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Abstract.

Regional surface temperature trends from the CMIP3 and CMIP5 20™ century runs are compared
with observations, and assessed against a backdrop of internal climate variability as estimated
from model control runs. The simulated internal climate variability is used to assess whether
observed trends are “detectable” and whether the models’ historical run trends are consistent
with observed trends. The trend tests focus on various periods (e.g., 1901-2010, 1951-2010,
1981-2010) and are applied at scales from global averages to individual grid points. For trends-
t0-2010 beginning in start years from 1901 to 1981, warming in the CMIP3 and CMIP5
simulations with volcanic forcing is consistent with observations over roughly 40-55% of the
global area analyzed,. The consistent areain the CMIP5 ensemble is about 5% larger than in the
CMIP3 ensemble, for trends-to-2010 that begin before 1960. The fraction of analyzed global
areawith no detectable trend in the observations is less than 10% for trends covering 1901-2010,
but this fraction gradually grows to over 50%, and is generally slightly higher for CMIP5 than
CMIP3, asthe trend start date advances toward 1991. Especially for the trends beginning earlier
in the record (e.g., 1901-2010) the ensemble historical run warming trend tends to betoo large at
lower latitudes and too small at higher latitudes. The analysis identifies regions where detection
of warming trends is less robust (North Atlantic and North Pacific, the eastern tropical and
subtropical Pacific), vs. areas with more robust warming signals (regions from about 40N-40S

except for the eastern tropical Pacific).
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1. Introduction

Are historical simulations, using climate models with the best available estimates of past climate
forcings, consistent with observations? This question can be examined from the viewpoint of a
number of different climate variables and using different comparison methods. Herewe
compare modeled versus observed regional surface temperature trends, attempting to incorporate
information from a large number of climate models using various multi-model combination
techniques. We assess historical runs from the Coupled Model Intercomparison Project 3

(CMIP3; Meehl et a. 2007) and compare them with those from CMIP5 (Taylor et al. 2012).

The general approach used here is to compare the modeled and observed trends, in terms of both
magnitude and pattern, by considering trends at each gridpoint in the observational grid, as well
astrends over broader-scale regions. We use estimated internal climate variability, as simulated
in the various model control runs, to assess whether observed and simulated forced trends are
more extreme than those that might be expected from random sampling of internal climate
variability. Similarly, we use the available ensemble of simulated forced trends to assess
whether observed trends are compatible with the forcing-and-response hypotheses embodied by

those forced simulations.

Formal detection/attribution techniques often use a model-generated pattern from a single or set
of climate forcing experiments, and then regress this pattern against the observations to compute
ascaling amplitude (e.g., Hegerl et al. 1996; Hasselmann 1997; Allen and Tett 1999; Allen and
Stott 2003) . If the scaling is significantly different from zero, the forced signal is detected. If

the scaling does not significantly differ from unity, then the amplitude of the signal agrees with
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observations, or is at least close enough to agree within an expected range based on internal
climate variability. Optimal detection techniques also filter the data during the analysis such that
the chance of detecting asignal, if one is present in the data, is enhanced. An alternative
approach that is less focused on model-defined patterns has been proposed by Schneider and
Held (2001). In contrast to the optimal detection/attribution methods, we compare both the
amplitude and pattern simulated directly by the models with the observations, without rescaling
of patterns or application of optimization filtering. Our analysisis thus a consistency test for
both the amplitude and pattern of the observed versus simulated trends (e.g., Knutson et al. 1999;
Karoly and Wu 2005; Knutson et al. 2006). Other variants and enhancements to this general
type of analysis have recently been presented by Sakaguchi et al. (2012). More discussion of
various detection and attribution methods and their use in general is contained in Hegerl et al.

20009.

Our general approach in this study is to attempt to mimic observations with the models, in terms
of data coverage over time. To prevent any one model from dominating the analysis, our
approach attemptsto weight the various models roughly equally.. Thus even if one modeling
center provided ten ensemble members and another only one member, or if one center provided a
much longer control run than the others, each of these models would still get an equal weighting.
(Control runs are long runs with a pre-industrial forcings that may change seasonally, but do not
change from year to year.) Control runs from various modeling centers are weighted equally in
the analysis, as long as the control run length is at least three times the length of the trend being

examined.
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In this report, the models, methods, and observed data are described in Section 2. We examine
the model control runs and their variability in Section 3. Global-mean time series from the
20C3M historical runs are examined in Section 4. The grid point-based consistency tests are
presented in Section 5. Section 6 contains some additional trend analysis for data averaged over

larger defined regions. The discussion and conclusions are given in Section 7.

2. Model and Observed Data Sources

a. Observed data

The observed surface temperature dataset used in this study isthe HadCRUT4 (Morice et al.
2012) which is available as a set of anomalies relative to the period 1961-1990. The dataset
contains some notable revisions, particularly to SSTs (HadSST 3; Kennedy et al. 2011) , relative
to previous versions, so it important to retest earlier conclusions regarding climate trends using
the revised data. The dataset also contains uncertainty information, in the form of nn-ensemble

members sampling the estimated observational uncertainty.

To form a combined product of SST and land surface air temperature, Morice et al. (2012) adopt
the following procedure. If both land data and SST data are available in a particular gridbox,
they are weighted according to the fraction of the gridbox that is covered by land or ocean,

respectively. A minimum of 25% coverage is assumed, even if the fraction of the gridbox
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covered by land is less than 25%. In our study, we use this same procedure to combine SST and

land surface air temperature data sets from the models we analyze. .

b. CMIP3 and CMIP5 models

Figure 1 displays the complete collection of models from both CMI1P3 and CMIP5 used in our
analysis. The data were downloaded from the CMIP3 (www-pcmdi.gov/ipcc/about_ipcc.php)
and CMIP5 (cmip-pcmdi.linl.gov/cmip5) model archives. We regridded the model data from
the 20C3M historical runs and control runs onto the observational grid. In cases where we
needed to use a combined the model land surface air temperature and SST datato compare with
observations, we used a procedure resembling that used for the observations, but using the
model’ s own land-sea mask. To mimic the data gaps in the observations, we then masked out
(deleted) model data at times and locations where data were labeled missing in the observations.
Finally, we computed the model’ s climatology over the same years as for observations (1961-
1990) and then created anomalies from this climatology. This same procedure was used for 150-
yr samples from the model control runs for analyses where we wanted to ensure that the control

runs had similar missing data characteristics to the observed data.

The forcings for the CMIP3 20C3M historical forcing runs are summarized in Rind et al. (2009;
Table 3.6). Animportant distinction among the models is the treatment of volcanic forcing. Ten
of the 23 CMIP3 models we examined include volcanic forcing, while 13 do not. For most of

our assessments, we used 19 of the CMIP3 model, of which eight included volcanic forcing. We
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refer to these sets of models asthe “Volcanic” and “Non-Volcanic” models, respectively, and
often distinguish between results for the two types of historical runsin our analysis. For cases
where we include both sets, we used the term “Volc and Non-Volc” models. All ten of the

CMIP5 models included in this study included volcanic forcing.

3. Model Control Runs

a. Global mean time series

The global-mean surface air temperature series from the CMIP3 and CMIP5 model control runs
areshown in Fig. 1. Data are displayed with arbitrary vertical offsets for visual clarity. The
figure also shows the observed surface temperature anomalies from HadCRUT4. The curve
labeled “Observed residual” was obtained by subtracting the multi-model mean of the historical
volcanic forcing runs. Thisisan estimate of the internal variability of the climate system based

on the residual from the estimated forcing response.

The control runs exhibit long-term drifts. The magnitude of these drifts tended to be larger in the
CMIP3 runs than the CMIP5 control runs, although there are exceptions. We assume that these
drifts are due to the models not being in equilibrium with the control run forcing, and we remove
these by linear trend analysis (straight lines on figure). In some CMIP3 cases the drift proceeds
at agiven rate, but then the trend rate becomes smaller for the remainder of the run. We
approximate the drift in these cases with two linear trend segments, as shown in the figure, which

are removed to produce the drift-corrected series. The trend for these time periods is computed



146  at each model grid point and then subtracted from the model time series. One CMIP3 model
147  (IAP_fgoalsl.0.g) has a strong discontinuity near year 200 of the control run. We judge this as
148  likely an artifact due to some problem with the model simulation, and we therefore chose to

149  exclude this control run from further analysis.

150

151  None of the control runsin the CMIP3 or CMIP5 samples exhibit a centennial scale trend as
152  large asthe trend in the observations, aside from those with multi-century drifts as mentioned
153  above. Onthe other hand, the variability of observed residual series appears roughly similar in
154  scaleto that from several of the control runs. Three of the CMIP3 control runs (GISS_aom,

155  GISS model_e h, and GISS model_e f) have much lower levels of variability than in the

156  observed residual series. For some sensitivity tests on the multi-model assessments, we have
157  excluded these three modelsto test for robustness. The Miroc_3.2_hires model also has low
158  variability, but the control runs is so short in length that it is used relatively little in our analysis,
159  since we require the control run record to be at least three times as long as the trend being

160 examined.

161 b. Geographical distribution of variability

162

163  The geographical distribution of the standard deviation of annual mean surface air temperature is
164  shownin Fig. 2. for CMIP3 models and Fig. 3 for CMIP5 models. These use the full available
165  time series from each control run. The time series have had the long-term drift removed as

166  discussed in section (a). The featuresthat stand out most srongly are the enhanced variability

167  over land regions and in the eastern Equatorial Pacific. These general features (and magnitudes



168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

of standard deviation) are also seen in the observations. The observed standard deviation map is
not shown here because of the relatively short observational record compared with the model
control runs, and the uncertainties in removing the forced variability component from
observationsto create an internal variability estimate for comparison to the model control runs.
Versions of the control run standard deviation map which use low pass (> X year) filtered data
(not shown) indicate that most CMI1P3 and CMIP5 models have their strongest low-frequency (>
X year) variability in the polar regions and marginal sea ice areas near Antarctica, Greenland,

and the periphery of the Arctic Ocean.

4. Global mean surfacetemperature: Historical runs

a. Time series of global mean surface temperature

The global mean time series of surface temperature from the 20C3M historical runs are shown in
examined in Fig. 4. Thirty individual experiments using ten different models that include
volcanic forcing are shown in Fig. 4 (@), while 59 experiments using 23 models (with and
without volcanic forcing) are shown in (b). The model data series combines SST over oceans
and surface air temperature over land, similar to observations, and masks out periods which are
missing in the observed record. (All timeseries are adjusted to have zero mean in the period

1881-1920.)

The ensemble mean of the CMIP3 volcanic models (red curve in Fig. 4 (8)) agrees remarkably
well with observations (black curve) although the obvious volcanically induced temporary dips
are not in full agreement with the observed behavior for those periods. Nonetheless, one must

consider the role of internal climate variability in judging whether these differences are
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significant or not. The observations are generally within the envelope of the large set of
individual model simulations. The spread of the individual simulations includes the model

uncertainty regarding the forced response, as well as internal variability generated by the models

(eg., Fig. 1).

The combined volcanic and non-volcanic CMIP3 runs (Fig. 4 (b)) show a substantially wider

envelope of model behavior, as expected with the larger number of models and with the wider
discrepancy in forcing among the models. Since the “Non-Volcanic” runs have a substantially
lessrealistic representation of the forcing, we will generally emphasize the “Volcanic” runsin

panel (a) in our forced model assessments in this study.
b. Spectra of global mean surface temperature

Figure 5 shows the spectra of observed global mean temperature and of the individual CMIP3
and CMIP5 “Volcanic forcing” historical runs from Fig. 4. The enhanced power at low
frequencies is associated with the strong rising trend in both observations and models. At higher
frequencies (< 10 yr periods) the model spectra are generally within the 90% confidence
intervals on the observed spectral (red lines), although there is some tendency among the models

for lower than observed variability levels at periods less than 10 yr (frequency > 0.1 yr™).

Overall, the results of these comparisons suggest that the model simulations have a plausible
representation of variability of the climate system, in terms of the spatial pattern of variability,
the spectral of global mean temperature, and the direct comparison of the time series of observed
and historical run global mean surface temperature. These findings encourage usto usethe

models to assess surface temperature trends at the regional scale in the following sections.
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5. Trend assessment: detection and consistency tests
a. Global means and regional “ diding trend” analysis

In this section we compare the observed and simulated temperature trends to assess whether a
particular class of systematic temperature change (linear trend) signal has emerged from the
“background noise” of internal climate variability, as estimated by the models, and to assess
whether the observed trends are consistent with simulated trends from the historical (20C3M)
runs. We assess the trends across awide “sliding range” of start years beginning in 1871. All
trends use 2010 asthe end year. For CMIP3, we include 19 models overall in the volcanic +
nonvolcanic forcing results, and we include 19 models in the control run samples. Five models
not included in these assessments, due to drift issues, short control runs (~100 yr), or lack of a

necessary variable (SST) datain the archive.

The general procedure we use isillustrated in Fig. 6 (@) for global mean temperature. The black
curve in the figure shows the value of the linear trend in observed global mean temperature for
each beginning year from 1871-2000 and ending in the year 2010. Thetrend in observed
temperature is about 0.5°C/100 yr early in the record but has increased to over 1.5°C / 100yr by
around 1980. It has decreased in recent years, being near zero since 2001. The green curve
shows the “mean of ensemble means’ for the eight CMIP3 (volcanic forcing) climate models
included, where each of the eight models is weighted equally, even if the modeling center

provided a greater than average number of within-model ensemble members.

The dark blue shading in Fig. 6 (a) shows the 5" to 95" percentile range of trends for the
corresponding window lengths from the long-term drift-adjusted control runs (Fig. 1). Each of

19 available CMI1P3 models contributes equally to this multi-model sample, even if it hasa
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shorter control run available. We require a control run to have at least three times the data length
in question before it isincluded in our sampling, which is a random resampling technique across
the available data. The control data was formed into 150-yr segments with random start dates for
the random resampling. The 150-yr segments were then masked with the observed mask of
missing data over the period 1861-2010 to create data sets with similar missing data
characteristics to the observations. The analysisin Fig. 6 (a) showsthat observed global
temperature trends-to-2010 of almost any length are highly unusual compared to the CMI1P3

simulated internal variability—even for trends as short as those beginning in 1990.

The light pink shading in Fig. 6 (a) is a measure of the uncertainty in the CMIP3 20C3M
historical runs and includes the uncertainty due to different specified forcings, different forcing
responses, and the influence of internal variability as simulated by the models. Under an
assumption that internal variability in the control run is not substantially different fromthat in
the forced runs, we can use the long control run for each model to estimate the component of
inter-realization uncertainty that would be present in the forced trends; this is helpful, since most
centers did not provide enough ensemble members to precisely assess this component of the
uncertainty. The each randomly selected control run trend (from the eight models that also had
volcanic forcing runs) is combined with that model’ s ensemble mean forced trend for that trend
length, to create a distribution of historical run trends that include the uncertainty due to internal
variability. The pink region is the 5th to 95th percentile range of this distribution of trends, and
thus relates to the uncertainty of single ensemble members (which mimicsthe real world, itself a
“single ensemble member”). InFig. 6 (a), the black (observed) curve is always within the pink
shaded region, meaning that global mean temperature trends are not obviously different from the

CMIP3 historical run ensemble on any time scale, including for the most recent ‘weak trends'.
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Therefore, for trends with starts through about the mid 1990s, the observed trend in global-mean
temperature is detectable and consistent with the CMIP3 historical runs. A similar result is
obtained for global mean temperature using the sample of 10 CMIP5 historical runs (Fig. 6 (b).
The pink shading (uncertainty of the forced response, including internal variability) is notably
larger with the CMIP5 runs. Nonetheless, the observed warming is clearly detectable compared

to the CMIP5 control run variability distribution (blue).

In contrast, when the analysis is applied to the Southeast U.S. region (Fig. 6 ¢, d) amuch
different result is obtained. The observed trend curve (black) rarely lies outside of the blue
shaded region (internal variability) meaning that except for a period from about 1950-1980 start
dates, the trends-t0-2010 are generally not detectable in thisregion. Interms of consistency with
the model historical runs, the observed trend generally lies within the forced model ensemble
regions (pink shading), implying consistency for trends-to-2010 starting around 1940 and later.
However for start years prior to about 1940, the observations lie near the edge and often outside
of this 5th to 95th percentile range (pink shaded envelopes). We thus conclude that even
accounting for internal variability, the CMIP3 and CMIP5 historical runs trends-to-2010 tend to
be inconsistent or only marginally consistent with the observed surface temperature trends for
starting dates before about 1940. That the CMIP3 and CMIP5 models can be falsified on this
relatively small regional scale, means that there remain unexplained discrepancies between their

historical simulations and observations for trends in this region.

b) Grid point-based detection and consistency assessment

The above procedure can be applied to individual gridpoints and the results displayed in map

form. To do this, we create categories based on an observed trend’ s relation to the control run
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variability (e.g., pink region in Fig. 6) and its relation to the simulated historical run trends,
accounting for uncertainty in the models' forced responses and internal variability. For
example, if the observed trend is positive and greater than the forced response (above the pink
region) we conclude that the trend is a “warming — detectable and greater than simulated”. If the
observed trend is positive and lies within the pink region and outside of the blue region, we
conclude that the trend is “warming — detected and consistent with the simulations’. If the
observed trend is positive, lies below the pink region and above the blue region, we conclude that
thetrend is “warming- detectable but less than simulated. If the observed trend lies within the
blue region, we conclude there is “no detectable change”. For cooling trends, we have analogous
terms to those used for the various warming cases, although these cases are relatively rare in our

analysis.

In Fig. 7 (a), we show the observed surface temperature linear trend map for 1901-2010. The
map shows warming at almost all locations. We assess this warming as highly unusual compared
with the CMIP3 control run (internal climate) variability over most of the global region with
sufficient coverage. (To determine if agrid point had “sufficient coverage” to include in our
maps and analyzed area, we divided a given trend period (e.g., 1901-2010) into five roughly
egual periods, and required that each of the five periods have at least 20% temporal coverage in
the monthly anomaly data.) Only in about 10% of the analyzed area (white regionsin Fig. 7(c)
for CMIP3 and Fig. 8(c) for CMIP5) isthe trend not detectable. Inavery small fraction of the
analyzed area (less than 1% in either CMIP3 or CMIP5) is there a detectable cooling trend since

1901, according to our analysis.
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Figure 7 (b) and 8 (b) show the multi-model ensemble trend maps for the CMI1P3 and CMIP5
historical runs, weighting each of the available (volcanic) runs equally within the CMIP3 and
CMIP5 analyses. We used the categorization procedure described above to categorize the
observed vs. modeled trend comparison at each gridpoint (Figs. 7 (c); 8 ( ¢). The most common
categorization is of “warming-detected and consistent” (~40% of analyzed regions globally for
CMIP3 and 47% for CMIP5). The second-most common categorization isof “warming —
detected and greater than simulated”, which is assessed for 30% (CMIP3) and 35% (CMIP5) of
analyzed regions.  The third-most common categorization is “warming — detected but less than

simulated, which is the case for about 20% (CMIP3) and 10% (CMIP5) of the area analysed.

In Fig. 9, we show how the percent areas that we describe above change for different start years.
This figure also summarizes the aggregate differences between the CMI1P3 and CMIP5 results
(solid lines vs. dashed lines). The percent area where the warming is detected and consistent
with the CMIP3 or CMIP5 model stays consistently between about 40% and 55% for start dates
ranging from 1901 to 1981. At the same time, the percent of area with no detectable change
climbs steadily from 10% for 1901 start date to about 40% by 1981 start date, and reaches over
50% for 1991 start date. This illustrates the advantages of along record for detectability of the
warming trend. The increase in percent area without a detectable trend, as one slides forward in
time from the 1901 gtart date, is compensated by a decline in the percent of area with detectable
warming that is either greater than or less than simulated (i.e., outside of the ‘pink envelope’ of
Fig. 6). The declineis largest for the classification “warming — detected and greater than
simulated”. Comparing the CMIP3 and CMIP5 models, the two largest differences are: CMIP5
has about 5% more (~40 vs. 45%) area with detectable and consistent warming than CMIP3 for

trends beginning in the first half of the 20™ century, and about 10% less (~10 vs 20%) areawith
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“warming — detected but less than simulated” for start dates from 1901 to 1931. In short, CMIP5
historical runs appear at least slightly more consistent with observed trends than the CMIP3
historical runs are, at least for the case of trends extending from the early 20" century to 2010.
There is slightly less area with detectable warming trends according to the CMIP5 models,

particularly for trends-to-2010 beginning from 1931 start date on.

The corresponding maps for 1951-2010 and 1981-2010 observed trends, ensemble mean
historical run trends, and the categorization maps for those trends for the CMIP3 and CMIP5
models are shown in Figs. 10- 13 (panelsa-c). These show the general spatial patterns
associated with the changes in trend behavior for different start dates and for the CMIP3 and
CMIP5 historical runs noted above. The loss of detectability, as one proceeds to mid-20™
century start dates, occurs first in the extratropical North Atlantic (north of 40°N) and over large
parts of the North Pacific, extending into the tropics, as seen for the 1951-2010 trends (Figs. 10
c,11¢). Forthelate 20" century start dates (e.g., 1981-2010; Fig. 12c, 13c) the region of no
detectable warming expands to cover most of the southern oceans, south of 40°S, and extending
south from 20°S in the South Atlantic. This region also expands to include most of the eastern
tropical and subtropical Pacific and much of the northern extratropics over Eurasia, North
America, and the North Pacific. Tropical and subtropical regions within about 40-50 degrees of
the equator (except for the eastern Pacific) are generally the regions with still a detectable (and

generally consistent) warming signal, for trends beginning as late as 1981.

The remaining panels (d-n) in Figs. 7, 8, 10-13 show classification maps for the observed vs.
historical runs, but in this case the metric is percentage of individual CMI1P3 or CMIP5 models

that are classified with the particular category for that geographic location and beginning year of
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the trend (all ending in 2010). That is, the determination of whether a given CMIP3 or CMIP5
individual model isincluded in a category (e.g., “warming- detectable and consistent”) is based
on the evaluation of the historical runs and control runs for that model alone. The most
consistent signals across the models are for the “warming — detectable” category, which has all
or aimost all models in that category across large areas of the globe for 1901-2010 trends, and
even for much of the tropics and subtropics for the relatively recent trends (1981-2010). A
notable distinction between the CMIP3 and CMIP5 results in these figures is in the maps of
fraction of models that are consistent with observed trends, including non-detectable changes.

The CMIP5 model ensemble has considerably higher average fraction than the CMIP3 ensemble.

Figure 14 shows a summary statistic for the individual models. In this figure we compare the
fraction of analyzed area where there is both a detectable change and where the change is
consistent with the individual climate model. Notethat this metric does not include the fraction
of areawhere a climate model is consistent with observations but there is not a detectable trend.
While all metrics have shortcomings, this particular metric has at least some compensation
effects, where the enhancement of consistency due to increased internal variability is partly
compensated by a reduction in the area with detectable trends for models with increased internal
variability. We plan to explore other metric approaches that explore this parameter space more

thoroughly in future extensions of this work.

The results in Fig. 14 show that the individual CM1P3 and CMIP5 models have rather similar
behavior in terms of fraction of areawith consistent detectable trends. There is somewhat more
spread among the CMIP5 models (although there are more models in the sample aswell.) This
metric tends to reach a peak value around 1960-1970 start date before declining for later start

dates.
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6. Extensionsand Applications of the Analysis

The analysis presented in this study introduces a framework for trend analysis that has many
possible applications and extensions. Several of these, which are either planned, in progress, or
completed. However, we cannot include these here as there are too many figures which do not
fit within the length constraints of the journal. These extensions are briefly introduced here. We
are creating a web site based largely on this analysis which will contain a growing collection of
figures that will provide access to many of these extensions and applications as they become

available. These are briefly discussed below.
a.  Sensitivity analyses

A number of gquestions could be posed about our analysis, such aswhat do the plots look like for
individual seasons, what if we had used 97" and 2.5" percentiles instead of 95" and 5, what if
we had left certain “low variability” models (Section 3a) out of the analysis, what if we had used
adifferent observed data set or observed ensembles from the HadCRUT4 data product and so
forth. Some of these sensitivity analyses have already been completed and are available on the

above web site.
b. Focusonindividual regions

Figure 15 shows a number of regions for which we have prepared extensive trend analyses like
that in Fig. 6. We have done these analyses for various 4-month seasons, using CMIP3 or
CMIP5 models, using 97.5" and 2.5™ percentiles, leaving out certain CMIP3 control runs with
lower variability levels, and other sensitivity tests. The plots are too numerous to present in this

paper, but are accessible on the above web site.
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c. Focusonindividual models

Figures similar those in this multi-model analysis can also be prepared for individual modelsin
the CMIP3 and CMIP5 archive. We are in the process of producing these. These analyses may
be of interest as feedback to the individual centers and to others interested in individual model

characteristics. Theresults, asthey are updated, will be posted to the website above.

d. Weighting of future projections

Figure 14 shows an example of evaluation of individual models in terms of the fraction of global
analyzed area with trends-to-2010 that consistent with observations. This analysis suggests a
means of weighting future projections from different models based on the models’ levels of
agreement with past trendsasin Fig. 14. As mentioned above, there are ways of trying to create

improved model comparison metrics, which we plan to explore in a future study.

e. Application to Other Variables

An extension of this methodology would be explore application to other climate variables such
as precipitation. We are planning to do this, beginning with precipitation, in upcoming work and
to report on these developments in a future sudy as well as through updates and extensions of

these on the above web site.

7. Summary and Conclusions
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The purpose of this analysis has been to introduce and apply a framework for assessing regional
surface temperature trends from the CM1P3 and CMIP5 models using a multi-model sampling
approach. We showed the behavior of the various control runs of the CMIP3 and CMIP5
models. We used the control run variability to help assess whether observed trends were unusual
or not compared with control run (internally generated) variability. We also used the control run
variability to help assess whether observed trends were consistent with (or alternatively,
significantly different from) trends from the historical (20C3M) simulations. Inthe separate
CMIP3 and CMIP5 analyses, we generally attempt to give different models equal weight, even
when a modeling center provides fewer ensemble members or shorter control runs. Test are
applied at global and regional scales, aswell as at individual grid points on the observed data
grid where there is sufficient data coverage over the period of the trend. Results are summarized

using classification maps and global percent area statistics.

Our analysis of variability (standard deviation maps, spectral analysis, and time series
inspection) suggest that the CMIP3 and CMIP5 models provide a plausible representation of
internal climate variability, with some likely exceptions which were noted for some models and

regions.

The assessment of the trends allowed us to identify regions where the detection of warming
trends is most robust (in terms of still being detectable, according to the models, for relatively
late start dates, such as1981). These regionstend to be in the tropics and subtropics, but outside
of the eastern Pacific, which is influenced by strong interannual variability associated with
ENSO. The reduced global areawith detectable trends as one examines later start dates for trends
inthe record (al trends ending in 2010) illustrates the advantages of long records for trend

detection in the context of this model-based assessment. The analysis also suggests a modestly
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closer agreement of models with observed trends for CMI1P5 models compared to CMIP3
models—at least for the relatively longer trends-to-2010 that begin in the first half of the 20"

century.

For trends-to-2010 beginning from the early 20™ century, about 40-50% of the analyzed regions
globally have a detectable warming that is consistent with the 20C3M historical runs, with
slightly higher percentage for the CMIP5 simulations. The fraction of area with no detectable
change is only about 10% for trends 1901-2010, but increases steadily to over 50% asthe
beginning year is moved forward to 1981. The fraction of area with detectable and consistent
warming stays relatively constant for start years through about 1981, before falling below 40%
for trends from 1991-2010. The “loss” of detectable warming regions as one moves forward
with the start dates, is mainly a*“loss’ in regions with detectable warming that is inconsistent
with the historical runs, which decreases from about 50% for 1901-2010 to less than 10% for
trends 1991-2010. That is, for the most recent trends (1991-2010), the trends are classified
predominantly as either non-detectable relative to the control runs, or as detectable warming that
is consistent with model historical runs (for both CM1P3 and CMIP5 models). The shorter the
epoch, the larger the contribution of internal variability to the trend, leading to agreater spread

(uncertainty) for sampled trends.

As has been noted in a previous paper using a similar methodology with two climate models
(Knutson et al. 2006), disagreement between modeled and observed trends in this type of
analysis can occur due to shortcomings of models (internal variability simulation; response to
forcing), shortcomings of the specified specified historical forcings, or problems with the
observed data. The HadCRUT4 data set (Morice et a. 2012) contains multiple ensemble

members that attempt to characterize the uncertainties in the observations. We have performed
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some preliminary tests using these ensembles to assess the spread of observed trend estimates.
These teststhus far indicate that even at the regional scale, the spread in trend estimates due to
observational uncertainties, as contained in the ensembles, is generally much smaller than the
spread in model simulated trends due to both internal variability and differences in forced
responses in the historical runs (e.g., Fig. 6). However, it is possible that other observational

datasets could have somewhat different trends.

We have attempted to at least partially address the issue of uncertainties in the simulation of
internal climate variability and in the response to historical forcing by using multi-model
ensembles. Nonetheless, the CMIP3 and CMIP5 simulations represent an “ensemble of
opportunity” which cannot necessarily be expected to represent the true structural uncertainty in
results, due to shortcomings/uncertainties in the models and climate forcings. From a different
perspective, Shin and Sardeshmukh (2011) have noted that the CMIP3 models do not smulate
historical trends of temperature and precipitation as realistically as atmospheric models forced by
observed trends in tropical SSTs—a problem they attribute to model errors as opposed to climate
noise (internal variability). Clearly there appearsto scope for improvement in model simulations

of past trends using historical forcings.

While these issues lack a final resolution, the methodology shown here can at least help to
quantify the uncertainties associated with the climate change detection problem. The results
show that when CMI1P3 and CMIP5 historical runs are confronted with observed surface
temperature variations and trends, across awide range of trend start dates and at various
geographical locations around the globe, warming is found that is generally much more
consistent with forced simulations than with unforced simulations. This provides further support

for the claim of a discernable influence of humans on climate, via anthropogenic forcing agents
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like increased greenhouse gases. A future enhancement of these findings would be to compare
the CMIP5 all-forcing historical runs with runs that include only natural forcings, to provide a
more direct assessment of the roles of anthropogenic versus natural forcings in observed

temperature trends at the regional scale.
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Figure Captions

Fig. 1. Timeseries of global mean annual mean surface air temperature (2 m) anomalies from the
CMIP3 (a, b) and CMIP5 (c) preindustrial control runs. Observed global mean surface
temperature (HadCRUT4, combining SST and land surface air temperature anomalies) is also
shown on the diagrams for comparison. The curves labeled “Observed residual” or “HadCRU4
residual” were created by subtracting the multi-model ensemble mean surface temperature (from
masked SSTs and land surface air temperatures from the 20C3M historical runs for either CMI1P3
or CMIP5) from the observed temperature. Straight lines (one or two segments) through the
control run time series depict the long term linear drift. The long term drift over these yearsis
calculated at each grid point and then subtracted from the model control run series before
performing further analysis in our study. The various curves have been displaced vertically by

arbitrary constants for visual clarity.

Fig. 2. Standard deviation (°C) of annual mean surface air temperature from the CMIP3 pre-
industrial control runs (e.g., Fig. 1 a,b). The long term linear drifts (periods identified by the
linear line segments in Fig. 1 a,b) were removed prior to computing the standard deviation. The
individual plots are labeled with the name of the model/center and classified as “Non-V” (non-
volcanic) or “V” (volcanic) depending on whether than model’s historical run used in this study
included volcanic forcing or not. Note that the control runs on which the figure are based do not
have episodic volcanic forcing and have been masked for observed missing data periods. The

final panel (“obs’) isan observational estimate of internal variability of SST (oceanic regions)
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and surface air temperature (land regions) constructed by removing the CMIP3 eight-model
ensemble (Volcanic models) estimate of the forced climate response from the observed

temperature record over 1949-2010.

Fig. 3. AsinFig. 2 but for the 10 CMIP5 models analyzed in this study. The final panel (“obs”)
isan observational estimate of internal variability of SST (oceanic regions) and surface air
temperature (land regions) constructed by removing the CMIP5 ten-model ensemble (Volcanic
models) estimate of the forced climate response from the observed temperature record over

1949-2010.

Fig. 4. Timeseries of global mean surface temperature anomalies (combined SST and land
surface air temperature) from observations (HadCRUT4; black curves) and CMIP3 (a, b) or
CMIP5 (c) 20C3M historical runs (orange curves) in degrees Celsius. The historical runsin (b)
include 23 CMIP3 models with and without volcanic forcing (asin Fig. 1 (a,b) but excluding
IAP_FGOALS1.0 g). Thosein (a) are from CMIP3 models with volcanic forcing. All of the
CMIP5 model runs shown in (¢) included volcanic forcing. The red curves show the multi-
model ensemble means, which was computed by weighting each model equally (as opposed to
each individual model run equally). All series have been re-centered so that the mean value for
the years 1881-1920 is zero. Model data were masked with the observed temporally evolving

missing data mask.

Fig. 5. Variance spectra as a function of frequency for observed global mean surface

temperature (combined SST and land surface air temperature), in black with 90% confidence
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intervals shown in red, plotted against spectrafor the individual (2) CMIP3 and (b) CMIP5
“Volcanic forcing” historical runs (green) based on the time seriesin Fig. 4. The spectrain (c)
and (d) are based on observed or model historical runs where the multi-model ensemble surface
temperature from the 20C3M volcanically forced historical runs is subtracted from the observed
global mean temperature seriesto form aresidual. Similarly, this multi-model ensemble (either
CMIP3 or CMIP5) is subtracted from each individual historical run to form a modeled residual

for comparison to the observed.

Fig. 6. Trends (deg C/100 yr) in surface temperature as a function of starting year, with all
trends ending in 2010, for the CMIP3 (a,c) and CMIP5 (b,d) models. The black curves are from
observations (HadCRUT4). The green curves are the multi-model ensemble means, with each
model weighted equally. The blue shading shows the 5™ to 95™ percentile range of trends of the
given length based on random resampling of the model control runs, with each model sampled
equally frequently regardless of control run length. The pink shading shows the range obtained
by using the same control run samples as for the blue shading, but adding onto each control run
trend the ensemble mean trend, from the given start year, of that model’s all forcing run. Violet
shading shows where the pink and blue shaded regions overlap. Region used: Global (a,c) or
the Southeast United States (b,d), with boundaries of the latter region shown in Fig. 15. The 19
CMIP3 models used here and in subsequent assessment figures include all listed in Fig. 1 except

IAP_FGOALSL.0 g, INGV_ECHAM4, MIROC3.2_hires, MIP_ECHAMS5, and NCAR PCM1.
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Fig. 7. Geographical distribution of: (a) HadCRUT4 observed or (b) CMIP3 multi-model
(volcanic models) ensemble mean surface temperature trends (1901-2010) in degrees C per 100
yr. The observed trend is assessed in terms of the multi-model ensemble mean trends and
variability in (c). In(c) the meaning of the different colors is shown to the right of the color
scale. Panels (d-h) show the fraction of the 10 individual CM1P3 models whose historical
forcing (including volcanic) runs meet the criterialisted below the panel. The criteriaare: d)
detectable cooling that is more than simulated; €) detectable cooling that is consistent with the
model; f) detectable cooling that is less than simulated; g) no detectable change; h) detectable
warming that is less than simulated; i) detectable warming that is consistent with the model; j)
detectable warming that is more than simulated; k) detectable warming (sum of h;i,j); I)
detectable warming that is consistent or greater than simulated (i+j); m) observed and simulated
trends are consistent (including non-detectable changes that are consistent); and n) observed and

simulated trends are inconsistent (1-m).

Fig. 8. AsinFig. 7, but for the ten CMIP5 models analyzed in the study.

Fig. 9. Summary assessment of trends-to-2010 comparing the CMIP3 (solid lines) and CMIP5
(dashed lines) multi-model ensembles (historical 20C3M runs with volcanic forcing). The
fraction of global analyzed areas meeting certain criteria (see graph labels) are shown asa

function of start year.

Fig. 10. Asin Fig. 7, but for trends over the period 1951-2010.

Fig. 11. AsinFig. 7, but trends over the period 1951-2010 for the ten CMIP5 models analyzed

in the study.

Fig. 12. Asin Fig. 7, but for trends over the period 1981-2010.
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Fig. 13. AsinFig. 7, but trends over the period 1981-2010 for the ten CMIP5 models analyzed

in the study.

Fig. 14. Individual @) CMIP3 and b) CMIP5 models are assessed for consistency with observed
surface temperature trends-to-2010 for start years from 1901 to 1991. Plotted is the percent of
analyzed global area where each model’ s (legend) multi-member ensemble mean forced trends
are consistent (accounting for internal variability) with the observed trends. The trends are
analyzed at each grid point where there is sufficient temporal data coverage for the trend in

guestion (see text).

Fig. 15. Map illustrating regions where trend analyses (like those in Fig. 6, but with additional

augmented analyses as discussed in the text) are available online (web site).



649

650

651

Global Surface Air Temperature Anomalies

a) CMIP3 Pre-Industrial Control Runs - A
T I T | T | T

I T
Observed (HadCRUT3
Observed residual

M BCCR_bcm2_0

ET Tl

=

CCCMA_cgem3_1

M CCCMA_cgcm3_1_t63

L F'fy CNRM_cm3

IlIlIIIIllIIIlll:fllllllllllllll

CSIRO_mk3_0 CSIRO_mk3_5

TPRY. I GFDL cm2.0

IIIIIIII

A L
i A A O < [/

GFDL cm2.1

N
i by, GISS_model_e_r

IAP_fgoals1_0_g
L | | ! | L | L

Il||l|l|ll|l|l||l|l|l||l4

0 200 400 600 800 1000

Year

c) CMIP5 Pre-industrial Control runs
| | | | | | | | |

1299

et NS -4

GFDL-ESM2G

GFOL-ESHM

MRI-CGCM

GFOL-CM3

C5IRO-MK3-6-0

HadCRU4 residual

HadCRU4

I I I I
100 300 500 70 800

piContrel demeaned tas ann glo mean

32
Fig. 1

Global Surface Air Temperature Anomalies
b) CMIP3 Pre-Industrial Control Runs - B

T | T | T | T | T
Observed (HadCRUT3) 1851-2010 3
LA —
. Observed residual _f
M UKMO hadgem1 =
IS TEL L TV UKMO hadcm3 —
1 Deg C I E
i Wl i NCAR pcm1 —
oy NCAR ccsm3_0 _;
" MRI cgcm2_3_2a _:
e LW X W MPI_echam5 —f
i N MIUB_echo_g —
P tpmi M AN WAL MIROC 3_2_medres -
MIROC 3_2_hires -
" M INMCM3_0 =
[ATRY T W 7
a INGV_echam4 =
el IPSL_cm4 3
Il | 1 | 1 | 1 | 1
0 200 400 600 800 1000
Year

Fig. 1. Timeseries of global mean annual mean
surface air temperature (2 m) anomalies from the
CMIP3 (g, b) and CMIP5 (c) preindustrial control
runs. Observed global mean surface temperature
(HadCRUT4, combining SST and land surface air
temperature anomalies) is also shown on the
diagrams for comparison. The curves labeled
“Observed residual” or “HadCRU4 residual” were
created by subtracting the multi-model ensemble
mean surface temperature (from masked SST's and
land surface air temperatures from the 20C3M
historical runs for either CMIP3 or CMIP5) from
the observed temperature. Straight lines (one or
two segments) through the control run time series
depict thelong term linear drift. Thelongterm
drift over these yearsis calculated at each grid
point and then subtracted from the model control
run series before performing further analysisin our
study. The various curves have been displaced
vertically by arbitrary constants for visual clarity.
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Fig. 2. Standard deviation (°C) of annual mean surface air temperature from the CMIP3 pre-
industrial control runs (e.g., Fig. 1 a,b). Thelong term linear drifts (periods identified by the
linear line segmentsin Fig. 1 a,b) were removed prior to computing the standard deviation. The
individual plots are labe ed with the name of the model/center and classified as“Non-V” (non-
volcanic) or “V” (volcanic) depending on whether than model’ s historical run used in this
study included volcanic forcing or not. Note that the control runs on which the figure are based
do not have episodic volcanic forcing and have been masked for observed missing data
periods. Thefinal panel (“obs’) is an observational estimate of internal variability of SST
(oceanic regions) and surface air temperature (land regions) constructed by removing the
CMIP3 eight-model ensemble (Volcanic models) estimate of the forced climate response from
the observed temperature record over 1949-2010.
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Fig. 3. AsinFig. 2 but for the 10 CMIP5 models analyzed in this study. The
final panel (“obs’) is an observational estimate of internal variability of SST
(oceanic regions) and surface air temperature (land regions) constructed by
removing the CMIP5 ten-model ensemble (Volcanic models) estimate of the
forced climate response from the observed temperature record over 1949-2010.
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Fig. 4. Timeseries of global mean
surface temperature anomalies
(combined SST and land surface air
temperature) from observations
(HadCRUT4; black curves) and
CMIP3 (& b) or CMIP5 (c) 20C3M
historical runs (orange curves) in
degrees Celsius. The historical
runs in (b) include 23 CMIP3
models with and without volcanic
forcing (asin Fig. 1 (a,b) but
excluding IAP_FGOALSL1.0_g).
Those in (a) are from CMIP3
models with volcanic forcing. All
of the CMIP5 model runs shown in
(c) included volcanic forcing. The
red curves show the multi-model
ensemble means, which was
computed by weighting each model
equally (as opposed to each
individual model run equally). All
series have been re-centered so that
the mean value for the years 1881-
1920 iszero. Model data were
masked with the observed
temporally evolving missing data
mask.
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Fig. 5. Variance spectra as a function of frequency for observed global mean

surface temperature (combined SST and land surface air temperature), in black
with 90% confidence intervals shown in red, plotted against spectra for the

individual (a) CMIP3 and (b) CMIP5 “Volcanic forcing” historical runs (green)

based on the time seriesin Fig. 4. The spectrain (c) and (d) are based on observed
or model historical runs where the multi-model ensemble surface temperature from
the 20C3M volcanically forced historical runsis subtracted from the observed

global mean temperature seriesto form aresidual. Similarly, this multi-model
ensemble (either CMIP3 or CMIP5) is subtracted from each individual historical
run to form a modeled residual for comparison to the observed.
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Fig. 6
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Fig. 6. Trends (deg C/100 yr) in surface temperature as a function of starting year, with all trends
ending in 2010, for the CMIP3 (a,c) and CMIP5 (b,d) models. The black curves are from observations
(HadCRUT4). The green curves are the multi-model ensemble means, with each model weighted
equally. The blue shading shows the 5" to 95" percentile range of trends of the given length based on
random resampling of the model control runs, with each model sampled equally frequently regardless of
control run length. The pink shading shows the range obtained by using the same control run samples
as for the blue shading, but adding onto each control run trend the ensemble mean trend, from the given
start year, of that model’s all forcing run. Violet shading shows where the pink and blue shaded regions
overlap. Region used: Global (a,c) or the Southeast United States (b,d), with boundaries of the latter
region shownin Fig. 15. The 19 CMIP3 models used here and in subsequent assessment figures
include all listed in Fig. 1 except IAP_FGOALS1.0_g, INGV_ECHAM4, MIROC3.2_hires,
MIP_ECHAMS5, and NCAR PCM 1.
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Fig. 7. Geographical distribution of: (a) HadCRUT4 observed or (b) CMIP3 multi-
model (volcanic models) ensemble mean surface temperature trends (1901-2010) in
degrees C per 100 yr. The observed trend is assessed in terms of the multi-model
ensemble mean trends and variability in (c). In (c) the meaning of the different colors is
shown to the right of the color scale. Panels (d-h) show the fraction of the 10 individual
CMIP3 models whose historical forcing (including volcanic) runs meet the criteria listed
below the panel. The criteriaare: d) detectable cooling that is more than simulated; )
detectable cooling that is consistent with the model; f) detectable cooling that is less than
simulated; g) no detectable change; h) detectable warming that is less than simulated; i)
detectable warming that is consistent with the model; j) detectable warming that is more
than simulated; k) detectable warming (sum of h;i,j); |) detectable warming that is
consistent or greater than simulated (i+j); m) observed and simulated trends are
consistent (including non-detectable changes that are consistent); and n) observed and
simulated trends are inconsistent (1-m).
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Fig. 8. AsinFig. 7, but for the ten CMIP5 models analyzed in the study.
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Percent of analyzed area
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Fig. 9.

Assessment of CMIP3 and CMIPS multi-model ensemble trends
CMIP3 (Solid): 10 models; CMIP5 (Dashed): 10 models; All models have volcanic forcing
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Fig. 9. Summary assessment of trends-to-2010 comparing the CMIP3
(solid lines) and CMIP5 (dashed lines) multi-model ensembles
(historical 20C3M runs with volcanic forcing). The fraction of global
analyzed areas meeting certain criteria (see graph labels) are shown asa
function of start year.
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Fig. 11. AsinFig. 7, but trends over the period 1951-2010 for the ten CMIP5 models

analyzed in the study.
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Fig. 12. Asin Fig. 7, but for trends over the period 1981-2010.
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Fig. 13. AsinFig. 7, but trends over the period 1981-2010 for the ten CMIP5 models

analyzed in the study.
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Fig. 14

CMIP3 Historical Runs: Area with Detectable Trends Consistent with Observations
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CMIPS Historical Runs: Area with Detectable Trends Consistent with Observations
Surface temperature trends ending in 2010 (HadCRUT4 obs.)
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Fig. 14. Individual @) CMIP3 and b) CMIP5 models are assessed for consistency with
observed surface temperature trends-to-2010 for gtart years from 1901 to 1991. Plotted
is the percent of analyzed global area where each model’s (legend) multi-member
ensemble mean forced trends are consistent (accounting for internal variability) with the
observed trends. The trends are analyzed at each grid point where there is sufficient

temporal data coverage for the trend in question (see text).
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Fig. 15

Fig. 15. Map illustrating regions where trend analyses (like those in Fig. 6, but
with additional augmented analyses as discussed in the text) are available online
(web site).
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