characteristic time scale .

One can make this idea a bit more precise in a simple special case.  Suppose that initially
the flow and the  field are purely zonally symmetric, and that the flow is perturbed by zonal
asymmetries  for .  Focus on the particle that resides at the point  at timet, and
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trace it back to its location at . Let this point be , so that is the displace-
ment of this particle in timet.  If  is small compared to the spatial scale over which the initial

 field varies, we can set

. (1.21)

(We use the standard summation convention, with repeated indices automatically summed over,
unless otherwise stated.)  Therefore,

, (1.22)

where .  If the off-diagonal elements of  happen to be zero, and if the diagonal
elements are equal ( ), then the eddy flux has the form of a simple diffusion:

.  If the diagonal elements are unequal ( ), the “diffusion”
coefficient  will be different in they andz directions.  (Since the atmosphere and the ocean are
both confined to a spherical shell that is very thin compared to its radius, atmospheric and oceanic
flows are often profoundly anisotropic.)

Since , the diffusivity  can be written in the form

. (1.23)

Therefore, is positive if fluid particles at the latitude in question are in the process of dispersing
(in thei’th direction) from their original “home” latitudes; it is negative if the particles are, on
average, returning home.

In “turbulent” flows one expects particles to disperse systematically, producing downgra-
dient transport.  Such flows are strongly dissipative, and one cannot expect  to be conserved
indefinitely. Characteristically, the fluid particle loses its “memory” in occasional intense mixing
events, in which the turbulent cascade brings molecular diffusion into play. If the typical distance
traveled between these events in some direction is , then the diffusivity will have the magnitude

, where  is the rms velocity in that direction.

In general, the tensor also has off-diagonal elements. In this case, one can still split
into symmetric and antisymmetric parts, :

. (1.24)

Once can then rotate in they-z plane so as to diagonalize . The part of the transport due to
can then be described as “diffusive”, with the eigenvalues of the rotated tensor being the diffusiv-
ities.  The antisymmetric part ( ) leads to the flux convergence

(1.25)
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where .  This part of the flux is decidedly not diffusive in character; in
fact,  acts as the streamfunction in they-z plane for the flow  that advects, rather than dif-
fuses, the mean tracer field.  One can then think of  as being advected by the total flow

.  The non-diffusive eddy transport  plays an important role in discussions of the gen-
eral circulation of the atmosphere and in theories for the incorporation of “mesoscale” eddy fluxes
in ocean models.

Mixing and transport play central roles in theories of climate.  The atmosphere transports
heat down the temperature gradient from the tropics to the poles. In the extratropics (poleward of

 latitude), atmospheric heat transport has something of a diffusive character, the dominant
eddies being the cyclones and anticyclones familiar from weather maps.  These eddies have a
characteristic diffusivity scale of . To first approximation, the competition between
the resulting poleward heat flux and the north-south gradient in the radiative heating controls the
equator-to-pole temperature gradient on the earth.

The interplay between advection and (turbulent) diffusion is at the heart of many problems
in meteorology and oceanography, and can be subtle (see problem 1.5).
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Problems

1.1  Derive expressions for the material derivatives of the unit vectors in spherical coordi-
nates, and use this result to verify the expression (1.6) for the acceleration in spherical coordi-
nates.  You may want to practice on 2-d polar coordinates.

1.2  Consider the following flow

with  a positive constant.  This is schematic of the flow in the mid-latitude troposphere -- a
westerly flow ( ) that increases with height ( ), superposed on a transverse wave (with
wavenumber ) moving eastward ( ), but less rapidly than the zonal wind at
the tropopause,  ( ).  Consider particles that are located along the  axis at

.  Compute the position of this line of particles at some later timet.  Compare with the
streamfunction for this flow at the same time.  The contrasting behavior in the upper and lower
troposphere is important for the dynamics of midlatitude storms.

1.3  As an important illustration of the distinction between Eulerian and Lagrangian per-
spectives (in a flow for which the particle trajectories retain some simplicity), let in
Cartesian coordinates, where

.

The time mean of this flow at a fixed point in space is identically zero. In the special case that
is independent ofy, all fluid particles move clockwise in circular orbits of radius .  For an
arbitrary function , find an approximate expression for the time-averaged drift of a particle,

.

Assume that variations inA are suitably “small”. Be precise as to how small must be for
your expression to be accurate.

1.4  Look up the value of molecular diffusion of heat in water and estimate how long it
would take for a temperature perturbation to mix from the bottom of the ocean to the top, due only
to molecular diffusion.

1.5  (Box diffusion)  Consider the 2D, non-divergent flow pictured below in a square of
sizeL.  The flow has a boundary-layer character, meant to resemble the vertically integrated hori-
zontal ocean circulation. The equatorward flow is spread more or less uniformly over the domain,
but the poleward flow is concentrated in a layer of width . The typical size of the velocity in
the interior of the domain isV.  Now consider the advection-diffusion equation:

.

Suppose that the initial condition is a spot of tracer as shown in the figure.  Estimate how long it
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will take to homogenize the tracer distribution, as a function of .

1.6  Solve the advection-diffusion equation exactly for the flow  and the initial
condition .  Provide a physical explanation for the long-time behavior of the solu-
tion.
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Getting started with Problem 1.6:

.

Thex-dependence in initial state is separable:

.

Equation forA then looks like

.

Integrating factor is exp(C(y)t).  Carry on.
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