
Cray XE6 Architecture
and Performance Top 10

Jeff Larkin
<larkin@cray.com>

Cray XE6 Tuning Top 10

For most users and applications, using default
settings work very well

For users who want to experiment to get the best
performance they can, the following presentation
gives you some information on compilers and
settings to try
While it doesn’t cover absolutely everything, the

presentation tries to address some of the tunable
parameters which we have found to provide
increased performance in the situations discussed

XE6 – Where to start

3

1. Load the proper xtpe-<arch>

xtpe-mc12 or xtpe-interlagos
If no module is loaded, and no ‘arch’ specified in
the compiler options, the compilers default to the

node type on which the compiler is running:
Which may not be the same as the compute

nodes !

4

2. Use the best Compiler

The best compiler is not the same for every
application

5

 PGI – Very good Fortran, okay C and C++
 Good vectorization
 Good functional correctness with optimization enabled
 Good manual and automatic prefetch capabilities
 Very interested in the Linux HPC market, although that is not their

only focus
 Excellent working relationship with Cray, good bug

responsiveness
 Pathscale – Good Fortran, C, probably good C++

 Outstanding scalar optimization for loops that do not vectorize
 Fortran front end uses an older version of the CCE Fortran front

end
 OpenMP uses a non-pthreads approach
 Scalar benefits will not get as much mileage with longer vectors

 Intel – Good Fortran, excellent C and C++ (if you ignore
vectorization)
 Automatic vectorization capabilities are modest, compared to PGI

and CCE
 Use of inline assembly is encouraged
 Focus is more on best speed for scalar, non-scaling apps
 Tuned for Intel architectures, but actually works well for some

applications on AMD

Compiler Choices – Relative
Strengths …from Cray’s Perspective

6

 GNU so-so Fortran, outstanding C and C++ (if you ignore
vectorization)
 Obviously, the best for gcc compatability
 Scalar optimizer was recently rewritten and is very good
 Vectorization capabilities focus mostly on inline assembly
 Note the last three releases have been incompatible with each

other (4.3, 4.4, and 4.5) and required recompilation of Fortran
modules

 CCE – Outstanding Fortran, very good C, and okay C++
 Very good vectorization
 Very good Fortran language support; only real choice for

Coarrays
 C support is quite good, with UPC support
 Very good scalar optimization and automatic parallelization
 Clean implementation of OpenMP 3.0, with tasks
 Sole delivery focus is on Linux-based Cray hardware systems
 Best bug turnaround time (if it isn’t, let us know!)
 Cleanest integration with other Cray tools (performance tools,

debuggers, upcoming productivity tools)
 No inline assembly support

Compiler Choices – Relative
Strengths

7

…from Cray’s Perspective

 Use default optimization levels
 It’s the equivalent of most other compilers –O3 or –fast

 Use –O3,fp3 (or –O3 –hfp3, or some variation)
 -O3 only gives you slightly more than –O2
 -hfp3 gives you a lot more floating point optimization,

esp. 32-bit
 If an application is intolerant of floating point reassociation,

try a lower –hfp number – try –hfp1 first, only –hfp0 if
absolutely necessary
 Might be needed for tests that require strict IEEE

conformance
 Or applications that have ‘validated’ results from a

different compiler
 Do not suggest using –Oipa5, -Oaggress, and so on – higher

numbers are not always correlated with better performance
 Compiler feedback: -rm (Fortran) -hlist=m (C)
 If you know you don’t want OpenMP: -xomp or -Othread0
 man crayftn; man craycc ; man crayCC

Recommended CCE Compilation
Options

8

 PGI
 -fast –Mipa=fast(,safe)
 If you can be flexible with precision, also try -Mfprelaxed
 Compiler feedback: -Minfo=all -Mneginfo
 man pgf90; man pgcc; man pgCC; or pgf90 -help

 Pathscale
 -Ofast Note: this is a little looser with precision than other

compilers
 Compiler feedback: -LNO:simd_verbose=ON
 man eko (“Every Known Optimization”)

 GNU
 -O3 –ffast-math –funroll-loops
 Compiler feedback: -ftree-vectorizer-verbose=2
 man gfortran; man gcc; man g++

 Intel
 -fast
 Compiler feedback: -vec-report1
 man ifort; man icc; man iCC

Starting Points for the other
Compilers

9

3. Enable Compiler Feedback

What does your code look like to the compiler?

10

 Click to edit the
outline text format

 Second Outline
Level

− Third Outline
Level

 Fourth Outline
Level

− Fifth
Outline
Level

− Sixth
Outline
Level

− Seventh
Outline
Level

− Eighth
Outline
Level

 Ninth Outline
LevelClick to edit
Master text styles
 Second level

 Third level
 Fourth level

 Fifth level

Compiler Feedback Examples:
PGI

! Matrix Multiply

do k = 1, N

 do j = 1, N

 do i = 1, N

 c(i,j) = c(i,j) + &

 a(i,k)*b(k,j)

 end do

 end do

end do

mm:

 18, Loop interchange
produces reordered loop
nest: 19,18,20

 20, Generated 3
alternate loops for the
loop

 Generated vector
sse code for the loop

 Generated 2
prefetch instructions for
the loop

Slid
e
11

18. ib------------< do k = 1, N

19. ib ibr4-------< do j = 1, N

20. ib ibr4 Vbr4--< do i = 1, N

21. ib ibr4 Vbr4 c(i,j) = c(i,j) + &

22. ib ibr4 Vbr4 a(i,k) * b(k,j)

23. ib ibr4 Vbr4--> end do

24. ib ibr4-------> end do

25. ib------------> end do

ftn-6007 ftn: SCALAR File = mm.F90, Line = 18

 A loop starting at line 18 was interchanged with the loop
starting at line 19.

ftn-6254 ftn: VECTOR File = mm.F90, Line = 18

 A loop starting at line 18 was not vectorized because a
recurrence was found on "C" at line 21.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 18

 A loop starting at line 18 was blocked with block size 32.

ftn-6294 ftn: VECTOR File = mm.F90, Line = 19

 A loop starting at line 19 was not vectorized because a
better candidate was found at line 20.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 19

 A loop starting at line 19 was blocked with block size 8.

ftn-6005 ftn: SCALAR File = mm.F90, Line = 19

 A loop starting at line 19 was unrolled 4 times.

ftn-6049 ftn: SCALAR File = mm.F90, Line = 20

 A loop starting at line 20 was blocked with block size
256.

ftn-6005 ftn: SCALAR File = mm.F90, Line = 20

 A loop starting at line 20 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = mm.F90, Line = 20

 A loop starting at line 20 was vectorized.

Compiler Feedback Examples:
Cray

Slid
e
12

i – interchanged
b – blocked
r – unrolled
V - Vectorized

(mm.F90:20) Vectorization is not likely to
be beneficial (try -LNO:simd=2 to vectorize
it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to
be beneficial (try -LNO:simd=2 to vectorize
it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to
be beneficial (try -LNO:simd=2 to vectorize
it). Loop was not vectorized.

(mm.F90:20) Vectorization is not likely to
be beneficial (try -LNO:simd=2 to vectorize
it). Loop was not vectorized.

(mm.F90:19) Generated 40 prefetch
instructions for this loop

=== After adding -LNO:simd=2 ===

(mm.F90:20) Loop has too many loop
invariants. Loop was not vectorized.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:20) LOOP WAS VECTORIZED.

(mm.F90:19) Generated 52 prefetch
instructions for this loop

Compiler Feedback Examples:
Pathscale

Slid
e
13

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

mm.F90(20): (col. 9) remark: LOOP WAS VECTORIZED.

Compiler Feedback Examples:
Intel

Slid
e
14

mm.F90:20: note: LOOP VECTORIZED.

mm.F90:11: note: vectorized 1 loops in function.

Compiler Feedback Examples:
GNU

Slid
e
15

4. Library Loading

Use the xtpe-<arch> module and it is all
automatic

The OpenMP threaded BLAS/LAPACK library is the
default if the xtpe-<arch> module is loaded. The
serial version is used if ‘OMP_NUM_THREADS’ is

not set or set to 1.

16

5. Tweak the
MPICH_GNI_MAX_EAGER_MSG
_SIZE This allows for more async message transfer.
But the additional copy on the receiving side may

offset the gain.

17

6. Touch your memory, or
someone else will.

Memory Allocation: Make it local

18

 Linux has a “first touch policy” for memory allocation
 *alloc functions don’t actually allocate your memory
 Memory gets allocated when “touched”

 Problem: A code can allocate more memory than available
 Linux assumes “swap space,” we don’t have any
 Applications won’t fail from over-allocation until the

memory is finally touched
 Problem: Memory will be put on the core of the “touching”

thread
 Only a problem if thread 0 allocates all memory for a

node
 Solution: Always initialize your memory immediately after

allocating it
 If you over-allocate, it will fail immediately, rather than a

strange place in your code
 If every thread touches its own memory, it will be

allocated on the proper socket / die.

Memory Allocation: Make it local

19

7. Try different MPI Rank Orders

Is your nearest neighbor really your nearest
neighbor? And do you want them to be your

nearest neighbor?

20

 The default ordering can be changed using the following
environment variable:
 MPICH_RANK_REORDER_METHOD

 These are the different values that you can set it to:
 0: Round-robin placement – Sequential ranks are placed on the

next node in the list. Placement starts over with the first node
upon reaching the end of the list.

 1: (DEFAULT) SMP-style placement – Sequential ranks fill up each
node before moving to the next.

 2: Folded rank placement – Similar to round-robin placement
except that each pass over the node list is in the opposite
direction of the previous pass.

 3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

 When is this useful?
 Point-to-point communication consumes a significant fraction of

program time and a load imbalance detected
 Also shown to help for collectives (alltoall) on subcommunicators
 Spread out IO across nodes

Rank Placement

21

GYRO 8.0
B3-GTC problem with 1024 processes

Run with alternate MPI orderings

Reordering example: GYRO

22

Reorder method Comm. time

1 – SMP (Default) 11.26s

0 – round-robin 6.94s

2 – folded-rank 6.68s
Note:
• The rank reordering only works on nodes. If you want to
pack within a node in a special way use the aprun –cc ‘cpu
list’ .
• Hence to get a bit more out of the folded-rank option use
aprun –cc
0,6,12,18,19,13,7,1,2,8,14,20,21,15,9,3,4,10,16,22,23,17,1
1,5
This folds across nodes, and folds within dies on a node.

Reordering example: TGYRO

TGYRO 1.0
Steady state turbulent transport code using GYRO,

NEO, TGLF components
ASTRA test case

Tested MPI orderings at large scale
Originally testing weak-scaling, but found

reordering very useful

Reorder
method

TGYRO wall time (min)

20480
Cores

40960
Cores

81920
Cores

Default 99m 104m 105m

Round-robin 66m 63m 72m
Huge
win!

23

Rank Reordering Case Study

24

Communicati
on is nearest-
neighbor.
(Halo
exchange)

Default
ordering
results in
12x1x1 block
on each node.
(Istanbul
example, 12
cores)

A custom
reordering is
now
generated:
3x2x2 blocks
per node,
resulting in
more on-node
communicatio
n

Application data is in a 3D space, X * Y
* Z

Note: Using blocks or slabs within a node
may help some communications. For a
6x4 chunk, you could try a 4 6x1, or 4 3x2
chunks, with each die getting one chunk.

Lower is better

 Click to edit the outline text format

 Second Outline Level

− Third Outline Level
 Fourth Outline Level

− Fifth Outline Level
− Sixth Outline Level
− Seventh Outline Level
− Eighth Outline Level

 Ninth Outline LevelClick to edit Master text styles
 Second level

 Third level
 Fourth level

 Fifth level

Rank order choices: Many options, depends
on pattern

X X o o

X X o o

o o o o

o o o o

Nodes marked X heavily use a
shared resource

If the shared resource is:
Memory bandwidth: scatter

the X's
Network bandwidth to others,

again scatter
Network bandwidth among

themselves, concentrateCheck out pat_report and grid_order (must have
perftools module loaded) for generating custom rank
orders based on:
Measured data
Communication patterns
Data decomposition

Cray is also working on an “automatic grid detection”Slid
e
25

8. Try Huge Pages

Gemini loves to use Huge pages 

 26

The Gemini perform better with HUGE pages than
with 4K pages.

HUGE pages use less GEMINI resources than 4k
pages (fewer bytes).

Your code may run with fewer TLB misses (hence
faster).

Why use Huge Pages

27

Module load craype-hugepages2M
Must be done both at compile and run time
Other sizes are also available to try

Use the aprun option –m###h to ask for ### Meg
of HUGE pages.
Example : aprun –m500h (Request 500 Megs of

HUGE pages as available, use 4K pages thereafter)
Example : aprun –m500hs (Request 500 Megs of

HUGE pages, if not available terminate launch)
Note: If not enough HUGE pages are available, the

cost of filling the remaining with 4K pages may
degrade performance.

Huge Pages – How to use

28

9. Tune malloc.

29

GNU malloc library
malloc, calloc, realloc, free calls

 Fortran dynamic variables

Malloc library system calls
Mmap, munmap =>for larger allocations
Brk, sbrk => increase/decrease heap

Malloc library optimized for low system memory
use
Can result in system calls/minor page faults

GNU Malloc

30

 Detecting “bad” malloc behavior
 Profile data => “excessive system time”

 Correcting “bad” malloc behavior
 Eliminate mmap use by malloc
 Increase threshold to release heap memory

 Use environment variables to alter malloc
 MALLOC_MMAP_MAX_ = 0
 MALLOC_TRIM_THRESHOLD_ = 536870912 (or

appropriate size)
 (only trims heap when this amount total is freed)

 Possible downsides
 Heap fragmentation
 User process may call mmap directly
 User process may launch other processes

 PGI’s –Msmartalloc does something similar for you at
compile time

Improving GNU Malloc

31

10. Learn the ins and outs of aprun

Are you launching the job that you think you are?

32

 Click to edit the
outline text format

 Second Outline
Level

− Third Outline
Level

 Fourth
Outline Level

− Fifth
Outline
Level

− Sixth
Outline
Level

− Seventh
Outline
Level

− Eighth
Outline
Level

 Ninth Outline
LevelClick to edit
Master text styles
 Second level

 Third level
 Fourth level

 Fifth level

 Click to edit the
outline text format

 Second Outline
Level

− Third Outline
Level

 Fourth
Outline Level

− Fifth
Outline
Level

− Sixth
Outline
Level

− Seventh
Outline
Level

− Eighth
Outline
Level

 Ninth Outline
LevelClick to edit
Master text styles
 Second level

 Third level
 Fourth level

 Fifth level

 Click to edit the outline
text format

 Second Outline
Level

− Third Outline
Level

 Fourth Outline
Level

− Fifth
Outline
Level

− Sixth
Outline
Level

− Seventh
Outline
Level

− Eighth
Outline
Level

Ninth Outline LevelClick
to edit Master text
styles

Opt
ion

-n

-N

-m

-d

-S

-ss

-r

Number of MPI tasks
Note: If you do not specify the number of tasks to aprun, the system
will default to 1.

Number of tasks per Node

Memory required per Task

Number of threads per MPI Task.
Note: If you specify OMP_NUM_THREADS but do not give a –d option,
aprun will allocate your threads to a single core. You must use
OMP_NUM_THREADS to specify the number of threads per MPI task,
and you must use –d to tell aprun how to place those threads

Number of Pes to allocate per NUMA Node

Strict memory containment per NUMA Node

Reserve some number of cores for handling interrupts (core
specialization). This will help a small number of users whose
performance is bound by collectives

Running Jobs: Basic aprun options

Description

33

To run using 1376 MPI tasks with 4 threads per MPI
task:

export OMP_NUM_THREADS=4

aprun -ss -N 4 -d 4 -n 1376 ./xhpl_mp

To run without threading:
export OMP_NUM_THREADS=1

aprun –ss –N 16 -n 5504 ./xhpl_mp

Aprun examples

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

