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"Multi-Model Assessment of Regional Surface Temperature Trends: CMIP3 and CMIP5 20th 
Century Simulations" by Thomas Knutson; Fanrong Zeng; Andrew Wittenberg 

 

Note to reviewers: 

Although this was not requested by the reviewers, since the last submission we have 
implemented an improved way of comparing the low-frequency variance between model control 
runs and the observed record.  This new approach allows us to then display and compare the 
models’ control run low-frequency variance (standard deviation) with the (adjusted) observed 
estimate with less leakage of forced variance than was present previously.  Here is how we have 
done this:  At each gridpoint, we low-pass filter the observations using a decadal filter with half 
power point at 9 years.  Rather than compare this variance directly to that of a model control run, 
we first attempt to estimate how much of an amplification of variance there is in the observed 
estimate owing to the presence of forced variability (in addition to internal, unforced variability).  
We correct or adjust for this amplification in two stages.  For CMIP5 (or CMIP3, analyzed 
separately), we used the grand ensemble mean of the seven model All-Forcing runs as the 
estimate of the forced signal to remove from observations.  This provides the first level of 
adjusted observations.  But we know that due to errors in simulating the forced response and the 
limited number of ensemble members that are used to estimate the forced response, there is some 
forced variance that remains in the adjusted observed series.  We try to estimate how much 
remains by using this same general procedure to filter the forced response from the model all-
forcing runs and then calculate the residual variance that remains by direct comparison to the 
control run for the same model.  We do this for each model in turn and generate and average 
“second-level” adjustment.  This average adjustment is then applied to the standard deviation 
from the first-level adjusted observations to obtain a new observed internal variability standard 
deviation estimate that is more comparable with the model control runs.  Given this new 
approach (derived with two separate levels of adjustment) we can now more defensibly compare 
the model control run and observed low-frequency variability.  We stress that our procedure 
remains a very rough test of decadal variance consistency, especially in data poor regions such as 
the southern ocean.  There will be inherent limits to what we can do because there is only so 
much observational data and only so many ensemble members supplied by the modeling centers.  
In terms of observational temporal coverage, in order for a comparison to be done between 
model and observations at a gridpoint, we require at least 50 points (out of 110) to be available in 
the 110-year annually resolved decadally filtered record.  Forty percent temporal coverage is 
required for an annual mean to be considered valid, and the decadal filter does a modest degree 
of gap-infilling by computing in a seven-year wide sliding window, a filtered value if at least 
four of seven annual values are available. 

The adjusted standard deviation of low-pass filtered observations (which we call “Obs. St. 
Dev.*”) is the basis of the difference maps and spatial correlations in Figs. 2 and 3, and for the 
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revised variance consistency statistics quoted in the text (global mean), in the maps (Figs. 14-16) 
and in the summary time series (Fig. 17). 

We have added text to explain this new procedure and accompanying in Section 3b..   

 

 

Reviewer Comments:  (Responses are in red.) 

Reviewer #1:  

The ms is much more readable, and the authors have done a remarkable job extending the ms and 
improving it - congratulations on an excellent job, I am happy with it, just a few questions / 
suggestions for the authors to address as they see fit: 

 

On the low number of models that both have detectable changes and realistic variability: it would 
be important to clarify what faults there are in variability - is the variability too high or too low? 
While the first queries model quality but makes d+a results conservative, the latter is more 
problematic. if the authors can see a way to make this more clear, or ideally be specific on if the 
var is too high or low, would be great. If not at least flag please. 

For the global mean variance comparisons, we now also state the number of models that are 
significantly too high and too low.  For the maps, this is more difficult to convey without adding 
new panels to the figures.  However, we’ve made some changes to at least partially address this 
issue, without adding new panels to the fraction of model plots.  We’ve decided to change the 
format of Fig. 2 and 3 so that these now show differences in low frequency standard deviation 
between model control runs and  observations (where an adjustment correction has been applied 
to the observed field to make it more comparable to control run variability in the models as 
explained above).  These maps allow the reader to see, for a general region, which models have 
low-frequency variability that is less  than or greater than observed (although doesn’t indicate 
whether the difference is significant or not).  The multi-model average standard deviation plot 
shows the difference vs. observations for the average low-frequency standard deviation of the 
models. 

 

 

abstract: 'weighted against' is not quite the right way to phrase it - maybe say 'and reject an 
alternative explanation based on scenarios driven with natural forcings only'  

We have adopted this change. 

line 100/101 twice section 7, bit awkard. 

Second occurrence should have been “8”.  This is now corrected. 



 

l 332: describing a trend measured over just a few decades in K/100yrs is a bit misleading - 
maybe change notation to K/decade? thats much more common pracitce -again a few lines down. 

We’ve made this change. 

l 333: at what percentile of the multimodel range is a trend starting in the 1990s? or one starting 
in 2000? (just a curious question if easy to answr might be useful to have) 

We have not yet computed this yet, but we plan to insert a sentence with this calculation at the 
galley proof stage, as it is not critical to the paper at this point. 

 

 

l 337/339 I cant quite understand this - so the ensemble mean of each model is averaged to a 
multimodel mean? And then the noise is added on that - for a reasonably small ensemble, this 
would make the noise quite large as there will be still quite a bit in the ensemble mean (eg 
ensemble of 4 would give you total standard dev 10% too large). This is not a big deal, but if you 
have done it like that without correcting the variance down, would be good to caveat, if you have 
corrected (eg following von Storch and Zwiers) worth mentioning. Based on this noise 
magnitude without correcting you might find too many models to have too large variability! 

 

First, we need to clarify how the pink and blue envelopes on Figs. 7, 8 are constructed.  These 
envelopes for a given trend start date, are 5th to 95th percentile range of trends about a central 
value which is the grand ensemble mean trend of the All Forcing or Natural Forcing models.  
The ensemble mean of each model is averaged to obtain the grand multimodel mean as the 
reviewer notes.  However, the spread is computed in a different way such that it includes 
uncertainty not only due to internal variability, but also uncertainty due to the different model 
responses to forcing.  To compute the spread, we build a distribution of trends as follows.  For 
example, for the case  of All-Forcing runs, where we have seven models, we sample each of the 
seven models equally often in building up a large distribution of trends.  When we sample a 
model, this means we combine that model’s ensemble mean with some randomly sampled trend 
from that model’s control run.  Each time we do this we create one sample, and the process is 
repeated a large number of times (50 times for each model included, or 350 times for the seven 
model analysis), sampling from each of the seven models equally often.  The “grand 
distribution” built up in this way then has spread due to the differences in model mean trends 
among the seven models and due to the control run variability. 

Turning to the second part of the reviewer’s question, we agree that the limited number of 
ensemble members for the individual models means that there is additional variance in the grand 
distribution due to our imperfect knowledge of each model’s forced response.  However, the net 
impact of this on the spread of the total distribution is a complicated function of several factors.  
These include the following four factors:  1) the number of ensemble members a particular 
model has (which we now show in Fig. 1; the larger the number of ensemble members the 



smaller the overestimate of variance; 2) where the models with few ensemble members sit in the 
distribution (if they are close to the outer edge, the overestimate can be greater than if they are 
near the middle of the distribution); 3) what is the variance of the model with few ensemble 
members or that sits at the outer edge of the distribution; and 4) what is the relative size of the 
spread of the individual model ensemble responses vs. the internal variability of the models near 
the outer edge of the distribution.   

We can also estimate an upper limit on the overestimate of the standard deviation, based on the 
number of ensemble members we use, as about 15-40% at most, with the worst case being for a 
single ensemble member, where the variance is as much as doubled, so the standard deviation is 
40% overestimated.  However, given the four factors mentioned above, the effect will typically 
be considerably smaller than this. 

It is also worth noting that the effect of an overestimation of variance in our framework is to 
make trends too difficult to detect (compared to internal variability or to the internal variability 
plus natural forcing), but to also make it too easy for All-Forcing trends to be consistent with 
observations. 

We could in principle attempt a simulation to essentially estimate confidence intervals on our 
confidence intervals, but these would be situation dependent and would vary for different 
locations around the globe, time period, etc.  We have chosen to leave this for further studies and 
add a caveat summarizing the above discussion in the conclusion section along with other 
caveats of our analysis. 

 

l 383 typo 'for' 

Corrected. 

l 398: the 'most' assessment is also based on using spatial patterns to distinguish between 
forcings and estimate ghg alone, maybe rephrase slightly 

We have rephrased the second part of the paragraph to address this issue and compare a little 
further the nature of our approach compared with other complementary approaches. 

 

l 507: not sure Hegerl 2007 is the best quote for this - Portman et al. 2009 might be more useful 
here Portmann R. W., S. Solomon and G.C. Hegerl (2009): Linkages between climate change, 
extreme temperature and precipitation across the United States . PNAS, 2009, www.pnas.org cgi 
doi 10.1073 pnas.0808533106 (no strong view just a suggestion) 

This is a good suggestion and we’ve added this reference, which we had intended to add earlier 
but had forgotten to do so. 

l 588: ALl these explanations are possible and useful, but its also worth noting that among many 
at least partly independent regions you would expect some to be high or low just by chance 
(although I doubt thats the case here - but worth listing) - same in line 984 and probably most 
important to mention there. 



 

We have adopted these suggestions. 

 

l 748: might be worth mentioning that the hiatus in the mid20th was precided by strong early 
20th century warming 

 

We have adopted this suggestion. 

 

l 877 and 881 see general comment ab ove - are they low or high? 

We now refer the reader back to revised Figs. 2 and 3, which allow one to assess whether models 
tend to be too high or too low in terms of simulated variability. 

 

l 917: isnt this at least partly because there is less detectable in the first place for the short 
interval? 

Yes, so we have moved the comment on the variance test up to the end of the preceding 
paragraph so that it is not confused with the issue of relatively limited regions with detectable 
trends over the short period (1991-2010).  
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 16 

 17 

Abstract.  18 

 19 

Regional surface temperature trends from the CMIP3 and CMIP5 20
th

 century runs are compared 20 

with observations -- at spatial scales ranging from global averages to individual grid points -- 21 

using simulated intrinsic climate variability from pre-industrial control runs to assess whether 22 

observed trends are detectable and/or consistent with the models’ historical run trends.  The 23 

CMIP5 models are also used to detect anthropogenic components of the observed trends, by 24 

assessing alternative hypotheses based on scenarios driven with either anthropogenic plus natural 25 

forcings combined, or with natural forcings only. Modeled variability is assessed via inspection 26 

of control run time series, standard deviation maps, spectral analyses, and low-frequency 27 

variance consistency tests.  The models are found to provide plausible representations of internal 28 

climate variability, though there is room for improvement. The influence of observational 29 

uncertainty on the trends is assessed, and found to be generally small compared to intrinsic 30 

climate variability.     31 

Observed temperature trends over 1901-2010 are found to contain detectable anthropogenic 32 

warming components over a large fraction (about 80%) of the analyzed global area.  In several 33 

regions, the observed warming is significantly underestimated by the models, including parts of 34 

the southern Ocean, south Atlantic, far eastern Atlantic, and far west Pacific.  Regions without 35 

detectable warming signals include the high latitude North Atlantic, the eastern U.S., and parts of 36 

the eastern Pacific.   For 1981-2010, the observed warming trends over about 45% of the globe 37 

are found to contain a detectable anthropogenic warming; this includes much of the globe within 38 

about 40-45 degrees of the equator, except for the eastern Pacific. 39 
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 40 

1. Introduction 41 

Are historical simulations of surface temperature trends, obtained using climate models with the 42 

best available estimates of past climate forcings, consistent with observations?  Where on the 43 

globe can observed temperature trends be attributed to anthropogenic forcing? These questions 44 

can be examined using a substantial number of different climate models and using different 45 

analysis methods.  Here we attempt to incorporate information from a relatively large sample of 46 

climate models, from the Coupled Model Intercomparison Project 3 (CMIP3; Meehl et al. 2007) 47 

and CMIP5 (Taylor et al. 2012), using various multi-model combination techniques. The general 48 

approach is to compare the modeled and observed trends, in terms of both magnitude and 49 

pattern, by considering trends at each grid point in the observational grid, as well as trends over 50 

broader-scale regions.    51 

The term “detectable climate trend” used here refers to a trend in the observations that is 52 

inconsistent with (i.e., outside of the 5
th

 to 95
th

 percentile range of) simulated trends, either from 53 

control runs (the internal or intrinsic climate variability background) or from a sample of natural-54 

forcing response and control run variability combined (the natural climate variability 55 

background).  (Control runs are long runs with pre-industrial forcings that do not change from 56 

year to year.)  We interpret a trend in observations as “attributable (at least in part) to 57 

anthropogenic forcing” if it is both inconsistent with simulated natural climate variability 58 

(detectable) and consistent with the All-Forcing runs that contain both anthropogenic forcing 59 

agents (e.g., changes in greenhouse gases and aerosols) and natural forcings (e.g., changes in 60 

solar insolation or volcanic aerosol loading).  If an observed trend is detectable but inconsistent 61 
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with All-Forcing runs because it is larger than the simulated distribution of trends, we still 62 

interpret the observed trend as attributable, at least in part, to anthropogenic forcing.  While a 63 

number of CMIP5 models have Natural-Forcing-Only runs available on-line, for the CMIP3 64 

models, relatively few such runs are available.  Therefore, for CMIP3, we adopt a simpler 65 

approach of assessing whether observed trends are consistent with All-Forcing runs, but 66 

inconsistent with internal variability alone.  The simpler approach does not allow us to draw 67 

conclusions about whether an observed trend is attributable to anthropogenic forcing or not. 68 

The modeled internal climate variability from long control runs is used to determine whether 69 

observed and simulated trends are consistent or inconsistent.  In other words, we assess whether 70 

observed and simulated forced trends are more extreme than those that might be expected from 71 

random sampling of internal climate variability.  This approach has been applied to earlier 72 

models in a number of studies, beginning with the analyses of Stouffer et al. (1994; 2000).  73 

Similarly, we use the available ensemble of simulated forced trends to assess whether observed 74 

trends are compatible with the forcing-and-response hypotheses embodied by those forced 75 

simulations. 76 

Formal detection/attribution techniques often use a model-generated pattern from a single or set 77 

of climate forcing experiments, and then regress this pattern against the observations to compute 78 

a scaling amplitude (e.g., Hegerl et al. 1996;  Hasselmann 1997; Allen and Tett 1999; Allen and 79 

Stott 2003) .  If the scaling is significantly different from zero, the forced signal is detected.   If 80 

the scaling does not significantly differ from unity, then the amplitude of the signal agrees with 81 

observations, or is at least close enough to agree within an expected range based on internal 82 

climate variability.  Optimal detection techniques also filter the data during the analysis such that 83 

the chance of detecting a specified signal, or “fingerprint”, is enhanced if the signal is present in 84 
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the data.  An alternative approach that is less focused on model-defined patterns has been 85 

proposed by Schneider and Held (2001).  In contrast to the optimal detection/attribution 86 

methods, we compare both the amplitude and pattern simulated by the models directly with the 87 

observations, without rescaling of patterns or application of optimization filtering.  Our analysis 88 

is thus a consistency test for both the amplitude and pattern of the observed versus simulated 89 

trends, building on earlier work along these lines by Knutson et al. 1999; Karoly and Wu 2005; 90 

Knutson et al. 2006; and Wu and Karoly 2007 to test for detectable anthropogenic contributions.  91 

Other variants and enhancements to this general type of analysis have recently been presented by 92 

Sakaguchi et al. (2012).   More discussion of various detection and attribution methods and their 93 

use in general is contained in Hegerl et al. 2009.  94 

 95 

In this report, the models, methods, and observed data are described in Section 2.   We examine 96 

the model control runs and their variability in Section 3.  Global-mean time series from the 97 

20C3M (approximately 1860-2010) historical runs are examined in Section 4.  Section 5 contains 98 

consistency tests for observed vs simulated trends, as discussed above, for temperatures averaged 99 

over various defined regions of the globe.  Maps based on results of consistency tests at the grid 100 

point scale are presented in Section 6.   A brief description of online supplemental material is 101 

given in Section 7, and the discussion and conclusions are given in Section 8. 102 

 103 

2.  Model and Observed Data Sources 104 

 105 
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a. Observed data 106 

 107 

The observed surface temperature dataset used in this study is the HadCRUT4 (Morice et al. 108 

2012) which is available as a set of anomalies relative to the period 1961-1990.  The dataset 109 

contains some notable revisions, particularly to SSTs (HadSST3; Kennedy et al. 2011), relative 110 

to previous versions, so it important to retest earlier conclusions regarding climate trends using 111 

the revised data.  The dataset also contains uncertainty information, in the form of 100 ensemble 112 

members sampling the estimated observational uncertainty.  Some of our tests examine the 113 

sensitivity of trend results to this observational uncertainty.   114 

 115 

To form a combined product of SST and land surface air temperature, Morice et al. (2012) adopt 116 

the following procedure.  If both land data and SST data are available in a particular grid box, 117 

they are weighted according to the fraction of the grid box that is covered by land or ocean, 118 

respectively.  A minimum of 25% coverage is assumed, even if the fraction of the grid box 119 

covered by land is less than 25%.  In our study, we use this same general procedure, adapted to a 120 

model’s land-sea mask, to combine SST and land surface air temperature data sets from each 121 

model that we analyze. 122 

 123 

b.  CMIP3 and CMIP5 models 124 

 125 
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Figure 1 displays the complete collection of control runs from both CMIP3 and CMIP5 used in 126 

our analysis.  The data were downloaded from the CMIP3 (www-127 

pcmdi.gov/ipcc/about_ipcc.php) and CMIP5 (cmip-pcmdi.llnl.gov/cmip5) model archives.   We 128 

regridded (averaged) the model data from the 20C3M historical runs and control runs onto the 129 

observational grid.  In cases where we needed to use combined model land surface air 130 

temperature and SST data to compare with observations, we used a procedure resembling that 131 

used for the observations, but based on the model’s own land-sea mask.  For example, if any land 132 

is present in a grid box, a minimum of 25% land coverage is assumed, even if the fraction of the 133 

grid box covered by land is less than 25%.  Our general approach in this study is to attempt to 134 

mimic observations with the models, in terms of data coverage over time. To mimic the space-135 

time history of data gaps in the observations, we masked out (withheld from the analysis) model 136 

data at times and locations where data were labeled missing in the observations.  Finally, we 137 

computed the model’s climatology over the same years as for observations (1961-1990) and then 138 

created anomalies from this climatology. For example, this same procedure was used for 150-yr 139 

samples from the model control runs for analyses where we wanted to ensure that the control 140 

runs had missing data characteristics that were similar to those of the observed data.  141 

 142 

The historical forcings for the CMIP3 20C3M historical forcing runs are summarized in Rind et 143 

al. (2009; Table 3.6).  An important distinction among the models is the treatment of volcanic 144 

forcing. Ten of the 24 CMIP3 models we examined include volcanic forcing, while 14 do not.  145 

However, as discussed further below, for most of our assessments, we used a maximum of 19 of 146 

the 24 CMIP3 models of which eight included volcanic forcing while 11 models (identified by 147 

“*” after model name in Fig. 1 a,b) did not. We refer to these sets of models as the eight 148 



8 
 

“Volcanic” and 11 “Non-Volcanic” CMIP3 model subsets, respectively.   All 23 of the CMIP5 149 

models included in this study included volcanic forcing in their 20C3M runs.  However, only 150 

seven of the 23 CMIP5 models had Natural-Forcing-Only runs that extended to 2010 (see Fig. 151 

1).  These Natural-Forcing runs extending to 2010 were necessary for some of our detection and 152 

attribution analyses concerning anthropogenic forcing, and those seven models form the CMIP5 153 

seven-model subset referred to in subsequent section. 154 

 155 

3.  Model Control Run Analysis 156 

a. Global mean time series 157 

The global-mean surface air temperature series from the CMIP3 and CMIP5 model control runs 158 

are shown in Fig. 1.  Data are displayed with arbitrary vertical offsets for visual clarity.  The 159 

figure also shows the observed surface temperature anomalies from HadCRUT4.  The curves 160 

labeled “Residual” were obtained by subtracting the multi-model mean of the historical volcanic 161 

forcing runs (either CMIP3 of CMIP5) from the full observed time series.  These observed 162 

residual series thus contain estimates of the internal variability of the climate system as derived 163 

from the observations in combination with the climate models’ response to estimated historical 164 

forcing. In section 3b we will further refine this estimate of observed internal variability.  165 

 166 

The model control runs exhibit long-term drifts.  The magnitudes of these drifts tend to be larger 167 

in the CMIP3 control runs (Fig. 1a,b) than in the CMIP5 control runs (Fig. 1 c,d), although there 168 

are exceptions.  We assume that these drifts are due to the models not being in equilibrium with 169 
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the control run forcing, and we remove the drifts by a linear trend analysis (depicted by the 170 

orange straight lines in Fig. 1).  In some CMIP3 cases the drift initially proceeds at one rate, but 171 

then the trend becomes smaller for the remainder of the run.  We approximate the drift in these 172 

cases by two separate linear trend segments, which are identified in the figure by the short 173 

vertical orange line segments.  These long-term drift trends are removed to produce the “drift-174 

corrected” series.  The procedure for removing the trends involves calculating and removing the 175 

linear trends (over the time periods shown in Fig. 1) at each model grid point separately.  The 176 

orange trend lines shown in Fig. 1 depict also the starting and ending years for the trends used 177 

for each model.   178 

Five of the 24 CMIP3 models, identified by “(-)”  in Fig. 1, were not used, or practically not 179 

used, beyond Fig. 1 in our analysis.  For instance, the IAP_fgoals1.0.g model has a strong 180 

discontinuity near year 200 of the control run.  We judge this as likely an artifact due to some 181 

problem with the model simulation, and we therefore chose to exclude this model from further 182 

analysis. The Miroc_3.2_hires and INGV_echam4 model control runs are so short in length that 183 

they are essentially unused in our analysis, since we require the control run record to be at least 184 

three times as long as a trend that is being assessed.  For two other models, we were not able to 185 

successfully obtain sea surface temperature information from the CMIP3 archive, and so these 186 

were excluded from further analysis. 187 

 188 

While some of the trends in the CMIP3 and CMIP5 control runs (Fig. 1) approach the observed 189 

~150 yr trend in terms of general magnitude, these few cases are associated with either the long-190 

term drifts discussed above or with a few spurious discontinuity issues (e.g., IAP_fgoals1.0.g).  191 
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Controlling for these apparent problems, none of the control runs in the CMIP3 or CMIP5 192 

samples exhibit a centennial scale trend as large as the trend in the observations.  On the other 193 

hand, the variability of observed residual series appears roughly similar in scale to that from 194 

several of the control runs.  Three of the CMIP3 control runs illustrated in Fig. 1 (GISS_aom, 195 

GISS_model_e_h, and GISS_model_e_f) have much lower levels of global surface temperature 196 

variability than in the observed residual series.  For some sensitivity tests on the multi-model 197 

assessments, we have excluded these three models to test for robustness.   198 

b.  Geographical distribution of variability 199 

 200 

In this section, we describe a method for comparing the geographical distributions of observed 201 

variability with model control run variability. The geographical distribution of an adjusted 202 

standard deviation of low-pass-filtered (> 10 yr)  surface  temperature from observations (Obs. 203 

St. Dev.*) is shown in Fig. 2 (middle column: b, e, h).  These observed estimates contain 204 

adjustments (described in detail below) that make them more suitable for comparison to the 205 

variability in the model control run. This is necessary because the variability within the model 206 

control runs is generated strictly internally within the models and does not contain contributions 207 

from external climate forcings.  In contrast, observed temperature will contain some mixture of 208 

variability due to external climate forcing agents and internally generated processes in the 209 

climate system.    The models’ average standard deviation fields, based on the full available time 210 

series of surface air temperature from each control run, are shown in the left column (a, d, g).  211 

Prior to computing the individual model standard deviations, the long-term drift has been 212 

subtracted from each control run as discussed in Section 3a.  The individual model standard 213 

deviations are then averaged for the three model sets to form the fields in (a, d, g). Difference 214 
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maps, computed as the models’ average low-frequency standard deviations minus Obs. St. Dev*, 215 

are shown in the right column (c, f, i) of Fig. 2.    216 

We now describe the process for computing the adjusted observed low-pass filtered standard 217 

deviation (Obs. St. Dev.*; Fig. 2 b, e, h).  At each gridpoint, we low-pass filter the observations 218 

using a decadal filter with a half-power point at nine years.  Rather than compare this variance 219 

directly to variance from a model control run, we first attempt to estimate how much of an 220 

amplification of variance there is in the observed estimate owing to the presence of forced 221 

variability (in addition to internal, unforced variability).  We then correct or adjust for this 222 

amplification in two stages.  For each of the three sets of models (CMIP3 eight-model set; 223 

CMIP5 23-model set, and CMIP5 seven-model subset), analyzed separately, we use the grand 224 

ensemble mean of the model All-Forcing runs (n=8, 23, or 7) as an estimate of the forced signal 225 

to remove from observations.  This provides the “first level” adjustment for the observations, 226 

which is slightly different for each set of models.  However, since the true forced response of a 227 

given model is only approximately known, given the limited number of ensemble members that 228 

are used to estimate this forced response, it follows that some residual forced variance will 229 

remain in the observed series after this initial adjustment.  We try to estimate how much variance 230 

remains by using the same procedure that we used for observations, but applying it to each 231 

individual All-Forcing run ensemble member.  That is, for a given model, we consider each of its 232 

All-Forcing ensemble member separately and remove the multi-model ensemble mean (as for 233 

observations) to derive an internal variability estimate.  We average this estimate across all of 234 

that model’s ensemble members to create an average standard deviation for that model, and then 235 

average across all models to create a multi-model ensemble internal variability standard 236 

deviation estimate.  Next, we consider the model control runs, and compute the average standard 237 
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deviations for a sample of 50 randomly drawn 110-yr time series from each control run, average 238 

those, and then average across all of the control runs to create an ensemble-average internal 239 

variability estimate from the control runs.  For each of the 110-yr segments, the control model 240 

data is masked with the observed mask for the given grid point before being low-pass filtered. 241 

By comparing the internal variability estimate derived from the All-Forcing runs with that from 242 

the control runs for the same models, we derive the “second-level” adjustment.  This average 243 

adjustment is then applied to the standard deviation from the “first-level” adjusted observations 244 

to obtain a new observed internal variability standard deviation estimate (Obs. St. Dev.*) that is 245 

more suitable to compare with the model control runs.  Given this method (which includes two 246 

separate levels of adjustment) we can now more defensibly compare the model control run and 247 

observed low-frequency variability.   248 

We stress that our variance-comparison procedure described above is only a very rough test of 249 

decadal variance consistency, and is not even attempted in data-poor regions such as the deep 250 

Southern Ocean.  There are inherent limitations to our estimates because there is only so much 251 

observational data and only so many ensemble members supplied by the modeling centers.  In 252 

terms of observational temporal coverage, in order for a comparison to be done between model 253 

and observations at a grid point, we require at least 50 points (out of 110) to be available in the 254 

110-year annually resolved decadally filtered record.  Forty percent temporal coverage is 255 

required for an annual mean to be considered valid, and the decadal filter does a modest degree 256 

of gap-infilling by computing a filtered value if at least four of seven annual values are available 257 

within a seven-year wide sliding window. 258 
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The adjusted standard deviation of low-pass filtered observations ( “Obs. St. Dev.*”) forms the 259 

basis of the observed estimates and difference maps in Figs. 2 and 3, and of the variance 260 

consistency tests that will be described later in this report. 261 

The adjusted observed fields ( “Obs. St. Dev.*”)  suggest that the strongest low-frequency 262 

internal surface temperature variability occurs over higher latitude land and oceanic regions of 263 

the Northern Hemisphere. The modeled fields also show these features, though they are 264 

somewhat stronger in the models than for the observed estimate. Thus, a feature that stands out 265 

in the modeled minus observed (Obs. St. Dev.*)  standard deviation field (Fig. 2 c, f, i) is the 266 

tendency for model-simulated low-frequency internal variability to exceed the observed estimate 267 

in high-latitude oceanic and continental regions of the Northern Hemisphere. Another feature is a 268 

tendency for the modeled variability to be too small over much of the remaining ocean regions 269 

and Southern Hemisphere as far south as about 40
o
S.  Limited data coverage precludes an 270 

assessment of low-frequency variability over of the Arctic Ocean, Antarctica, and the Southern 271 

Ocean south of 40
o
S (gray regions on the maps).   272 

 273 

The general features shown in the ensemble mean difference maps in Fig. 2 (c, f, i) are also 274 

present to some degree for many of the individual models (Fig. 3).  We also list in Fig. 3 the 275 

spatial correlation coefficients between the individual model standard deviation fields (not 276 

shown) and the observed field (Obs. St. Dev.*).  These spatial correlations vary from about 0.5 277 

to 0.7 for the models shown, indicating a relatively good agreement between individual models 278 

and observations in the overall spatial structure of the variability.  This gives us some confidence 279 

in the models’ ability to simulate at least the broad-scale features of surface temperature low-280 

frequency variability.   281 
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 282 

There are a number of caveats to the comparison presented here.  For example, uncertainties 283 

remain in estimating the forced variability component from observations, which is used to create 284 

the observed residual, and thus there are uncertainties in the observed internal variability 285 

estimate used for comparison to the model control runs, as noted earlier.  In addition, the 286 

available observational records are relatively short compared with many of the model control 287 

runs.  As noted by Wittenberg (2009) and Vecchi and Wittenberg (2010), long-running control 288 

runs suggest that internally generated SST variability, at least in the ENSO region, can vary 289 

substantially between different 100-yr periods (approximately the length of record used here for 290 

observations), which again emphasizes the caution that must be placed on comparisons of 291 

modeled vs. observed internal variability based on records of relatively limited duration.   292 

  293 

 294 

4. Global mean surface temperature:  Historical forcing runs 295 

a. Time series of global mean surface temperature 296 

The global mean time series of surface temperature from the 20C3M historical runs are 297 

compared with observations (black curves) in Fig. 4 in a form similar to that presented by Hegerl 298 

et al. (2007).  The historical dates of large volcanic eruptions are shown by vertical brown lines. 299 

An analysis of the model time series for the CMIP3 and CMIP5 All-Forcing experiments is 300 

presented in Figs. 4a-c, and for the available CMIP5 Natural-Forcing-Only experiments in Fig. 301 

4d.  The large shaded region on each plot shows the 5
th

 to 95
th

 percentile range of a single model 302 

realization from the multi-model sample.  The multi-model sample is formed by combining the 303 

distributions of each of the models, with each model having an equal probability weight in the 304 
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multi-model distribution.  The sub-distribution from each model is centered on that model’s 305 

ensemble mean with the distribution about that mean based on the control run for that model.  306 

Thus the multi-model distribution incorporates the uncertainty due to differences between the 307 

model ensemble means (i.e., forcing and response-to-forcing uncertainties) and uncertainties due 308 

to internal variability for each model.   309 

The analysis shows that for the All-Forcing runs (Fig. 4 a-c) most of the time the observed 310 

annual means lie within the 5
th

 to 95
th

 percentile range of single model realizations, implying that 311 

there is a consistency between the observed record and the multi-model ensemble of runs taken 312 

as a whole.  However, the range for the CMIP5 Natural-Forcing-Only simulations (Fig. 4d) 313 

clearly separates from the observed time series after about 1960, indicating that Natural-Forcing-314 

Only runs are inconsistent with observations, particularly for the late 20
th

 century global 315 

warming. 316 

The narrower shaded region between the two thick red lines (a-c) depicts the 5
th

 to 95
th

 percentile 317 

range of the multi-model ensemble mean.  This is fairly narrow, indicating that the multi-model 318 

ensemble means of these particular sets of models are fairly well-constrained, with relatively 319 

small uncertainty.  The ensemble means of the CMIP3 and CMIP5 volcanic models (Fig. 4 a,c) 320 

track the observations remarkably well although the apparent volcanically induced temporary 321 

dips are not in full agreement with the observed behavior for those periods.  For example, in Fig. 322 

4a, and 4c, the multi-model responses to the Pinatubo and Krakatau eruptions appear to be larger 323 

than in observations.  These apparent discrepancies in the volcanic responses will require further 324 

analysis (see e.g. Stenchikov et al. 2009) and are not a focus of the present study. For example, 325 

one must carefully assess the role of internal climate variability in judging whether these 326 

differences are significant or not.   327 
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The combined volcanic and non-volcanic CMIP3 ensemble (Fig. 4 (b)) shows a substantially 328 

wider envelope of model behavior, as expected with the larger number of models and with the 329 

wider discrepancy in forcing among these models.  Since the “Non-Volcanic” runs have a 330 

substantially less realistic representation of the forcing, we will generally emphasize the eight 331 

CMIP3 models with “Volcanic” runs in panel (a) in our remaining forced model assessments for 332 

the CMIP3 models in this study. 333 

b. Spectra of global mean surface temperature 334 

Figure 5 (a,b)  shows the variance spectra of observed global mean temperature (black curves, 335 

with a shaded range for the 90% confidence intervals) and of the individual CMIP3 and CMIP5 336 

“Volcanic forcing” historical runs (red curves) from Fig. 4 (a, c), using data from the years 1880-337 

2010.  The data were not detrended prior to computing the spectra.  Before plotting, the raw 338 

spectra were smoothed using a non-overlapping sliding boxcar window that groups the raw 339 

spectra into groups of three calculable frequencies.  The 90% confidence intervals on the 340 

observed spectrum assume six degrees of freedom for each spectral estimate (group of three) 341 

shown.  The sum of the variance is plotted at the central frequency of the sliding boxcar window.  342 

The enhanced power at low frequencies in (a,b) relative to (c,d) is associated with the strong 343 

warming trend in both observations and the All-Forcing model runs.  There is a strong tendency 344 

for the model spectra to lie within the 90% confidence intervals of the observed spectra, 345 

particularly at periods longer than 10 yr (frequency < 0.1 yr
-1

).   346 

The spectra in Fig 5 (c) and (d) are based on residual time series from observations or model 347 

historical runs, where the multi-model ensemble surface temperature time series from the 348 

20C3M volcanically forced historical runs is first subtracted from the observed global mean 349 
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temperature series or from the individual model historical runs to form residual time series.  As a 350 

result of this filtering procedure, most of the long-term warming trend (e.g., Fig. 4 a, c) is 351 

removed from the time series.  The agreement between variance spectra of model and observed 352 

residual time series in Fig. 5 (c,d) is not as good as for the original unfiltered spectra (Fig. 5 a,b), 353 

particularly for the CMIP3.  354 

 355 

Overall, the results of these comparisons suggest that the model simulations have a plausible 356 

representation of variability of the climate system, in terms of the spatial pattern of variability 357 

and the direct comparison of the time series of observed and historical run global mean surface 358 

temperature.  The spectral results suggest that the models, particularly the CMIP3, may have 359 

some shortcomings in global low-frequency variability simulations, although there are 360 

uncertainties in estimates of the internal climate variability as obtained by creating observed 361 

residual time series.  Overall, these findings encourage us to use the models to assess surface 362 

temperature trends at the regional scale in the following sections, with the caveat that there is 363 

likely room for improvement in the model simulations of internal variability.  Further tests of 364 

low-frequency variability are presented in Section 6. 365 

 366 

5. Trend assessments: global mean and regional time series 367 

a. Methodology for the “sliding trend” analysis: CMIP5 models 368 

In this section we compare the observed and simulated historical (20C3M) temperature trends 369 

obtained from global or regional averages, to assess whether a linear trend signal has emerged 370 
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from the “background noise” of internal or natural climate variability, as estimated by the 371 

models.  The primary focus is on the seven CMIP5 models that have Natural-Forcing-Only runs 372 

extending to 2010.  While we can extend All-Forcing runs to 2010, when necessary, using 373 

RCP4.5 projections, this is not tractable for the Natural-Forcing-Only runs.  We can use these 374 

seven CMIP5 model runs together to assess whether the observed trends have emerged from the 375 

background of natural variability and whether they contain an attributable anthropogenic 376 

component.   We also examine the full sample (23 models) of CMIP5 runs for our All-Forcing 377 

run vs. control run analysis.  For these 23 models and for the eight CMIP3 models that include 378 

volcanic forcing (but for which we generally do not have Natural-Forcing-Only runs), we can 379 

ask a more limited set of questions, namely whether the linear trend signal to 2010 in the 380 

observations has emerged from the background of internal climate variability and whether the 381 

All-Forcing run trends are consistent with the observed trends.   382 

We assess the trends across a wide “sliding range” of start years beginning as early as 1861.  All 383 

trends in the analysis use 2010 as the end year.  The general procedure we use is illustrated in 384 

Fig. 7 (a) for global mean surface temperature.  The black shaded curve in the figure shows the 385 

value of the linear trend in observed global mean temperature for each beginning year from 1880 386 

to 2000, in each case with the trend ending in the year 2010.  The HadCRUT4 observed data set 387 

contains an ensemble of 100 estimates, and these are used to create an ensemble of observed 388 

trend estimates.  The black shading depicts the 5
th

 to 95
th

 percentile range of this ensemble. The 389 

first year plotted for global mean temperature was 1880 because the areal coverage and temporal 390 

coverage requirements for a trend to 2010 were reached in that year.  The observed temperature 391 

trend to 2010 is about 0.5
o
C/100 yr (0.05 

o
C/decade) beginning early in the record (late 1800s) 392 

and increases to about 2
o
C/100 yr (0.2

o
C/decade) by around 1980.   The observed trend has 393 
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decreased for more recent start dates, falling below 1
o
C/100 yr (0.1

o
C/decade) for trends 394 

beginning in the late 1990s.  395 

The blue curve in Fig. 7a shows the “mean of ensemble mean trends” for the Natural-Forcing-396 

Only runs of the seven CMIP5 model subset (see caption).  Each of the seven models is weighted 397 

equally in the mean of ensemble means, even if a modeling center provided a greater or smaller 398 

than average number of within-model ensemble members.  The light blue shading in Fig. 7 (a) 399 

shows the 5
th

 to 95
th

 percentile range of trend values for the Natural-Forcing-Only runs, which is 400 

constructed using the long-term drift-adjusted control run variability (Fig. 1 c,d) from each 401 

model.  Under an assumption that internal variability in the control run is not substantially 402 

different from that in the forced runs, we can use the long control run for each model to estimate 403 

the component of inter-realization uncertainty that would be present in the forced trends; this is 404 

helpful, since most centers did not provide enough ensemble members to precisely assess this 405 

component of the uncertainty.   406 

To prevent any one model from dominating the analysis, our approach also attempts to weight 407 

the various models roughly equally.  Thus even if one modeling center provided a much longer 408 

control run than the others, each of these models would still get an equal weighting in 409 

constructing a multi-model sample of internal climate variability.  Control runs from each of the 410 

seven CMIP5 models contribute equally to the multi-model sample from which the percentile 411 

range is constructed, as long a particular model control run is “eligible” for use, meaning here 412 

that the length of the usable part of the control run is at least three times the length of the 413 

observed trend being examined. 414 
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Each randomly selected control run trend (from the seven models used) is combined with that 415 

model’s ensemble-mean Natural-Forcing-Only trend for that trend length, thus creating a 416 

distribution of historical Natural-Forcing-Only trends that includes the uncertainty due to both 417 

internal variability and the spread of forced responses across the seven models.  The blue region 418 

is the 5th to 95th percentile range of this distribution of trends, and thus relates to the uncertainty 419 

of single ensemble members (which mimics the real world, itself a “single ensemble member”).  420 

Therefore, the distribution of trends used to construct the percentile range includes uncertainty 421 

due to both the different natural forcings and responses of the individual models, and the 422 

uncertainty due to the internal variability as simulated in the control runs.  The random 423 

resampling approach is necessary because the available control runs for the various models are of 424 

different lengths and yet we purposely chose to give each available model an equal “vote” in 425 

estimating internal variability.  The samples are drawn from the control runs in the form of 150-426 

yr samples with randomly chosen start dates, with each sample masked with the observed mask 427 

of missing data over the period 1861-2010 to create data sets with missing data characteristics 428 

that are similar to those of the observations.  The analysis in Fig. 7 (a) shows that observed 429 

global temperature trends-to-2010 of almost any length are detectable compared to the CMIP5 430 

Natural-Forcing-Only runs and simulated internal variability—even for trends as short as those 431 

beginning around 1990.  Note that the spread of uncertainty expands for shorter trends, reflecting 432 

the fact that the model can internally produce relatively larger-magnitude trend rates over 433 

relatively short periods.  434 

The dark red curve and light pink shading in Fig. 7 (a) depict the inter-model mean of ensemble 435 

means and the 5
th

 to 95
th

 percentile uncertainty range for the All-Forcing runs (i.e., natural and 436 

anthropogenic forcings combined) and control runs for the seven-model CMIP5 subset.  These 437 
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are constructed in an analogous way to the Natural-Forcing-Only curves and blue shading, and 438 

thus depict the uncertainty due to both internal variability and to the different models’ responses 439 

to historical climate forcing agents (All Forcings, in this case).  The violet shading in the plot is 440 

the region where the pink and blue shading overlap, indicating that the 5
th

 to 95
th

 percentile 441 

ranges of the All-Forcing and the Natural-Forcing simulated trends at least partially overlap.   442 

In Fig. 7 (a), the black (observed) curve is always within the pink- (or violet-) shaded region, 443 

meaning that global mean temperature trends are not significantly different from the CMIP5 444 

historical All-Forcing run ensemble on any time scale, including the most recent ‘weak trends’ 445 

beginning in the late 1990s.   446 

When the black-shaded curve in Fig. 7a lies entirely within (or above) the pink-shaded region 447 

and entirely outside of the blue-shaded region, we conclude that the trend from that point to 2010 448 

has a detectable anthropogenic component. Given that the observed global mean surface 449 

temperature trends with start dates through about the mid-1990s lie within this region of the 450 

graph, we conclude that the observed global surface temperature warming to 2010 is at least 451 

partially attributable to anthropogenic forcing according to these model data and observations.  452 

Inspection of Fig. 7a further indicates that this detection and attribution result is sufficiently 453 

strong that the uncertainty associated with the combined effects of internal climate variability, 454 

uncertainty in the model responses to natural forcing, and the uncertainty in the observed 455 

ensemble could be a factor of two larger than shown here and the same conclusion would still 456 

hold.for start dates from the late 1800s to about the mid-20
th

 century.   Our attribution conclusion 457 

for anthropogenic forcing and global mean temperature is not as strong as in IPCC AR4 (Hegerl 458 

et al. 2007), partly because we are not focusing in this study on quantifying the magnitude or 459 

fractional contribution of the anthropogenic forcing.  Also, our technique does not use 460 
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information in spatial patterns to distinguish between different forcings or to quantify the effect 461 

of individual forcings (e.g., greenhouse gases).  Rather, our focus is on evaluating the evidence 462 

for detectable and attributable net anthropogenic influence on surface temperature in various 463 

regions around the globe, using the ‘best estimates’ as provided by current models (without any 464 

rescaling).  We essentially compare two alternative hypotheses (natural and anthropogenic 465 

forcings vs. natural forcings only) and focus down even to the scale of individual 5
o
 x 5

o
 grid 466 

boxes, which is important for regional climate change assessment.   467 

There are some important caveats to the approach that we use, aside from the obvious one that 468 

we rely on models to estimate the internal climate variability levels (which are compared to an 469 

derived observed estimate Obs. St. Dev.* in Section 3b).  The limited number of ensemble 470 

members for the individual models means that there is additional variance in the grand 471 

distributions of trends (i.e., pink- and blue-shaded regions) due to our imperfect knowledge of 472 

each model’s forced response.  However, the net impact of this limitation on the spread of the 473 

total distribution is a complicated function of several factors.  These include the following four 474 

factors:  1) the number of ensemble members a particular model has (which we now show in Fig. 475 

1; the larger the number of ensemble members, the smaller the overestimate of variance); 2) 476 

where the models with few ensemble members sit in the distribution (if they are close to the 477 

outer edge, the overestimate can be greater than if they are near the middle of the distribution); 3) 478 

what is the variance of the model with few ensemble members or that sits at the outer edge of the 479 

distribution; and 4) what is the relative size of the spread of the individual model ensemble 480 

responses vs. the internal variability of the models near the outer edge of the distribution.   481 

We can also estimate an upper limit on the overestimate of the standard deviation, based on the 482 

number of ensemble members we use, as about 15-40% at most, with the worst case being for a 483 
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single ensemble member, where the variance is as much as doubled, so the standard deviation is 484 

40% overestimated.  However, given the four factors mentioned above, the effect will typically 485 

be considerably smaller than this. 486 

It is also worth noting that the effect of an overestimation of variance in our framework is to 487 

make trends too difficult to detect (compared to internal variability or to the internal variability 488 

plus natural forcing), but to also make it too easy for All-Forcing trends to be consistent with 489 

observations. 490 

We could in principle attempt a simulation to essentially estimate confidence intervals on our 491 

confidence intervals, but these would be situation dependent and would vary for different 492 

locations around the globe, time period, etc.  We have chosen to leave this extension for further 493 

studies, but note that the above issues should be considered in evaluating our results. 494 

 495 

b.  Detection/attribution findings for various regional indices 496 

The sliding trend/ detection and attribution analysis discussed above for global mean temperature 497 

can be applied to various regions around the globe.  Here we briefly summarize the findings of 498 

such an application (panels shown in Figs. 7 and 8). 499 

1) MAJOR LARGE-SCALE REGIONAL INDICES 500 

For global sea surface temperature (SST) (Fig. 7b), trends to 2010 are clearly detectable for 501 

starting years up to about 1990.  The observed trends are only marginally attributable to 502 

anthropogenic forcing for trends beginning around the mid-20
th

 century, otherwise an 503 

attributable anthropogenic signal is clearly apparent for the detectable trends.  For global land 504 
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surface temperature (Fig. 7c) an attributable anthropogenic signal is clearly seen in the 505 

observed trends for all start dates from about 1885 up to about 1990, so the case for attribution is 506 

slightly more robust than for global sea surface temperature.  The anthropogenic warming signal 507 

is so much stronger over land than over ocean, that it readily detectable and attributable despite 508 

the greater intrinsic variability over land than over ocean. Northern hemisphere temperature 509 

(Fig. 7d) roughly mirrors the results for global temperature and global land temperature, with 510 

robust detection and attribution for start years up to about 1990.  Southern hemisphere 511 

temperature (Fig. 7e) results are similar though not quite as robust as for the Northern 512 

hemisphere, as the start dates with attributable anthropogenic influence extending up to about 513 

1980, rather than 1990.   514 

The northern hemisphere extratropics (30
o
-90

o
N) series (Fig. 7f) has robust detection and 515 

attribution up to around a 1990 start date, but the southern hemisphere extratropics (30
o
-90

o
S; 516 

Fig. 7g) is slightly less robust than the northern hemisphere, as detection/attribution extends to 517 

starts dates up to about 1980. The trends for the southern extratropics are relatively constant 518 

over a range of start dates from 1900 to 1970, in contrast to northern hemisphere series which 519 

shows a period of higher warming trend rates for trends to 2010 beginning in the second half of 520 

the 20
th

 century.  The southern extratopics trends from 1900 are marginally consistent with the 521 

All-Forcing model trends, as they are near the upper edge (95
th

 percentile) of the modeled 522 

distribution. An interesting feature of the northern extratropics and southern extratropics 523 

trends is that there is essentially no start date for which the 5
th

 to 95
th

 percentile range of the All-524 

Forcing and Natural-Forcing-Only simulated trends are not at least partially overlapping.  That 525 

is, in some sense the All-Forcing and Natural-Forcing trends from the models are not completely 526 

distinguishable from each other. The same will be true for many of the subsequent regional series 527 
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analyzed, especially for land regions and ocean regions with pronounced multi-decadal 528 

variability. Tropical surface temperatures, which combine land and ocean (Fig. h) regions, 529 

show robust detection and attribution for trends to 2010 with start dates as late as about the late 530 

1970s. 531 

2) REGIONAL SEA SURFACE TEMPERATURE INDICES 532 

Tropical SST’s (20
o
N-20

o
S; Fig. 7i) show similar robust detection and attribution results (for 533 

start dates as late as about the 1970s) to those for the tropical surface temperature as a whole.  534 

Indian Ocean SSTs (Fig. 7j; see Fig. 6 to identify region IO) exhibit robust detection and 535 

attribution for start dates up to about 1990, despite a larger observational uncertainty, particularly 536 

for trends beginning from the 1940s through the 1980s. A similar result is seen for the tropical 537 

Indian Ocean/western Pacific warm pool index (Fig. 7k) and for the tropical west Pacific (Fig. 538 

7l), which are important regions as they are dominant large-scale regions for tropical convection; 539 

these  have a detectable anthropogenic component for trends beginning up until about 1980. The 540 

tropical east Pacific (Fig. 7m) shows a detectable anthropogenic component for trends to 2010 541 

beginning from the 1880s to about 1920.  However, trends beginning from 1920 to 1970 are only 542 

marginally detectable as the black region (observations, including uncertainties) is not clearly 543 

outside of the blue (natural forcing) region. North Pacific SSTs (25
o
-45

o
N, Fig. 7n, see Fig. 6 to 544 

identify region), have a detectable anthropogenic component but only for start dates up to about 545 

1910. A marginally detectable signal is found for start dates up to about 1930 and for a narrow 546 

range of start years in the 1970s.  Otherwise, the trends are not detectable according to our 547 

analysis.      548 
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We analyzed four separate regions of the Atlantic Ocean, as this basin is noted for pronounced 549 

multi-decadal variability.  In the South Atlantic (Fig. 7o), there is a detectable anthropogenic 550 

warming for start dates up to the late 1970s.  An interesting feature in this region is that warming 551 

trends from the 1890s are slightly higher than even the 95
th

 percentile of the model simulations. 552 

North Atlantic SSTs (45
o
-60

o
N; Fig. 8a) exhibit no detectable trends outside of the range of 553 

natural variability for any start dates, according to our analysis.  This region is notable for having 554 

probably the least detectable signal of any of our study regions around the globe.  Despite the 555 

lack of detectable trends, the observed trends are at least consistent with the All-Forcing runs, 556 

which have a very wide 5
th

 to 95
th

 percentile range of trends due to the large simulated internal 557 

variability, as will be shown later in this section.  In the subtropical north Atlantic (20
o
-45

o
N; 558 

Fig. 8b) an anthropogenic signal is detected for start dates from about 1890 to 1920 and around 559 

1970, but otherwise is only borderline detectable up to about 1980.  In the tropical North 560 

Atlantic “main development region” for Atlantic tropical cyclones (Fig. 8c), there is a 561 

detectable anthropogenic warming to 2010 for start dates up to about 1960, and then only 562 

intermittently for start dates up to about 1990.   563 

MAJOR LAND REGION TEMPERATURE INDICES 564 

We now summarize the characteristics of surface temperature trends in major continental 565 

regions, beginning with Eurasia, Africa, and Australia.    The Europe temperature index (Fig. 566 

8d) has detectable anthropogenic warming trends for start dates up to about 1990, as the 567 

observed trends (even accounting for observational uncertainty in the HadCRUT4 data set) are 568 

outside of the range of the Natural-Forcing trends but lie well within the range for the All-569 

Forcing trends.  The Africa index (Fig. 8e) has detectable anthropogenic warming trends for start 570 

dates up to about the year 2000.  Our analysis of African temperature trends only extends back 571 
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to start dates beginning in the mid-1920s, due to more limited data coverage.  For northern Asia 572 

(Fig. 8f), our start dates extend back to the early 1900s and show a clear detectable 573 

anthropogenic warming signal for start dates extending from there up to about 1980.  For 574 

southern Asia (Fig. 8g) our analysis shows a similarly strong detectable anthropogenic warming 575 

signal for start dates extending from the late 1800s through about 1990.  An interesting feature of 576 

the African and southern Asia results is that the 5
th

 to 95
th

 percentile range of the All-Forcing 577 

trends from much of the 20
th

 century is much wider than the range for the Natural-Forcing runs.  578 

Since the contribution from internal variability (estimated from the control runs) is the same for 579 

the two sets of trend results, the uncertainty range of the All-Forcing ensemble mean trends 580 

across the models must be comparable to or substantially larger than the uncertainty due to 581 

internal climate variability alone.  The Australia temperature index (Fig. 8h) shows detectable 582 

anthropogenic warming trends for start dates from the late 1800s to about 1970.   583 

Considering now the land regions of North and South America, the index for Canada (Fig. 8i) 584 

shows detectable anthropogenic warming trends for start dates up to about 1970.  In contrast, for 585 

the Alaska index (Fig. 8j), a detectable anthropogenic warming trend to 2010 is most clear for 586 

start dates over the more limited range of 1940 to 1970.  Trends for post-1970 start dates are 587 

generally not detectable, and trends for start dates from about 1910 to 1940 are only marginally 588 

detectable.  For the continental United States (Fig. 8k) an anthropogenic warming trend to 2010 589 

is detectable for start dates of about 1900 to 1975. For start dates of about 1860 to 1900, the 590 

warming signal is only marginally detectable.  The temperature index for Mexico (Fig. 8 l) 591 

indicates that observational uncertainties play an important role for detection and attribution 592 

results in this region. A detectable anthropogenic warming trend is seen for start dates of about 593 

1910-1920 and about 1965-1980, otherwise the trends are not detectable.  In contrast, for the 594 
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South America index (Fig. 8 m), the temperature trends to 2010 are mostly detectable for start 595 

dates from about 1910 go 1950, but are not necessarily attributable to anthropogenic forcing for 596 

these periods because the observed trend range is not entirely within the pink region (range of 597 

All-Forcing simulated trends).  Rather, they appear systematically smaller than the simulated 598 

trends, after accounting for observational uncertainties. Anthropogenic warming trends to 2010 599 

are detectable for the South America index but only for a limited set of start years in the early 600 

1970s.   601 

Temperature trends for the southeastern United States index (Fig. 8o)  are of particular interest 602 

because the trend behavior in this region is different from most other land regions around the 603 

globe, as has been pointed out in a number of previous studies  (e.g., Knutson et al. 1999, 2006; 604 

Portmann et al. 2009).  According to our present analysis, trends to 2010 in this index are 605 

detectable only for a limited range of start years (mid-1950s to the mid-1970s).  For that limited 606 

set of start years, an anthropogenic warming trend to 2010 is detectable in our analysis.  The 607 

trends in the index to 2010 at least are consistent with All-Forcing runs for all start years after 608 

about 1940, but the warming trends even after 1940 are for the most part not strong enough to be 609 

detectable against the background of natural forcing and internal climate variability.  This 610 

behavior contrasts with the index for the rest of the continental United States (that lies outside 611 

of the southeastern U.S.) (Fig. 8 o), where an anthropogenic warming trend to 2010 is broadly 612 

detectable for start years ranging from about 1870 to the mid-1970s.    613 

c. Consistency test findings using CMIP3 and CMIP5 models  614 

Our regional temperature indices analysis in subsections 5(a) and 5(b) (i.e., Figs. 7 and 8) 615 

focused on the subset of seven CMIP5 models that had Natural-Forcing-Only runs that extended 616 
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to 2010. Here we conduct a complimentary assessment (for a more limited set of regions) that 617 

compares these results with similar analyses for the eight CMIP3 models (All-Forcing and 618 

control runs) and with the full set of 23 CMIP5 models (All-Forcing and control runs).  Where 619 

necessary, the All-Forcing 20C3M runs were extended to 2010 using A1B (CMIP3) or RCP4.5 620 

(CMIP5) projection runs; this procedure was not tenable for the Natural-Forcing-Only runs due 621 

to the strong differences in forcing between Natural-Only and the A1B or RCP4.5 scenarios for 622 

the extension years to 2010.  Our analyses for the CMIP3 models (and the 23 CMIP5 models as 623 

shown in the middle column of Fig. 9) therefore only compare internal climate variability 624 

(control runs) with All-Forcing historical runs.   Thus, we cannot use these results to draw firm 625 

conclusions about detection of anthropogenic trends, because the alternative hypothesis (Natural-626 

Forcing) is not available through 2010 for all of the models.  Nonetheless, we can draw some 627 

conclusions about detection of significant trends (against a background of internal climate 628 

variability) and about consistency of observed trends versus the trends in the All-Forcing 20C3M 629 

experiments. 630 

Our procedure is illustrated for the global temperature analysis in the top row of Fig. 9 (a-c).  631 

Figure 9c is identical to Fig. 7a and is repeated here for reference only.  Figure 9a shows the 5
th

 632 

to 95
th

 percentile range for the observed trends to 2010 (black shading); the 5
th

 to 95
th

 percentile 633 

range for the All-Forcing runs from the eight CMIP3 models (pink shading, with the red curve 634 

depicting the ensemble mean); and the 5
th

 to 95
th

 percentile range of control run trends from the 635 

same eight CMIP3 models (green shading).  Violet shading illustrates regions of overlap of the 636 

pink- and green-shaded regions.   Where the black curve lies outside of the green-shaded region, 637 

the observed trend is detectable compared to internal climate variability in the CMIP3 runs.  638 
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Where the observed curve lies within the pink shading, the observed trend is assessed as 639 

consistent with the CMIP3 All-Forcing ensemble of runs.  640 

Figure 9a (CMIP3) indicates that the observed global mean temperature trends to 2010 are 641 

detectable (inconsistent with internal climate variability in the eight CMIP3 models) for start 642 

dates from about 1880 to the mid-1990s, and are consistent with the CMIP3 All-Forcing run 643 

trends to 2010 for essentially all start dates from 1880 to 2000.  Similar conclusions are evident 644 

for the 23 CMIP5 models as shown in Fig. 9b.  As noted earlier, similar results are seen for the 645 

seven CMIP5 models when we incorporate the Natural-Forcing-Only runs in the tests (Fig. 9c), 646 

although there the detectability of the observed trend extends to start dates as late as about 1990, 647 

rather than into the mid-1990s. 648 

For tropical SST (Fig. 9d-f) the CMIP5 models, including the seven model subset with Natural-649 

Forcing-Only runs to 2010 (Fig. 9 f), indicate robust detection and attribution for trends to 2010 650 

for almost all start dates as late as about the late 1970s, as discussed earlier.  The consistency 651 

with the All-Forcing runs (all 23 CMIP5 models) is only marginal for a period of start dates 652 

around 1960.  A similar consistency result is seen for the 23 CMIP5 models (Fig. 9e) where we 653 

compare their All-Forcing runs with their control variability.  The observed trends to 2010 654 

appear to be detectable against the internal variability (control run) background of the 23 CMIP5 655 

models for start dates as late as about 1990.  For the eight CMIP3 models (Fig. 9d), the observed 656 

trends to 2010 are detectable for start dates up to 1990, similar to the CMIP5 models (Fig. 9e).  657 

However, the eight CMIP3 All-Forcing runs are not as consistent with the observed trends to 658 

2010 as the 23 CMIP5 All-Forcing runs.  In fact the CMIP3 All-Forcing runs appear only 659 

marginally consistent with the observed trends to 2010 for most of the start dates from 1880 660 

through about 1980.  This illustrates that the relatively modest levels of estimated internal 661 
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variability in this basin lead to a strongly detectable warming signal, but also make it difficult for 662 

a model to be assessed as consistent with the observations, as the margin for error is relatively 663 

small. 664 

 665 

The North Atlantic (45
o
-65

o
N) was highlighted earlier as a region with no detectable trends 666 

compared with the CMIP5 Natural-Forcing-Only runs and internal climate variability combined 667 

(Fig. 9i).  This is perhaps not surprising, given the substantial intrinsically-generated fluctuations 668 

on multi-decadal time scales in this region (see e.g. Yang et al. 2013).  We see from the green 669 

and violet shaded regions in Figs. 9 g,h that the range of trends to 2010 due to internal climate 670 

variability alone in the CMIP3 and CMIP5 models is quite large and appears to largely account 671 

for a similar wide range of simulated trends in the All-Forcing runs.  This also helps allow the 672 

observed trends to 2010 to be consistent with the CMIP3 and CMIP5 All-Forcing trends for all 673 

of the start dates examined, despite the fact that the observed trends are not detectable (i.e., not 674 

distinguishable from control run variability alone).    675 

For the southeastern United States index (Fig. 9 j-l) there is slightly more evidence for 676 

detectable trends to 2010 versus the internal variability samples in Fig. 9 j,k (start years 1950 to 677 

1980) than versus the combined Natural-Forcing/internal variability sample of trends from the 678 

seven CMIP5 models (blue shading in Fig. 9 (l))  with the latter having only marginally 679 

detectable trends and only for start dates from the mid-1950s to the mid-1970s).   For start years 680 

prior to about 1940, the distribution of observed trends lies near the edge and even outside of this 681 

5th to 95th percentile range for the All-Forcing runs (pink/violet shaded envelopes), especially 682 

for the CMIP3 model sample (Fig. 9j).  We thus conclude that even accounting for internal 683 
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variability, the CMIP3 and CMIP5 historical runs trends-to-2010 tend to be inconsistent or only 684 

marginally consistent with the observed southeastern U.S. surface temperature trends, 685 

particularly for starting dates in the early 20
th

 century.  This means that the CMIP3 and CMIP5 686 

All-Forcing runs can be falsified, at least for this relatively small region, and further implies that 687 

there remain as yet unexplained discrepancies between the historical simulations and 688 

observations for trends in this region.  We note that our tests are conducted on a large sample of 689 

at least partly independent regions, and thus we would expect some fraction of the area to have 690 

values that are too high or low due to chance.  Further discussion of this issue in the context of 691 

“global significance testing”, can be found, for example, in Knutson et al. (1999). 692 

The results for the rest of the continental United States index (outside of the southeastern 693 

United States; Fig. 9 m-o) are fairly consistent between the CMIP3 (m) and the CMIP5 models 694 

(n, o), although as discussed above, the nature of our conclusions are different for Fig. 9 (m and 695 

n) than for Fig. 9 (o), with the latter one including also the ensemble mean and additional 696 

uncertainty range associated with the different model responses to Natural Forcings.    697 

 698 

6. Grid point-scale detection and attribution tests 699 

a. Multi-model ensemble assessment 700 

1) 1901-2010 TRENDS           701 

The procedures in Section 5 that were used to categorize observed trends at individual grid 702 

points as detectable, attributable in part to anthropogenic forcing, consistent with All-Forcing 703 

runs, etc. can be applied at the grid-point scale, and the categories displayed in map form, for a 704 
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selected trend period.  For example, Fig. 10 shows the results of such a category analysis for the 705 

observed vs modeled trends for 1901-2010, with the bottom row showing category maps for the 706 

CMIP3 All-Forcing runs (e) and CMIP5 All-Forcing and Natural-Forcing-Only runs (f).  The 707 

linear trend maps for observed temperature (1901-2010) and the CMIP3 and CMIP5 All-Forcing 708 

ensemble means are shown in Fig. 10 (a-d) for reference. The observed trend map shows broad-709 

scale warming trends since 1901 at almost all locations around the globe, with areas of cooling in 710 

only a few regions, mainly in the high latitude North Atlantic and the southeastern United States.  711 

The CMIP3 and CMIP5 multi-model ensemble trends show broadly similar magnitude and 712 

pattern of cooling to observations, where the agreement can be quantitatively tested by our 713 

consistency tests as described in the previous section.  For the tests described in this section, we 714 

use only the ensemble mean observed trend and thus do not consider observational uncertainty, 715 

which was examined in the previous section. 716 

Figure 10 (f), for the seven CMIP5 models with both All-Forcing runs and Natural-Forcing-Only 717 

runs to 2010, builds upon the regional time series analysis shown in Figs. 7-8.  The white regions 718 

in Fig. 10 (f) indicate where the observed trend is not detectable compared to the Natural-719 

Forcing-Only runs (where the uncertainty estimates incorporate both simulated internal climate 720 

variability from the seven control runs and uncertainties in the Natural-Forcing-Only ensemble 721 

mean).  The dark grey regions in Fig. 10 (f) do not have sufficient data coverage for our tests.  722 

To determine if a grid point has “sufficient coverage” to include in our maps and analyzed area, 723 

we divide a given trend period (e.g., 1901-2010) into five roughly equal periods, and require that 724 

each of the five periods has at least 20% temporal coverage for annual means, where an annual 725 

mean is considered available if at least 40% of the months are available for the year.  The various 726 

colored (non-white, non-grey) regions in Fig. 10 (f) indicate where the trends are detectable, with 727 
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the category identified on the legend.  The yellow-orange regions show where the warming trend 728 

is detectable but still less than the lower end (5
th

 percentile) of the All-Forcing trend distribution.  729 

The light-red and dark-red regions indicate where the observed trend has a detectable 730 

anthropogenic component; for the darkest red regions the observed warming trend is so large that 731 

it exceeds the 95
th

 percentile of the modeled distribution, but here we still interpret this as 732 

implying a detectable anthropogenic component.  For cooling trends (blue regions), we have 733 

analogous terms to those used for the various warming cases, although these cases are almost 734 

absent for the 1901-2010 trends in our analysis. 735 

The results for Fig. 10 (f) show that most of the global area with sufficient temporal coverage is 736 

categorized as having attributable anthropogenic warming (either consistent in magnitude or 737 

significantly larger than in the All-Forcing runs).  The larger-than-simulated warming trends 738 

occur preferentially in the extratropical South Pacific, the South Atlantic, the far eastern Atlantic 739 

and the far western Pacific.  In only a relatively small percentage of the globe is the observed 740 

trend classified as not a detectable change (white regions in Fig. 10 f).  These include mainly the 741 

mid- to high-latitude North Atlantic, eastern United States, and parts of the eastern tropical and 742 

subtropical Pacific. 743 

A similar analysis for the CMIP3 All-Forcing runs (eight models with volcanic forcing) is shown 744 

in the left column of Fig. 10 (a,c,e).  The category names for the assessment (Fig. 10 e) are 745 

different than for the CMIP5 models (Fig. 10 f) because a Natural-Forcing-Only ensemble is not 746 

available in the archive for the CMIP3 models.  Therefore, our categories for CMIP3 (see 747 

legend) are limited to assessing consistency, either with the internal variability of the control 748 

runs or with the All-Forcing runs, and we do not address the question of attribution to 749 

anthropogenic forcing.  The observed widespread warming trends shown in Fig. 10 (a) are 750 
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assessed as detectable (compared with control run or internal climate variability) over most of 751 

the global region with sufficient coverage.  Only in some regions of the North Atlantic, eastern 752 

United States, and North Pacific (white regions in Fig. 10 (e) is the observed trend not 753 

detectable.  In only a very minor fraction of the analyzed area is there a detectable cooling trend 754 

since 1901 (blue shading in Fig. 10 e), according to our analysis. Yellow-orange regions (where 755 

the warming trend is detectable but less than simulated) occur preferentially in the lower 756 

latitudes, and are more common in the CMIP3 assessment than the CMIP5 assessment. Regions 757 

with significantly greater than observed warming trends (dark red) tend to occur more outside of 758 

the tropics for the CMIP3 assessment (Fig. 10e), but are fairly common even in the tropics for 759 

the CMIP5 assessment (Fig. 10f).   760 

2) 1951-2010 TRENDS 761 

Figure 11 explores how the results seen for 1901-2010 trends in Fig. 10 are altered when we 762 

analyze the trends for 1951-2010.  The observed trend map (Fig. 11 a) shows a more spatially 763 

varying structure than the trend map for 1901-2010 (Fig. 10 a).  The Asian and North American 764 

extratropical land regions have warmed substantially more than oceanic regions since 1951.  This 765 

amplification of warming over land since 1951 is also evident in the All-Forcing 20C3M 766 

ensemble means for both the CMIP3 eight-model set (Fig. 11c) and the CMIP5 seven-model 767 

(Fig. 11d)—although the contrast between the continental and oceanic regions is more 768 

pronounced in the observed trend map than in the multi-model ensembles, especially for CMIP3.  769 

This is also seen in the category maps (Fig. 11 e, f) where dark-red shading (observed warming 770 

significantly greater than simulated) is more prevalent over Asia and Alaska in the CMIP3 771 

assessment (e) than in the CMIP5 assessment (f).   772 
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The observed trend map (Fig. 11 a, b) shows a region of notable cooling over the mid-latitude 773 

North Pacific and a smaller region of cooling trends in the high-latitude North Atlantic just south 774 

of Greenland.  These cooling regions are assessed as having no detectable change (Fig. 11e, f), 775 

meaning that the cooling trends lie within the 5
th

 to 95
th

 percentile range of the simulated trends 776 

from the model control runs (CMIP3) or combined control run/Natural-Forcing runs (CMIP5).  777 

Non-detection of trends for 1951-2010 (white category, Fig. 11 e,f) are also found over large 778 

regions of the North Pacific, the central equatorial Pacific, the mid- to high-latitude North 779 

Atlantic, the far Southern Ocean near Antarctica, and in a few scattered continental regions such 780 

as the south-central or southeastern United States.   781 

Figure 11 (f) indicates where observed trends (1951-2010) are attributable, at least in part, to 782 

anthropogenic forcing (light-red and dark-red regions).  These regions cover most of the global 783 

area that has detectable trends, and for the 1951-2010 trends are comprised predominantly of 784 

regions where the trends are consistent with the All-Forcing ensembles (i.e., light red).  In 785 

addition to the land regions (parts of Asia, Alaska) mentioned earlier, parts of the tropical Indian 786 

Ocean and South Pacific also have warming trends that are not only attributable in part to 787 

anthropogenic forcing but are even significantly larger than simulated in the CMIP5 All-Forcing 788 

runs (dark-red shading).  The category results for the eight CMIP3 models (Fig. 11 e) are 789 

generally similar overall to those for the CMIP5, although the categories in Fig. 11 (e) do not 790 

include attribution to anthropogenic forcing (see legend), since the CMIP3 set of models does 791 

not include Natural-Forcing-Only runs that are necessary for such an attribution. 792 

Regions in Fig.11 (e, f) with warming trends that are detectable but significantly less than 793 

simulated in the All-Forcing runs (yellow-orange regions) are not that common, but are mainly 794 

found in the tropical and subtropical latitudes.  This, combined with the greater prevalence of 795 



37 
 

dark red (stronger than simulated warming) in the higher latitudes, implies that for the 1951-796 

2010 trends overall, the All-Forcing runs (CMIP3 and CMIP5) tend to exhibit too strong a 797 

warming trend at lower latitudes but too little warming in high-latitudes. 798 

3) 1981-2010 TRENDS    799 

The trend assessment results for the much shorter period 1981-2010 are presented in Fig. 12.  800 

The observed trend map (Fig. 12 a) has much more spatial structure than for either of the longer 801 

trend periods in Figs. 10a and 11a.  Since 1981 there have been extensive regions of cooling 802 

trends over the tropical and subtropical eastern Pacific, Gulf of Alaska, and much of the high 803 

latitude Southern Ocean.  The trend assessment (Fig. 12 e, f) shows that for the most part, the 804 

cooling trends in these regions are not detectable.  In fact, since less than 5% of the globe has 805 

“detectable” cooling trends, the percent of occurrence of the blue regions is not significantly 806 

different from what could occur from sampling variability alone.      807 

The large expanses of the globe without detectable trends (1981-2010) in Fig. 12 contrasts with 808 

the earlier finding of detectable warming in most analyzed regions for the longer trend analyses 809 

(Figs. 10, 11). The loss of a detectable signal, as one proceeds to later start dates in the 20
th

 810 

century--and shorter trend periods--is not unexpected.  For example, the results in Figs. 7-9 811 

showed how the trend rates for internally generated trends in the model become higher for 812 

shorter trend periods, as the models can produce strong internally generated trend rates over 813 

relatively short periods.   Comparing the category maps for different start dates (Fig. 10-12), the 814 

loss of detectability, as one proceeds to later start dates, occurs first in the extratropical North 815 

Atlantic (north of 40
o
N) and over large parts of the North Pacific, extending into the tropics, as 816 

seen for the 1951-2010 trends (Figs. 11).   For the late 20
th

 century start dates (e.g., 1981-2010; 817 
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Fig. 12) the region of no detectable warming expands to cover most of the southern oceans, south 818 

of 40
o
S, and extending south from 20

o
S in the South Atlantic.  This non-detection region also 819 

expands to include most of the eastern tropical and subtropical Pacific and much of the northern 820 

extratropics over Eurasia, North America, and the North Pacific.   821 

Of the regions with detectable trends for 1981-2010 (Fig. 12 e, f), the vast majority of grid points 822 

have trends that are consistent with the models (light red) and thus are at least partly attributable 823 

to anthropogenic forcing (CMIP5; Fig. 12f) or, in the case of the CMIP3 models (Fig. 12 e), at 824 

least consistent with All-Forcing runs.  These areas include large regions of the tropics, 825 

subtropics, and mid-latitudes within about 40-50 degrees of the equator (except for the eastern 826 

Pacific).  The relatively robust emergence of a significant warming signal over a relatively short 827 

time period (30 years) in the lower latitudes, as in Fig. 12 (f), is reminiscent of the recent study 828 

of Mahlstein et al. (2011), who conclude that the earliest emergence of significant greenhouse 829 

warming will occur in the summer season in low-latitude countries.  They examined land regions 830 

and looked at signal emergence for particular seasons (whereas we examine land and ocean 831 

regions and focus on annual means).  However, both studies point toward early emergence of 832 

anthropogenic warming signals in lower latitudes, as opposed to most high latitude continental 833 

regions. Some exceptions we note in Fig. 12 (f) include the significant anthropogenic warming 834 

trends (1981-2010) in the vicinity of Greenland and in some land regions near the edge of the 835 

Arctic Ocean.  836 

There is relatively little yellow-orange area (which in our convention designates warming that is 837 

detectable but significantly less than simulated) on the assessment maps for 1981-2010 (Fig. 12 838 

e, f).  The rare occurrence of this category for the later trend start dates can be explained by 839 

referring to the sliding trend analyses in Figs. 7-9.  The unshaded area on those graphs between 840 
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the pink- and blue-shaded “envelopes” corresponds to detectable warming that is less than 841 

simulated.  However, this region typically systematically shrinks as one progresses to later start 842 

dates.  That is, for shorter trend periods, it becomes much more difficult to distinguish the 843 

simulated All-Forcing trend distribution from the trend distribution of the Natural-Forcing-Only 844 

runs (CMIP5) or from the control runs (CMIP3).   845 

 846 

4) ENSEMBLE MEAN ASSESSMENT STATISTICS ACROSS TIME 847 

In Fig. 13, we explore how the percent of analyzed area with various category classifications 848 

changes for different start years (all for trends ending in 2010).  Figure 13(b) shows the 849 

aggregate percent area results for the CMIP5 models, using the seven models that have Natural-850 

Forcing-Only runs extending to 2010.  The total percent of analyzed area (i.e., regions with 851 

sufficient data coverage) that was assessed as having attributable anthropogenic warming trends 852 

(black curve) was about 80%  for trends over the period 1901-2010.  This drops to about 65% for 853 

start dates from 1931 to 1971, before dropping sharply to about 25% for the shortest period 854 

(1991-2010).  There is a temporary increase in percent of area with attributable anthropogenic 855 

warming  for the 1971 start date, which is apparently due to the temporary pause in global 856 

warming from about 1940 to 1970, which was preceded by a relatively strong rate of global 857 

warming during early 20
th

 century (Delworth and Knutson 2000).  The end of this pause, around 858 

1970, is a time period during which the prospects for detection of a warming signal are at least 859 

temporarily enhanced against a backdrop of a gradually declining percentage as the start date is 860 

moved forward through the 20
th

 century.  The blue curve in Fig. 13b (percent of analyzed area 861 

with no detectable change) shows generally opposite behavior to the black curve, increasing 862 
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from a low of about 10%, for 1901-2010 trends, to a high point of over 60% for the latest start 863 

period analyzed (1991-2010).   The analysis thus illustrates the advantages of a long record for 864 

detectability of the warming trend.  The green curve shows that roughly 15 % of the analyzed 865 

area has warming that is detected but less than simulated, for start dates through about 1941.  866 

This percentage then declines for later start dates as the increasing dominance of internal 867 

variability for short trend periods makes it much more difficult to distinguish the All-Forcing and 868 

Natural-Forcing trend distributions and thus more difficult for a trend to lie between the two 869 

distributions as discussed earlier.   The percent of area with trends that are attributable to 870 

anthropogenic forcing but significantly greater than simulated (red curve) also diminishes as the 871 

start dates move later in the century, possibly because of the growing width of the simulated 872 

trend distributions associated with internal climate variability, implying that it becomes difficult 873 

for an observed trend to be large enough to be inconsistent with the All-Forcing distributions on 874 

the high side.   875 

 876 

Figure 13 (a) summarizes the comparison between the CMIP3 (eight-models with volcanic 877 

forcing) and CMIP5 (23-model) results (solid lines vs. dashed lines) for various common 878 

categories.  This figure shows the percent areas corresponding to the maps in Figs. 10-12 (a, c, e) 879 

for the CMIP3 models, but for a range of start dates.  For the CMIP5, we use results for all 23 880 

models that have volcanic forcing, since a Natural-Forcing-Only experiment (extending to 2010) 881 

is not required for the comparisons shown in Fig. 13 (a), and thus we are not limited to the 882 

seven-model subset of CMIP5.  The percent area where the warming for the period 1901-2010 is 883 

detected and either consistent or greater than simulated (black curves) is about 70%  for CMIP3 884 

and over 75%  for CMIP5.  This percentage decreases for start dates of 1931 or 1941, before 885 
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rising to a temporary peak of about 70% for the 1971 start date and then falling again for later 886 

start dates.  As discussed earlier, temporary rise for mid-century start dates is likely due to the 887 

enhanced detectability of trends that start within the “relative trough” or temporary interruption 888 

of global warming that occurred around this time following the relative peak in global 889 

temperatures around 1940.   For start dates up to about 1931, the black curve for the CMIP5 890 

models (dashed) is about 5% higher on average than the (solid) one for the CMIP3 models.  891 

Thus, the 23 CMIP5 model All-Forcing runs appear at least slightly more consistent with 892 

observed trends than the eight CMIP3 All-Forcing runs, at least for the case of trends to 2010 893 

starting earlier than 1940.  However, for trends with start dates from 1941 through about 1971, 894 

the opposite is true, and the CMIP3 All-Forcing runs appear modestly more consistent with 895 

observations.  Other features in Fig. 13 (a) are generally similar to those described for the seven 896 

CMIP5 models (Fig. 13 b), although the category descriptions (conclusions about attribution) are 897 

necessarily different.  The general temporal behavior of the various curves through time is 898 

remarkably similar between the solid (CMIP3) and dashed (CMIP5) models in Fig. 13 (a).  899 

b. Model by model trend assessment 900 

In contrast to the analyses in the previous subsection (Figs. 10-13) which focused on the multi-901 

model ensemble means vs. observations, in this subsection we consider the individual models 902 

within the CMIP3 and CMIP5 ensembles and assess what percentage of individual models meet 903 

certain criteria.  That is, the determination of whether a given CMIP3 or CMIP5 individual 904 

model is included in a category (e.g., “warming- detectable and consistent”) for a given grid 905 

point is based on the evaluation of the historical runs and control runs for that model alone.  In 906 

this section, we also introduce and apply a variance consistency test as an addition consistency 907 

test for the models vs. observations.   908 
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We will introduce and describe the various tests as we discuss the different panels in Fig. 14, 909 

which contains the analysis of the eight CMIP3 models (with volcanic forcing) vs. observations 910 

for linear trends over the period 1901-2010.  Figure 14 (a) and (b) present the observed and 911 

multi-model ensemble mean trend maps for reference; these were discussed earlier for Fig. 10.  912 

Figure 14 (c) shows the fraction (or percent) of models, at each grid point, that have no 913 

detectable trend.  The area-weighted global average of this fraction is 0.09, and the most 914 

prominent regions with no detectable trend are in the North Atlantic (south of Greenland), the 915 

mid-latitude North Pacific, and the southeastern United States.  Figure 14 (d) shows the fraction 916 

of models at each grid point with warming that is detectable but less than simulated in the All-917 

Forcing runs.  The global average fraction is 0.22, and the most prominent regions of occurrence 918 

are in the tropics, meaning that the eight CMIP3 models, viewed independently, have a tendency 919 

to simulate too rapid a century-scale warming in the tropics.  The warming is detectable and 920 

consistent with the All-Forcing runs for a global average fraction of 0.34 of the models (Fig. 14 921 

e), with a spatial pattern that is fairly evenly distributed around the analyzed areas of the globe.  922 

The warming is detectable and significantly greater than simulated for a global average fraction 923 

of 0.32 of the models (Fig. 14 f), with the most prominent occurrence of this category being in 924 

the mid- to high latitudes of both hemispheres.  Warming is detectable for about 89% of the 925 

models, on average around the globe (Fig. 14 g)—essentially the inverse of the results in Fig. 14 926 

(c).  Warming is detectable and consistent or greater than simulated for two thirds of the models, 927 

on average, (Fig. 14 h) which shows essentially the inverse of the pattern in Fig. 14 (d), and 928 

indicates that the simulated warming tends to be too weak in mid- to higher latitudes in the 929 

CMIP3 All-Forcing runs.  The observed and CMIP3 simulated (All-Forcing) trends are assessed 930 

as consistent for 39% of the models on average (Fig. 14 i); this category includes cases where the 931 
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trend is not detectable, but still consistent with the All-Forcing runs (see Figs. 7-9 for example).  932 

This fraction field (Fig. 14i) has a fairly even spatial distribution over the global analyzed area. 933 

One limitation of our approach is that models with unrealistically large internal variability have 934 

some advantage over models with more realistic variability, in that it is easier for high-variability 935 

models to have trends that are consistent with observations, since the margin of error is greater.  936 

To address this concern, here we apply a second test (a variance consistency test) to the models.  937 

Then a model that has both a consistent trend and consistent variability, compared with observed 938 

estimates, will be ranked more highly in a metric test compared with a model with consistent 939 

trends but inconsistent variability.  In other words, this expands our consistency tests into a two-940 

dimensional space (trend and internal variability).   941 

The variance consistency test for the eight CMIP3 models with volcanic forcing (Fig. 14 j) is 942 

constructed as follows.   For each grid point, we estimate the adjusted observed standard 943 

deviation of low-frequency (>10 yr) internal variability (Obs. St. Dev.*) as discussed in Section 944 

3b.  This variability is compared with a distribution of low-frequency standard deviations from 945 

the model control run, which is obtained by drawing 50 random 110-yr samples of combined 946 

SST and surface air temperature from the drift-adjusted control run (see Section 3 a), masking 947 

missing data periods with the observed mask for the given grid point, low-pass filtering, and 948 

computing the 50 standard deviation estimates. If the Obs. St. Dev.* value for the grid point  lies 949 

within the 5
th

 to 95
th

 percentile range of the combined control run distribution, the model is 950 

assessed as having low-frequency internal climate variability that is consistent with the 951 

observations according to this test.  There are important limitations of this test, which we 952 

recognize at the outset.  When applied to a single model, as done here, a single model’s control 953 

run may not be long enough to provide an adequate sample of the 5
th

 to 95
th

 percentile range of 954 
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low-frequency (>10 yr ) variance estimates; indeed, this is an important reason to advocate for 955 

longer control runs (or larger ensemble sizes) in future CMIP designs.  In addition, the observed 956 

residual, which is needed for comparisons with control run variability, has some uncertainties, as 957 

the multi-model ensemble mean forced response only approximately removes the forced climate 958 

signal from the observations. Our adjustment procedure used to create Obs. St. Dev.*, described 959 

in Section 3b, attempts to account for this uncertainty. 960 

Figure 14 (j) illustrates the results of applying the test.  On average, 26% of CMIP3 models have 961 

variability consistent with observations, according to the test.  Locations where the modeled low-962 

frequency variability is consistent with observations are fairly evenly distributed around the 963 

globe, although the fraction is notably low in the southeastern Pacific and south Atlantic basins.   964 

Figure 14 (k) shows the map of the fraction of the CMIP3 models where both the variability and 965 

trend are consistent with observations on a grid point basis according to our tests.  The global 966 

average fraction is 0.11, indicating that achieving consistency with both tests simultaneously at 967 

the grid point scale is a challenge for the CMIP3 models.    968 

The variance consistency test can also be applied to the global mean temperature series (e.g., 969 

Figs. 4b, 5c, and 9a).   We find that seven of the eight CMIP3 models (88%) have low-frequency 970 

variance for their global mean temperature that is consistent with the observed residual, 971 

according to our test, with one model having variance that is significantly too low.    972 

 Figures 15 and 16 present the same analysis as Fig. 14, but for the 23 CMIP5 models with All-973 

Forcing runs (Fig. 15), and for the subset of seven CMIP5 models that have at least one Natural-974 

Forcing-Only run extending to 2010 (Fig. 16).  The mapped results for the 23 CMIP5 models 975 

(Fig. 15) are rather similar overall and have similar spatial features to those for the eight CMIP3 976 
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models (Fig. 14) discussed above.  One notable difference is that the CMIP5 models in both Fig. 977 

15 and Fig. 16 have a greater global mean fraction of models with consistent low-frequency 978 

variance (0.30-0.31) than the CMIP3 models in Fig. 14 (0.26). The globally averaged fraction of 979 

models that have both consistent trend and variance (panel k) is about the same in CMIP5 (0.12) 980 

as in the CMIP3 sample (0.11).  Figure 16, for the seven model subset of CMIP5 models, shows 981 

where trends are assessed as containing attributable anthropogenic trend contributions.   The 982 

analysis indicates that the globally averaged percent of the seven CMIP5 models with 983 

attributable anthropogenic warming at the grid point scale over the 1901-2010 period is 70% 984 

(Fig. 16 h).  The globally averaged percentage of models with both attributable anthropogenic 985 

warming and consistent low-frequency variance is 22%, according to the tests described above 986 

(Fig. 16 l). 987 

The variance consistency test can also be applied to the global mean temperature series for both 988 

the full set of 23 CMIP5 models and the seven model subset of CMIP5 models.  This test 989 

indicates that 15 of the 23 CMIP5 models 65%), and four of the seven–model CMIP5 model 990 

subset (57%), have global mean low-frequency variance that is consistent with observations.  991 

This is a smaller fraction than for the CMIP3 models (88%).  In cases of inconsistency, the 992 

model variance is too low more often than too high (six low vs. two high for the CMIP5 23 993 

models; and two low vs. one high for the CMIP5 seven-model subset).  For cases other than the 994 

global mean, Figures 2 and 3 depict where the low-frequency variability of individual models, or 995 

the ensemble-average low-frequency variability across the models, tends to be either too low or 996 

too high, compared to the adjusted observed internal variability estimate (Obs. St. Dev.*).    997 

As has been discussed mentioned earlier, there are a number of  limitations in our trend variance 998 

estimates and consistency tests.  We hope to improve on the variance consistency tests in a future 999 
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study; for example, there are other model-observation comparison paradigms that can be 1000 

explored (e.g., Annan and Hargreaves 2010).  Meanwhile, we stress the need for longer control 1001 

runs and/or greater numbers of independent ensemble members from the models in order to more 1002 

robustly assess the various models’ low-frequency variability. 1003 

Figure 17 summarizes several globally averaged trend consistency metrics as a function of trend 1004 

start year for the individual models in the CMIP3 and CMIP5 samples.  Fig. 17 (b, d, and f) also 1005 

assess the consistency of the models’ low frequency variability, as these include both a trend 1006 

consistency test and a variability consistency test.  In the various panels of Figure 17, we 1007 

compare, across the models, the fraction of analyzed area where there is both a detectable change 1008 

in observations and where this detectable change is consistent with the individual climate 1009 

models.  Note that these metrics do not include the fraction of area where a climate model is 1010 

consistent with observations but there is not a detectable trend.   1011 

While all metrics have shortcomings, the particular metrics in Fig. 17 have at least some useful 1012 

compensation properties.  For example, for a model with unrealistically large internal variability, 1013 

the enhanced potential for consistency of modeled and observed trends due simply to the larger 1014 

internal variability is partly compensated by a reduction in the area assessed as having detectable 1015 

trends according to that model.  The two-dimensional (trend and low-frequency variance) 1016 

consistency tests provide for an even greater compensating balance against the potential metric 1017 

problem mentioned above.   1018 

The results in Fig. 17 (a, c) show that the individual CMIP3 and CMIP5 models have rather 1019 

similar behavior in terms of fraction of globally analyzed area with consistent detectable trends 1020 

(typically ranging from 20 to 50%).  There is somewhat more spread among the CMIP5 models, 1021 
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although there are more models in the CMIP5 sample as well.  This trend consistency metric 1022 

tends to reach a peak value around 1960-1970 start dates before declining for later start dates, for 1023 

reasons discussed for  Fig. 13.  When a variance consistency test is added (Fig. 17 b,d), the 1024 

percent of analyzed global area with both consistent trends and consistent low frequency 1025 

variance drops substantially, to typically about 10 to 20%.  Clearly the variance consistency test 1026 

proposed here can pose a challenging test for the current models.  We have plans to explore other 1027 

types of variance consistency tests in our future work.   1028 

 1029 

For the seven-model CMIP5 sample (Fig. 17 e), the percent of analyzed global area with 1030 

attributable anthropogenic trends (including trends that are detectable but greater than simulated) 1031 

is close to 80% for 1901-2010 trends, for five of the seven models, with the remaining two 1032 

models having lower percent area (40-60%).   All seven models end up in the range of 40-70% 1033 

for this metric for the latest starting date analyzed (1991).  The metric that tests for both 1034 

attributable anthropogenic trend and consistent low-frequency variance (Fig. 17 f), indicates that 1035 

the seven models have a range of percent area of 17-35% for the 1901-2010 trends, but this range 1036 

decreases to about 10% or less for the 1991-2010 trends.   1037 

7.  Supplemental material and further sensitivity studies 1038 

The analysis presented in this study introduces a framework for trend analysis that has many 1039 

possible applications and extensions.  For surface temperature, there are many figures that are 1040 

variations on the ones presented here, but were too numerous to include in this article.  1041 

Therefore, we have created a web site based largely on this analysis, but which contains 1042 

additional supplemental figures (http://www.gfdl.noaa.gov/surface-temperature-trends). For 1043 
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example, the web site contains plots for individual seasons that complement the annual-averaged 1044 

analysis in this study.  We show plots using alternative percentiles (97.5
th

 and 2.5
th

 ) instead of 1045 

95
th

 and 5
th

, and plots excluding certain low variability models from the analysis, etc. Additional 1046 

regional plots like Figs. 7-9, including ones for individual seasons, are available, as well as maps 1047 

for different trend start dates.  In addition, a number of plots based on analysis of individual 1048 

CMIP3 or CMIP5 models, as opposed to multi-model ensemble means, are available.  1049 

 1050 

 1051 

8. Summary and Conclusions 1052 

The purpose of this analysis has been to introduce and apply a framework for assessing regional 1053 

surface temperature trends using both the CMIP3 and CMIP5 models and using a multi-model 1054 

sampling approach.  We examined the behavior of the various control runs for the CMIP3 and 1055 

CMIP5 models, and used the control run variability to help assess whether observed trends were 1056 

unusual or not compared with the models’ internally generated variability.  We also used the 1057 

control run variability to help assess whether observed trends were consistent with trends from 1058 

the historical (20C3M) simulations—either All-Forcing runs or Natural-Forcing-Only runs.  In 1059 

cases for the CMIP5 models where trends were demonstrated to be inconsistent with Natural-1060 

Forcing-Only, but consistent with the All-Forcing runs, we conclude that an attributable 1061 

anthropogenic component is present in the observed trend.  For cases, such as the CMIP3 model 1062 

assessments, where Natural-Forcing-Only runs are generally not available, we tested for 1063 

detectable trends (compared to internal climate variability) and for consistency between observed 1064 

and All-Forcing historical (20C3M) runs.  1065 
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In the separate CMIP3 and CMIP5 analyses, we generally attempt to give different models equal 1066 

weight, even when a modeling center provides fewer ensemble members or shorter control runs.  1067 

Tests are applied at global and regional scales, as well as at individual grid points on the 1068 

observed data grid where there is sufficient data coverage over the period of the trend.  Results 1069 

are summarized using classification maps and global percent area statistics.  Our analysis 1070 

contains a substantial assessment of the variability in the models, including control run time 1071 

series for visual inspection, standard deviation maps of low-pass filtered data, spectral analysis, 1072 

and a low-frequency variance consistency test that is applied to individual models.   1073 

One of the most important results from the assessment is the identification of regions—and even 1074 

grid points--where an anthropogenic warming signal is detectable in the observed temperature 1075 

records.  For trends over the period 1901-2010, a large fraction (about 80%) of the global area 1076 

(with sufficient data coverage over time) has a detectable anthropogenic warming signal.  1077 

Regions where the observed warming seems to be most commonly underestimated by the models 1078 

include the southern Ocean, south Atlantic, the far eastern North Atlantic, and off the east coast 1079 

of Asia.  The main regions without detectable warming signals include the high latitude North 1080 

Atlantic, the eastern U.S., and parts of the eastern and North Pacific.  Moving forward in time, 1081 

for the much shorter period (1981-2010) the observed warming trends over about 45% of the 1082 

globe are assessed as having a detectable anthropogenic contribution.  These regions include 1083 

parts of the tropics, subtropics, and mid-latitudes (within about 40-45 degrees of the equator), 1084 

and a narrow zonally oriented band near the Arctic Ocean.  Areas without detectable trends 1085 

(1981-2010) include much of the eastern Pacific--which is a region influenced by strong 1086 

interannual variability associated with ENSO--and many extratropical regions poleward of about 1087 

40
o
N and 40

o
S.  The CMIP3 models and the larger sample (23) of CMIP5 models yield results 1088 
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similar to those described above, although for these samples we assess only the consistency of 1089 

trends, and not whether they contain an  attributable anthropogenic component (due to the lack of 1090 

Natural-Forcing runs with which to do such an assessment). 1091 

The reduced global area with detectable anthropogenic trends as one examines later start dates 1092 

for trends in the record (all trends ending in 2010) illustrates the advantages of long records for 1093 

trend detection in the context of this model-based assessment.  In general, the shorter the epoch, 1094 

the larger is the potential contribution of internal variability to the trend, leading to a greater 1095 

spread (uncertainty) for sampled trends. 1096 

There are numerous examples of modeled trends or variability that are inconsistent with 1097 

observations in our study.  As has been noted in a previous paper using a similar methodology 1098 

with two climate models (Knutson et al. 2006), disagreement between modeled and observed 1099 

trends in this type of analysis can occur due to shortcomings of models (internal variability 1100 

simulation; response to forcing), shortcomings of the specified historical forcings, or problems 1101 

with the observed data.  A certain fraction of area should be expected to have inconsistent results 1102 

due to chance alone (see Knutson et al. 1999 for further discussion of global significance testing 1103 

in this context).  As a further example, Wu and Karoly (2007) and Wu (2010) have noted that 1104 

disagreement between simulated and observed regional surface temperature trends can result 1105 

from shortcomings of models in simulating the observed warming associated with the changes of 1106 

the leading climate variability modes (such as the Arctic Oscillation).  1107 

Concerning observational uncertainty, the HadCRUT4 data set (Morice et al. 2012) contains 100 1108 

ensemble members that attempt to characterize the uncertainties in the observations.  We have 1109 

performed some preliminary tests using these ensembles to assess the spread of observed trend 1110 
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estimates.  These tests thus far indicate that even at the regional scale, the spread in trend 1111 

estimates due to observational uncertainties, as contained in the ensembles, is generally much 1112 

smaller than the spread in model simulated trends due to the internal variability and differences 1113 

in forced responses in the historical runs (e.g., Figs. 7-9).  However, in some regions (e.g., 1114 

Mexico), the uncertainty in the observations plays an important role in the assessment of 1115 

detectable anthropogenic contributions to trends. 1116 

We have attempted to at least partially address the issue of model uncertainties in the simulation 1117 

of internal climate variability and in the response to historical forcing by using multi-model 1118 

ensembles and by assessing consistency of both trends and low-frequency variability.  When we 1119 

apply a two-dimensional screening test (assessing simultaneously the consistency of the trend 1120 

and low-frequency variability) we find that most models tend to be challenged to be consistent 1121 

on both tests. Overall, our variance consistency tests suggest that while the CMIP3 and CMIP5 1122 

models provide a plausible representation of internal climate variability, there is considerable 1123 

scope for improvement in the model simulations of internal climate variability, apart from their 1124 

simulation of trends and variability in response to various forcing agents.  From a different 1125 

perspective, Shin and Sardeshmukh (2011) have concluded that the CMIP3 models do not 1126 

simulate historical trends of temperature and precipitation as realistically as do atmospheric 1127 

models forced by observed trends in tropical SSTs—a problem they attribute to model errors as 1128 

opposed to climate noise (internal variability). 1129 

The CMIP3 and CMIP5 simulations used here represent  “ensembles of opportunity” which 1130 

cannot necessarily be expected to represent the true structural uncertainty in the results, due to 1131 

shortcomings/uncertainties in the models and climate forcings.  The procedures in our paper 1132 

assume that the intrinsic internal variability of climate has not changed significantly since pre-1133 
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industrial times, as we are using control run variability from pre-industrial control runs for our 1134 

forced-run consistency tests.  If anthropogenic forcing had actually weakened the intrinsic 1135 

variability in the real world, then our estimated uncertainty range around the All-Forcing model 1136 

responses would be too wide -- making it overly difficult to conclude that observations were 1137 

inconsistent with the All-Forcing runs.  Similarly, if anthropogenic forcing had actually 1138 

strengthened the intrinsic variability in the real world, then our estimated uncertainty range 1139 

around the All-Forcing model responses would be too narrow -- making it too easy to conclude 1140 

that the observations were inconsistent with the All-Forcing runs.     1141 

While the above uncertainty issues lack a final resolution, the methodology shown here can at 1142 

least help to quantify the uncertainties associated with the climate change detection and 1143 

attribution problem.  The results show that when CMIP3 and CMIP5 historical runs are 1144 

confronted with observed surface temperature trends, across a wide range of trend start dates, at 1145 

various geographical locations around the globe, and even down to the grid point scale, a 1146 

pervasive warming signal is found that is generally much more consistent with simulations that 1147 

include anthropogenic forcing than with simulations that include either no forcing changes 1148 

(control runs) or that include only natural forcing agents (solar, volcanic).  Our conclusions about 1149 

detectable anthropogenic contributions to the trends provide further support for the claim of a 1150 

substantial human influence on climate, via anthropogenic forcing agents such as increased 1151 

greenhouse gases.  A future enhancement of our analysis would include an attempt to quantify 1152 

the contributions of specific natural and anthropogenic forcing agents, or subsets of agents, in the 1153 

CMIP5 All-Forcing and Natural-Forcing-Only historical runs.  This would provide a more direct 1154 

assessment of the relative influence of different forcing agents on the observed temperature 1155 

trends at the regional scale.  1156 
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Figure Captions   1277 

 1278 

Fig. 1.  Time series of global-mean annual-mean surface air temperature (2 m) anomalies from 1279 

the CMIP3 (a, b) and CMIP5 (c, d) preindustrial control runs (black curves).   Observed global 1280 

mean surface temperature (HadCRUT4, combining SST and land surface air temperature 1281 

anomalies) is also shown in blue on the diagrams for comparison.  The blue curves labeled 1282 

“Residual (HadCRUT4…” were created by subtracting the multi-model ensemble mean surface 1283 

temperature (using masked SSTs and land surface air temperatures from the 20C3M All-Forcing 1284 

historical runs for either CMIP3 or CMIP5) from the observed temperature.  Orange straight 1285 

lines (one or two segments) through the control run time series depict the long term linear drift.  1286 

The long term drift over the year range shown is calculated at each grid point and then subtracted 1287 

from the model control run series before performing further analysis in our study.  Short vertical 1288 

orange segments denote two places where specific control runs were divided into two separate 1289 

segments and the linear drift computed separately for each segment.  In those cases, the residuals 1290 

from the drift were formed and then combined back into a single series. The various curves in the 1291 

figure have been displaced vertically by arbitrary constants for visual clarity.  Curves labeled 1292 

with a ‘*’ denote CMIP3 models that did not include volcanic forcing in their historical runs.  1293 

The number in brackets by each model name denotes how many All-Forcing ensemble members 1294 

were available; when there are two numbers in brackets, the second refers to the number of 1295 

Natural-Forcing ensemble members.  Curves labeled with a ‘(0)’ were excluded from the 1296 

remainder of our analysis due to various issues such as discontinuities in time series, short record 1297 

length, or unavailable sea surface temperature data in the CMIP3 archive. Vertical axis tic mark 1298 

spacing is 0.2
o
C. 1299 
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 1300 

Fig. 2.  Standard deviation (
o
C) of low-pass (>10 yr) filtered internal variability of surface 1301 

temperature derived from CMIP3 or CMIP5 pre-industrial control runs (a, d, g), an observed 1302 

estimate (Obs. St. Dev.*; b, e, h), and the difference between the control runs and the observed 1303 

estimate (c, f, i). The long-term linear drifts (time periods identified by the orange line segments 1304 

in Fig. 1 a,b) were removed prior to computing the control run standard deviations. The model 1305 

control run results are based on the mean standard deviation of a) eight CMIP3 models that have 1306 

All-Forcing runs with volcanic forcing; b) all 23 CMIP5 models; and c) seven CMIP5 models 1307 

that included at least one experiment with Natural Forcing only and  extending to 2010.  Note 1308 

that the control runs on which the figure are based do not have episodic volcanic forcing and 1309 

have been masked for observed missing data periods.  Therefore, the observational estimate of 1310 

internal variability (Obs. St. Dev.*) is derived from observations with adjustments for variance 1311 

associated with various natural or anthropogenic forcing agents. See text for details of the 1312 

adjustment.    1313 

 1314 

Fig. 3.  As in Figure 2 (c, f, i) except for individual models in the (a) CMIP3 or (b) CMIP5 sets 1315 

of models used in Fig. 2.  The red number at upper right above each figure lists the spatial 1316 

correlation of the model’s low-pass filtered standard deviation field vs. the observational 1317 

estimate (Obs. St. Dev.*) in Fig. 2.   For the seven-model subset of CMIP5 models, the 1318 

comparison is with the observations adjusted according to just those seven models and their 1319 

respective All-Forcing and control runs.  See text for further details. 1320 

 1321 
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Fig. 4.  Time series of global mean surface temperature anomalies (combined SST and land 1322 

surface air temperature) from observations (HadCRUT4; black curves) in degrees Celsius.  The 1323 

red curves in a-c depict the 5
th

 and 95
th

 percentiles of annual mean anomalies for the multi-model 1324 

mean (thick) or of single model realizations (thin lines, gray stippling) for the CMIP3 (a, b) or 1325 

CMIP5 (c) 20C3M historical All-Forcing runs in degrees Celsius.  The mean curve is not shown 1326 

but lies approximately midway between the 5
th

 and 95
th

 percentiles. The series in (a) are from 1327 

eight CMIP3 models run with volcanic forcing. The historical runs in (b) include 19 CMIP3 1328 

models with and without volcanic forcing (as identified in Fig. 1 (a,b).  All of the 23 CMIP5 1329 

model runs included in the computations (c) incorporated volcanic forcing.  In (d) the blue 1330 

curves are based on seven CMIP5 models that had Natural-Forcing-Only runs extending through 1331 

2010.  See text for description of how the confidence limits were computed.  The time series 1332 

have been re-centered so that the ensemble mean value, averaged for the years 1881-1920, is 1333 

zero.  Model data were masked with the observed spatially and temporally evolving missing data 1334 

mask.  The total number of individual experiments included in each panel was: a) 26; b) 51; c) 1335 

79; and d) 25.  1336 

  1337 

Fig. 5.  Variance spectra as a function of frequency for observed global mean surface 1338 

temperature (combined SST and land surface air temperature), in black with 90% confidence 1339 

intervals shown by the shading, plotted against spectra for the individual (a) CMIP3 and (b) 1340 

CMIP5 All-Forcing historical runs with Volcanic forcing (red) based on the time series in Fig. 4 1341 

(a,c).  The spectra in (c) and (d) are based on residual observed or model historical run time 1342 

series, where the multi-model ensemble surface temperature from the 20C3M All-Forcing (with 1343 

volcanic) historical runs (CMIP3 or CMIP5) is subtracted from the observed and from each 1344 
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model’s global mean temperature series to form residual time series prior to computing the 1345 

spectra  (see text for details).   1346 

 1347 

Fig. 6.  Map illustrating averaging regions examined in Figs. 7-9.  Regions abbreviations 1348 

including:  Euro = Europe; NAs = Northern Asia; SAs = Southern Asia; Afr = Africa; IO = 1349 

Indian Ocean; Aus = Australia; TWP = Tropical western Pacific; TEP = Tropical eastern Pacific; 1350 

IOWP = Tropical Indian Ocean/western Pacific warm pool; NP = North Pacific; AL = Alaska; 1351 

SEUS = Southeastern United States;  ConUS = Continental United States; RofUS =  rest of 1352 

continental United States, other than SEUS; SAmer = South America; Can = Canada; NAtl = 1353 

North Atlantic; SNA = Subtropical North Atlantic; TNA = Tropical North Atlantic (Main 1354 

Development Region); SAtl = South Atlantic.  1355 

 1356 

 Fig. 7.  Trends (
o
C/100 yr) in area-averaged annual-mean surface temperature as a function of 1357 

starting year, with all trends ending in 2010.  The black curves are trends from observations 1358 

(HadCRUT4), where observational uncertainty is depicted as a range showing the 5
th

 to 95
th

 1359 

percentile ranges of trends obtained using the 100-member HadCRUT4 ensemble.  Blue curves 1360 

are ensemble means for Natural-Forcing-Only runs using a subset of seven CMIP5 models that 1361 

had Natural-Forcing runs to 2010.  Red curves are ensemble means of the All-Forcing runs from 1362 

the same seven CMIP5 models. See Fig. 6 for definitions of averaging regions.  The different 1363 

models are weighted equally for the multi-model ensemble means, regardless of the number of 1364 

ensemble members they had.  The pink shading shows the 5
th

 to 95
th

 percentile range of the 1365 

distribution of trends obtained by combining random samples from each of the seven CMIP5 1366 
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model control runs together with the corresponding model’s ensemble-mean forced trend (All-1367 

Forcing runs) to create a total multi-model distribution of trends that reflects uncertainty in both 1368 

the forced response and the influence of internal climate variability.  The blue-shaded region 1369 

shows the same, but for the Natural-Forcing-Only runs.  Violet shading indicates where the pink- 1370 

and blue-shaded regions overlap.  Gaps in the curves indicate inadequate data coverage for a 1371 

trend-to-2010 for those start years.  Requirements include: 33% areal coverage to define an index 1372 

time series point for a month, 40% of months available for a year to be non-missing, and 20% of 1373 

all years available in each of five equal segments for a time series have adequate coverage for a 1374 

trend. The seven-model CMIP5 subset used here and in subsequent assessment figures that 1375 

incorporate Natural-Forcing runs include: CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-1376 

g2, HadGEM2-ES, IPSL-CM5A-LR, and NorESM1-M. 1377 

 1378 

Fig. 8.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). 1379 

 1380 

Fig. 9.  As in Fig. 7, except the left column is based on All-Forcing runs from eight CMIP3 1381 

models that include volcanic forcing in their historical simulations, and the eight corresponding 1382 

control runs (without volcanic forcing); the middle column is based on All-Forcing and control 1383 

runs from all 23 CMIP5 models; and the right column is based on All-Forcing, Natural-Forcing-1384 

Only, and control runs from the same sets of CMIP5 models as used in Figs. 7 and 8 (see Fig. 7 1385 

caption). 1386 

 1387 
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Fig. 10.  Geographical distribution of surface temperature trends (1901-2010) in:  (a,b) 1388 

HadCRUT4 observations; (c) CMIP3 eight-model ensemble mean (All-Forcing, volcanic 1389 

models); d) CMIP5 seven-model ensemble mean (All-Forcing, volcanic models).  Unit:  degrees 1390 

C per 100 yr.  In (e, f) the observed trend is assessed in terms of the multi-model ensemble mean 1391 

trends and variability in the historical forcing and control runs (CMIP3 and CMIP5).  The 1392 

different colors in (e, f) depict different categories of assessment result; the categories are listed 1393 

in the legends below panels e and f. Panel (e) compares observed trends with trends from eight 1394 

CMIP3 All-Forcing models and their eight control runs.  Panel (f) compares observed trends 1395 

with trends from the CMIP5 seven-model subset, including All-Forcing, Natural-Forcing, and 1396 

control runs. 1397 

 1398 

Fig. 11.  Same as Fig. 10 but for trends from 1951 to 2010. 1399 

 1400 

Fig. 12.  Same as Fig. 10 but for trends from 1981 to 2010. 1401 

 1402 

Fig. 13.  Summary assessment of observed vs. model ensemble-mean trends-to-2010. The 1403 

percent of global analyzed areas meeting certain criteria (see graph labels) are shown as a 1404 

function of start year (all trends ending in 2010).  a) Assessments of the eight CMIP3 (solid 1405 

lines) vs. the 23 CMIP5 (dashed lines) multi-model ensemble means (historical 20C3M All-1406 

Forcing runs with volcanic forcing and associated control runs).  b) Assessment of the CMIP5 1407 

multi-model ensemble means and control runs using the seven-model subset of CMIP5 models 1408 

(with Natural-Forcing-Only runs extending to 2010), the All-Forcing runs from the same seven 1409 
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models, and their seven control runs.  The black curves are the sum of the red and orange curves; 1410 

the sum of black + cyan + green + blue = 100%. 1411 

 1412 

Fig. 14.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 multi-model 1413 

(volcanic models) ensemble mean surface temperature trends (1901-2010) in degrees C per 100 1414 

yr.  The observed trend is assessed in terms of the eight individual CMIP3 models (trends and 1415 

variability) in (c-k).  Panels (c-k) show the fraction of the eight individual CMIP3 models whose 1416 

historical All-Forcing runs meet the criteria listed above each panel.  The criteria are:  c) no 1417 

detectable change; d) warming that is detectable but significantly less than simulated in the All-1418 

Forcing runs; e) warming that is detectable and consistent with the All-Forcing runs; f) warming 1419 

that is detectable but significantly greater than simulated in the All-Forcing runs;  g) warming 1420 

that is detectable; h) warming that is detectable and either consistent with or greater than the 1421 

simulated (All-Forcing) runs; i) observed and simulated trends are consistent (though the 1422 

observed trend may not be detectable); j) observed and simulated internal low-frequency 1423 

variability are consistent; and k) conditions for (i) and (j) are both satisfied (i.e., the simulated 1424 

variability and trend are both consistent with observations). The white numbers at the bottom of 1425 

maps c-k indicate the area-weighted global average of the mapped fields. 1426 

 1427 

Figure 15.  Same as Fig. 14, but for 23 CMIP5 models with volcanic forcing. 1428 

 1429 
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Fig. 16. Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP5 multi-model 1430 

ensemble-mean surface temperature trends (1901-2010) in degrees C per 100 yr.  The observed 1431 

trend is assessed in terms of trend and variability using the seven CMIP5 models that had 1432 

available an All-Forcing ensemble and Natural-Forcing-Only runs extending to 2010.  Panels (c-1433 

l) show the fraction of the seven individual CMIP5 models at each grid point whose All-Forcing, 1434 

Natural-Forcing-Only, and control runs together meet the criteria listed above the panel.  The 1435 

criteria are:  c) no detectable change; d) warming that is detectable (inconsistent with Natural-1436 

Forcing runs) but significantly less than simulated in the All-Forcing runs; e) attributable 1437 

anthropogenic warming that is detectable (inconsistent with Natural-Forcing Only runs) and 1438 

consistent with the All-Forcing runs; f) attributable anthropogenic warming that is significantly 1439 

greater than simulated in the All-Forcing runs;  g) warming that is detectable; h) total attributable 1440 

to anthropogenic warming (i.e., sum of (e) and (f); i) observed and simulated trends are 1441 

consistent (though the observed trend may not be detectable); j) observed and simulated internal 1442 

low-frequency variability are consistent; k) conditions for (i) and (j) are both satisfied (i.e., the 1443 

simulated variability and trend are both consistent with observations; and l) conditions for (h) 1444 

and (j) are both satisfied (i.e., there is attributable anthropogenic warming and low-frequency 1445 

variance is consistent with observations).  1446 

 1447 

Fig. 17.  Individual CMIP3 (a, b) and CMIP5 (c-f) models are assessed for consistency with 1448 

detectable observed surface temperature trends-to-2010 (a-d), for attributable anthropogenic 1449 

trends (e, f), and for consistency of both simulated trend and internal variability with observed 1450 

estimates (b, d, f).  Trend results are shown for start years from 1901 to 1991 (all trends ending 1451 

in 2010).  Plotted is the percent of analyzed global area where each individual model’s (see 1452 
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legends) multi-realization ensemble mean forced trend and internal variability meet the criteria 1453 

listed above the panel.  The trends are analyzed at each grid point where there is sufficient 1454 

temporal data coverage for the trend in question (see text). Note that panels (e, f) include areas 1455 

where the observed trend is detectable and either consistent with or greater than simulated, 1456 

whereas panels (c, d) include only areas with observed trends that are detectable and consistent 1457 

with simulations.   1458 

 1459 

1460 
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1461 Model control runs:  simulated internal variability of global temperature 

Fig. 1 
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Fig. 1.  Time series of global-mean annual-mean surface air temperature (2 m) anomalies from 1462 

the CMIP3 (a, b) and CMIP5 (c, d) preindustrial control runs (black curves).   Observed global 1463 
mean surface temperature (HadCRUT4, combining SST and land surface air temperature 1464 
anomalies) is also shown in blue on the diagrams for comparison.  The blue curves labeled 1465 

“Residual (HadCRUT4…” were created by subtracting the multi-model ensemble mean surface 1466 
temperature (using masked SSTs and land surface air temperatures from the 20C3M All-Forcing 1467 
historical runs for either CMIP3 or CMIP5) from the observed temperature.  Orange straight 1468 
lines (one or two segments) through the control run time series depict the long term linear drift.  1469 
The long term drift over the year range shown is calculated at each grid point and then subtracted 1470 

from the model control run series before performing further analysis in our study.  Short vertical 1471 
orange segments denote two places where specific control runs were divided into two separate 1472 
segments and the linear drift computed separately for each segment.  In those cases, the residuals 1473 
from the drift were formed and then combined back into a single series. The various curves in the 1474 

figure have been displaced vertically by arbitrary constants for visual clarity.  Curves labeled 1475 
with a ‘*’ denote CMIP3 models that did not include volcanic forcing in their historical runs.  1476 

The number in brackets by each model name denotes how many All-Forcing ensemble members 1477 
were available; when there are two numbers in brackets, the second refers to the number of 1478 

Natural-Forcing ensemble members.  Curves labeled with a ‘(0)’ were excluded from the 1479 
remainder of our analysis due to various issues such as discontinuities in time series, short record 1480 
length, or unavailable sea surface temperature data in the CMIP3 archive. Vertical axis tic mark 1481 

spacing is 0.2
o
C. 1482 

1483 
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1484 c) CMIP3:  model minus obs. 
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a) CMIP3:  8-model-avg.  

f) CMIP5_23:  model minus obs. e) Obs. St. Dev.* (CMIP5_23) d) CMIP5:  23-model-avg.  

i) CMIP5_7:  model minus obs. h) Obs. St. Dev.* (CMIP5_7) g) CMIP5:  7-model-avg.  

b) Obs. St. Dev.* (CMIP3) 
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Fig. 2.  Standard deviation (
o
C) of low-pass (>10 yr) filtered internal variability of 

surface temperature derived from CMIP3 or CMIP5 pre-industrial control runs (a, d, 

g), an observed estimate (Obs. St. Dev.*; b, e, h), and the difference between the 

control runs and the observed estimate (c, f, i). The long-term linear drifts (time periods 

identified by the orange line segments in Fig. 1 a,b) were removed prior to computing 

the control run standard deviations. The model control run results are based on the 

mean standard deviation of a) eight CMIP3 models that have All-Forcing runs with 

volcanic forcing; b) all 23 CMIP5 models; and c) seven CMIP5 models that included at 

least one experiment with Natural Forcing only and  extending to 2010.  Note that the 

control runs on which the figure are based do not have episodic volcanic forcing and 

have been masked for observed missing data periods.  Therefore, the observational 

estimate of internal variability (Obs. St. Dev.*) is derived from observations with 

adjustments for variance associated with various natural or anthropogenic forcing 

agents. See text for details of the adjustment.  
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1485 
a) CMIP3 models:  low-frequency std. dev. differences vs. Obs. St. Dev.* (

o
C) 

b) CMIP5 models:  low-frequency std. dev. differences vs. Obs. St. Dev.* (
o
C) 

Fig. 3.  As in Figure 2 (c, f, i) except for individual models in the (a) CMIP3 or (b) CMIP5 sets 

of models used in Fig. 2.  The red number at upper right above each figure lists the spatial 

correlation of the model’s low-pass filtered standard deviation field vs. the observational 

estimate (Obs. St. Dev.*) in Fig. 2.   For the seven-model subset of CMIP5 models, the 

comparison is with the observations adjusted according to just those seven models and their 

respective All-Forcing and control runs.  See text for further details. 
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 1486 

 1487 

 1488 

 1489 

1490 

Fig. 4 

        b) CMIP3: All Forcings:  w & w/o volcanic a) CMIP3: All Forcings (w/ volcanic) 

d) CMIP5: Natural forcing only (w/ volcanic) c) CMIP5: All Forcings (w/ volcanic) 

Global Mean Surface Temperature Anomalies 

Fig. 4.  Time series of global mean surface temperature anomalies (combined SST and land 

surface air temperature) from observations (HadCRUT4; black curves) in degrees Celsius.  

The red curves in a-c depict the 5
th

 and 95
th

 percentiles of annual mean anomalies for the 

multi-model mean (thick) or of single model realizations (thin lines, gray stippling) for the 

CMIP3 (a, b) or CMIP5 (c) 20C3M historical All-Forcing runs in degrees Celsius.  The 

mean curve is not shown but lies approximately midway between the 5
th

 and 95
th

 

percentiles. The series in (a) are from eight CMIP3 models run with volcanic forcing. The 

historical runs in (b) include 19 CMIP3 models with and without volcanic forcing (as 

identified in Fig. 1 (a,b).  All of the 23 CMIP5 model runs included in the computations (c) 

incorporated volcanic forcing.  In (d) the blue curves are based on seven CMIP5 models that 

had Natural-Forcing-Only runs extending through 2010.  See text for description of how the 

confidence limits were computed.  The time series have been re-centered so that the 

ensemble mean value, averaged for the years 1881-1920, is zero.  Model data were masked 

with the observed spatially and temporally evolving missing data mask.  The total number 

of individual experiments included in each panel was: a) 26; b) 51; c) 79; and d) 25.  

 

Global Mean Surface Temperature Anomalies 
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1491 
a) CMIP3 global mean temp. spectra b) CMIP5 global mean temp. spectra 

c) CMIP3 global temp. residual spectra d) CMIP5 global temp. residual spectra 

Fig. 5.  Variance spectra as a function of frequency for observed global mean 

surface temperature (combined SST and land surface air temperature), in black 

with 90% confidence intervals shown by the shading, plotted against spectra for 

the individual (a) CMIP3 and (b) CMIP5 All-Forcing historical runs with 

Volcanic forcing (red) based on the time series in Fig. 4 (a,c).  The spectra in (c) 

and (d) are based on residual observed or model historical run time series, where 

the multi-model ensemble surface temperature from the 20C3M All-Forcing (with 

volcanic) historical runs (CMIP3 or CMIP5) is subtracted from the observed and 

from each model’s global mean temperature series to form residual time series 

prior to computing the spectra  (see text for details).   
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 1492 

1493 

Fig. 6.  Map illustrating averaging regions examined in Figs. 7-9.  Regions 

abbreviations including:  Euro = Europe; NAs = Northern Asia; SAs = Southern 

Asia; Afr = Africa; IO = Indian Ocean; Aus = Australia; TWP = Tropical western 

Pacific; TEP = Tropical eastern Pacific; IOWP = Tropical Indian Ocean/western 

Pacific warm pool; NP = North Pacific; AL = Alaska; SEUS = Southeastern 

United States;  ConUS = Continental United States; RofUS =  rest of continental 

United States, other than SEUS; SAmer = South America; Can = Canada; NAtl = 

North Atlantic; SNA = Subtropical North Atlantic; TNA = Tropical North 

Atlantic (Main Development Region); SAtl = South Atlantic.  
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1494 a) Global land and sea b) Global SST c) Global Land 

d) Northern hemisphere e) Southern Hemisphere f) NH Extratropics (30-90N) 

g) SH Extratropics (30-90S) h) Tropics (20N-20S) i) Tropical SST (20N-20S) 

j) Indian Ocean l) Tropical  West Pacific 

m) Tropical East Pacific 

o
C/100 yr 

k) Trop. Indian Ocean/West Pac 

n) North Pacific o) South Atlantic 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

Starting year of trend (All trends ending in 2010) 

Fig. 7 
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Fig. 7.  Trends (
o
C/100 yr) in area-averaged annual-mean surface temperature as a function of 1495 

starting year, with all trends ending in 2010.  The black curves are trends from observations 1496 

(HadCRUT4), where observational uncertainty is depicted as a range showing the 5
th

 to 95
th

 1497 

percentile ranges of trends obtained using the 100-member HadCRUT4 ensemble.  Blue curves 1498 

are ensemble means for Natural-Forcing-Only runs using a subset of seven CMIP5 models that 1499 

had Natural-Forcing runs to 2010.  Red curves are ensemble means of the All-Forcing runs from 1500 

the same seven CMIP5 models. See Fig. 6 for definitions of averaging regions.  The different 1501 

models are weighted equally for the multi-model ensemble means, regardless of the number of 1502 

ensemble members they had.  The pink shading shows the 5
th

 to 95
th

 percentile range of the 1503 

distribution of trends obtained by combining random samples from each of the seven CMIP5 1504 

model control runs together with the corresponding model’s ensemble-mean forced trend (All-1505 

Forcing runs) to create a total multi-model distribution of trends that reflects uncertainty in both 1506 

the forced response and the influence of internal climate variability.  The blue-shaded region 1507 

shows the same, but for the Natural-Forcing-Only runs.  Violet shading indicates where the pink- 1508 

and blue-shaded regions overlap.  Gaps in the curves indicate inadequate data coverage for a 1509 

trend-to-2010 for those start years.  Requirements include: 33% areal coverage to define an index 1510 

time series point for a month, 40% of months available for a year to be non-missing, and 20% of 1511 

all years available in each of five equal segments for a time series have adequate coverage for a 1512 

trend. The seven-model CMIP5 subset used here and in subsequent assessment figures that 1513 

incorporate Natural-Forcing runs include: CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-1514 

g2, HadGEM2-ES, IPSL-CM5A-LR, and NorESM1-M. 1515 

1516 
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1517 c) Tropical N. Atlantic (10-20N) 

d) Europe e) Africa f) Northern Asia 

g) Southern Asia h) Australia i) Canada 

j) Alaska k) Continental United States l) Mexico 

m) South America n) Rest of  Cont. United States o) Southeast United States 

a) North Atlantic (45-60N) b) Subtropical N. Atl. (20-45N) 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

Starting year of trend (All trends ending in 2010) 

Fig. 8.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). 
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1518 

f) Tropical SST (20N-20S) 

i) North Atlantic (45-60N) 

l) Southeast United States 

o) Rest of  Cont. United States 

c) Global land and sea a) Global land and sea 

d) Tropical SST (20N-20S) 

CMIP3: All forcing vs Control CMIP5: All forcing vs Control CMIP5: All forcing vs Natural 

b) Global land and sea 

g) North Atlantic (45-60N) 

j) Southeast United States 

m) Rest of  Cont. United States 

e) Tropical SST (20N-20S) 

h) North Atlantic (45-60N) 

k) Southeast United States 

n) Rest of  Cont. United States 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

o
C/100 yr 

Starting year of trend (All trends ending in 2010) 

Fig. 9 
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1519 Fig. 9.  As in Fig. 7, except the left column is based on All-Forcing runs from eight CMIP3 

models that include volcanic forcing in their historical simulations, and the eight 

corresponding control runs (without volcanic forcing); the middle column is based on All-

Forcing and control runs from all 23 CMIP5 models; and the right column is based on All-

Forcing, Natural-Forcing-Only, and control runs from the same sets of CMIP5 models as 

used in Figs. 7 and 8 (see Fig. 7 caption). 
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1520 

Detect. warming:  > simulated 
Detect. warming:  consistent  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Detect. cooling:  consistent 
Detect. cooling:  >  simulated 

1901-2010 Surface Temperature Trends 

CMIP3 w/ volcanic CMIP5 all forcing 

a) Observed Trend  b) Observed Trend  

c) CMIP3 ensemble trend d) CMIP5 ensemble trend 

e) CMIP3 assessment f) CMIP5 assessment 

Detect. warming:  > simulated 
Detect. warming:  consistent  
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Fig. 10.  Geographical distribution of surface temperature trends (1901-2010) in:  (a,b) 

HadCRUT4 observations; (c) CMIP3 eight-model ensemble mean (All-Forcing, 

volcanic models); d) CMIP5 seven-model ensemble mean (All-Forcing, volcanic 

models).  Unit:  degrees C per 100 yr.  In (e, f) the observed trend is assessed in terms of 

the multi-model ensemble mean trends and variability in the historical forcing and 

control runs (CMIP3 and CMIP5).  The different colors in (e, f) depict different 

categories of assessment result; the categories are listed in the legends below panels e 

and f. Panel (e) compares observed trends with trends from eight CMIP3 All-Forcing 

models and their eight control runs.  Panel (f) compares observed trends with trends 

from the CMIP5 seven-model subset, including All-Forcing, Natural-Forcing, and 

control runs. 
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Fig. 11.  Same as Fig. 10 but for trends from 1951 to 2010. 
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Fig. 12.  Same as Fig. 10 but for trends from 1981 to 2010. 
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Fig. 13.  Summary assessment of observed vs. model ensemble-mean trends-to-2010. The 

percent of global analyzed areas meeting certain criteria (see graph labels) are shown as a 

function of start year (all trends ending in 2010).  a) Assessments of the eight CMIP3 (solid 

lines) vs. the 23 CMIP5 (dashed lines) multi-model ensemble means (historical 20C3M 

All-Forcing runs with volcanic forcing and associated control runs).  b) Assessment of the 

CMIP5 multi-model ensemble means and control runs using the seven-model subset of 

CMIP5 models (with Natural-Forcing-Only runs extending to 2010), the All-Forcing runs 

from the same seven models, and their seven control runs.  The black curves are the sum of 

the red and orange curves; the sum of black + cyan + green + blue = 100%. 
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1524 CMIP3 assessment :  fraction of models 
(8 Models with all forcings, incl. volcanic) 

Linear Trends (1901-2010); 
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Fig. 14.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 

multi-model (volcanic models) ensemble mean surface temperature trends (1901-

2010) in degrees C per 100 yr.  The observed trend is assessed in terms of the eight 

individual CMIP3 models (trends and variability) in (c-k).  Panels (c-k) show the 

fraction of the eight individual CMIP3 models whose historical All-Forcing runs 

meet the criteria listed above each panel.  The criteria are:  c) no detectable change; 

d) warming that is detectable but significantly less than simulated in the All-

Forcing runs; e) warming that is detectable and consistent with the All-Forcing 

runs; f) warming that is detectable but significantly greater than simulated in the 

All-Forcing runs;  g) warming that is detectable; h) warming that is detectable and 

either consistent with or greater than the simulated (All-Forcing) runs; i) observed 

and simulated trends are consistent (though the observed trend may not be 

detectable); j) observed and simulated internal low-frequency variability are 

consistent; and k) conditions for (i) and (j) are both satisfied (i.e., the simulated 

variability and trend are both consistent with observations). The white numbers at 

the bottom of maps c-k indicate the area-weighted global average of the mapped 

fields. 
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Figure 15.  Same as Fig. 14, but for 23 CMIP5 models with volcanic forcing. 
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Fig. 16. Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP5 multi-

model ensemble-mean surface temperature trends (1901-2010) in degrees C per 100 yr.  

The observed trend is assessed in terms of trend and variability using the seven CMIP5 

models that had available an All-Forcing ensemble and Natural-Forcing-Only runs 

extending to 2010.  Panels (c-l) show the fraction of the seven individual CMIP5 models 

at each grid point whose All-Forcing, Natural-Forcing-Only, and control runs together 

meet the criteria listed above the panel.  The criteria are:  c) no detectable change; d) 

warming that is detectable (inconsistent with Natural-Forcing runs) but significantly less 

than simulated in the All-Forcing runs; e) attributable anthropogenic warming that is 

detectable (inconsistent with Natural-Forcing Only runs) and consistent with the All-

Forcing runs; f) attributable anthropogenic warming that is significantly greater than 

simulated in the All-Forcing runs;  g) warming that is detectable; h) total attributable to 

anthropogenic warming (i.e., sum of (e) and (f); i) observed and simulated trends are 

consistent (though the observed trend may not be detectable); j) observed and simulated 

internal low-frequency variability are consistent; k) conditions for (i) and (j) are both 

satisfied (i.e., the simulated variability and trend are both consistent with observations; 

and l) conditions for (h) and (j) are both satisfied (i.e., there is attributable anthropogenic 

warming and low-frequency variance is consistent with observations).  
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a) b) 

c) d) 

f) e) 

Fig. 17.  Individual CMIP3 (a, b) and CMIP5 (c-f) models are assessed for 

consistency with detectable observed surface temperature trends-to-2010 (a-d), for 

attributable anthropogenic trends (e, f), and for consistency of both simulated trend 

and internal variability with observed estimates (b, d, f).  Trend results are shown for 

start years from 1901 to 1991 (all trends ending in 2010).  Plotted is the percent of 

analyzed global area where each individual model’s (see legends) multi-realization 

ensemble mean forced trend and internal variability meet the criteria listed above the 

panel.  The trends are analyzed at each grid point where there is sufficient temporal 

data coverage for the trend in question (see text). Note that panels (e, f) include areas 

where the observed trend is detectable and either consistent with or greater than 

simulated, whereas panels (c, d) include only areas with observed trends that are 

detectable and consistent with simulations.   
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