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8. Summary of main functions
Insert text - Use Insert Text tool (position cursor and begin typing)
Replace text - Use Replace Text tool (select text and begin typing)
Delete text - Use Strikethrough Text tool (select text and press delete key)
Highlight text - Use Highlight Text tool (select text)
Attach a file - Use the Attach a File with Comment tool (select tool, position 
                      cursor and click mouse, select file)

9. Reviewing changes
To review all changes, do the following: 
 • Click the Comments button to reveal the comment tools
 • Click the triangle next to Comments List (if not already visible)

Note: Selecting a correction in the list will highlight the corresponding item in the 
document, and vice versa.

6. Inserting symbols or special characters
An ‘insert symbol’ feature is not available for annotations, and copying/pasting symbols or non-keyboard characters from Mi-
crosoft Word does not always work. Use angle brackets < > to indicate these special characters (e.g., <alpha>, <beta>).

7. Editing near watermarks and hyperlinked text
eProof documents often contain watermarks and/or hyperlinked text. Selecting characters near these items can be difficult us-
ing the mouse alone. To edit an eProof which contains text in these areas, do the following: 
  • Without selecting the watermark or hyperlink, place the cursor near the area for editing.
  • Use the arrow keys to move the cursor beside the text to be edited.
  • Hold down the shift key while simultaneously using arrow keys to select the block of text, if necessary.
  • Insert, replace, or delete text, as needed.

Use the Comments list to review all changes
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Multimodel Assessment of Regional Surface Temperature Trends: CMIP3
and CMIP5 Twentieth-Century Simulations
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ABSTRACT

Regional surface temperature trends from the phase 3 of the Coupled Model Intercomparison Project

(CMIP3) and CMIP5 twentieth-century runs are compared with observations—at spatial scales ranging from

global averages to individual grid points—using simulated intrinsic climate variability from preindustrial

control runs to assess whether observed trends are detectable and/or consistent with themodels’ historical run

trends. The CMIP5 models are also used to detect anthropogenic components of the observed trends, by

assessing alternative hypotheses based on scenarios driven with either anthropogenic plus natural forcings

combined, or with natural forcings only. Modeled variability is assessed via inspection of control run time

series, standard deviation maps, spectral analyses, and low-frequency variance consistency tests. The models

are found to provide plausible representations of internal climate variability, though there is room for im-

provement. The influence of observational uncertainty on the trends is assessed, and found to be generally

small compared to intrinsic climate variability.

Observed temperature trends over 1901–2010 are found to contain detectable anthropogenic warming

components over a large fraction (about 80%) of the analyzed global area. In several regions, the observed

warming is significantly underestimated by themodels, including parts of the SouthernOcean, SouthAtlantic,

far eastern Atlantic, and far west Pacific. Regions without detectable warming signals include the high-

latitude North Atlantic, the eastern United States, and parts of the eastern Pacific. For 1981–2010, the

observed warming trends over about 45% of the globe are found to contain a detectable anthropogenic

warming: this includes much of the globe within about 408–458 of the equator, except for the eastern Pacific.

1. Introduction

Are historical simulations of surface temperature

trends, obtained using climate models with the best

available estimates of past climate forcings, consistent

with observations? Where on the globe can observed

temperature trends be attributed to anthropogenic forc-

ing? These questions can be examined using a substan-

tial number of different climate models and using

different analysis methods. Here we attempt to incor-

porate information from a relatively large sample of

climate models, from phase 3 of the Coupled Model

Intercomparison Project (CMIP3; Meehl et al. 2007)

and CMIP5 (Taylor et al. 2012), using various multi-

model combination techniques. The general approach

is to compare the modeled and observed trends, in

terms of both magnitude and pattern, by considering

trends at each grid point in the observational grid, as

well as trends over broader-scale regions.

The term detectable climate trend used here refers to

a trend in the observations that is inconsistent with (i.e.,

outside of the 5th–95th percentile range of) simulated

trends, either from control runs (the internal or intrin-

sic climate variability background) or from a sample of

natural-forcing response and control run variability

combined (the natural climate variability background).

(Control runs are long runs with preindustrial forcings

that do not change from year to year.) We interpret

a trend in observations as attributable (at least in part)

to anthropogenic forcing if it is both inconsistent with

simulated natural climate variability (detectable) and

consistent with the all-forcing runs that contain both

anthropogenic forcing agents (e.g., changes in green-

house gases and aerosols) and natural forcings (e.g.,

changes in solar insolation or volcanic aerosol loading).

If an observed trend is detectable but inconsistent with

all-forcing runs because it is larger than the simulated
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distribution of trends, we still interpret the observed

trend as attributable, at least in part, to anthropogenic

forcing. While a number of CMIP5 models have natural-

forcing-only runs available online, for the CMIP3models

relatively few such runs are available. Therefore, for

CMIP3, we adopt a simpler approach of assessing

whether observed trends are consistent with all-forcing

runs but inconsistent with internal variability alone. The

simpler approach does not allow us to draw conclusions

about whether an observed trend is attributable to an-

thropogenic forcing or not.

The modeled internal climate variability from long

control runs is used to determine whether observed and

simulated trends are consistent or inconsistent. In other

words, we assess whether observed and simulated forced

trends are more extreme than those that might be

expected from random sampling of internal climate

variability. This approach has been applied to earlier

models in a number of studies, beginning with the

analyses of Stouffer et al. (1994, 2000). Similarly, we use

the available ensemble of simulated forced trends to

assess whether observed trends are compatible with the

forcing and response hypotheses embodied by those

forced simulations.

Formal detection–attribution techniques often use

amodel-generated pattern from a single or set of climate

forcing experiments and then regress this pattern against

the observations to compute a scaling amplitude (e.g.,

Hegerl et al. 1996; Hasselmann 1997; Allen and Tett

1999; Allen and Stott 2003). If the scaling is significantly

different from zero, the forced signal is detected. If the

scaling does not significantly differ from unity, then the

amplitude of the signal agrees with observations or is at

least close enough to agree within an expected range

based on internal climate variability. Optimal detection

techniques also filter the data during the analysis such

that the chance of detecting a specified signal, or fin-

gerprint, is enhanced if the signal is present in the data.

An alternative approach that is less focused on model-

definedpatterns has been proposed bySchneider andHeld

(2001). In contrast to the optimal detection/attribution

methods, we compare both the amplitude and pattern

simulated by the models directly with the observa-

tions, without rescaling of patterns or application of

optimization filtering. Our analysis is thus a consis-

tency test for both the amplitude and pattern of the

observed versus simulated trends, building on earlier

work along these lines by Knutson et al. (1999), Karoly

and Wu (2005), Knutson et al. (2006), and Wu and

Karoly (2007) to test for detectable anthropogenic

contributions. Other variants and enhancements to this

general type of analysis have recently been presented

by Sakaguchi et al. (2012). More discussion of various

detection and attribution methods and their use in

general is contained in Hegerl et al. (2009).

In this report, themodels, methods, and observed data

are described in section 2. We examine the model con-

trol runs and their variability in section 3. Global-mean

time series from the twentieth-century climate simula-

tion (20c3m; approximately 1860–2010) historical runs

are examined in section 4. Section 5 contains consistency

tests for observed versus simulated trends, as discussed

above, for temperatures averaged over various defined

regions of the globe. Maps based on results of consis-

tency tests at the gridpoint scale are presented in section

6. A brief description of online supplemental material is

given in section 7, and the discussion and conclusions are

given in section 8.

2. Model and observed data sources

a. Observed data

The observed surface temperature dataset used in

this study is the University of East Anglia–Met Office

Hadley Centre Climate Research Unit temperature,

version 4 (HadCRUT4 AU1; Morice et al. 2012), which is

available as a set of anomalies relative to the period

1961–90. The dataset contains some notable revisions,

particularly to SSTs [Hadley Centre Sea Ice and Sea

Surface Temperature dataset, version 3 (HadISST3);

Kennedy et al. 2011], relative to previous versions, so it

important to retest earlier conclusions regarding climate

trends using the revised data. The dataset also contains

uncertainty information, in the form of 100 ensemble

members sampling the estimated observational uncer-

tainty. Some of our tests examine the sensitivity of trend

results to this observational uncertainty.

To form a combined product of SST and land surface

air temperature,Morice et al. (2012) adopt the following

procedure: If both land data and SST data are available

in a particular grid box, they are weighted according to

the fraction of the grid box that is covered by land or

ocean, respectively. A minimum of 25% coverage is

assumed, even if the fraction of the grid box covered by

land is less than 25%. In our study, we use this same

general procedure, adapted to a model’s land–sea mask,

to combine SST and land surface air temperature data-

sets from each model that we analyze.

b. CMIP3 and CMIP5 models

F F1igure 1 displays the complete collection of control runs

from both CMIP3 and CMIP5 used in our analysis (see

T T1able 1 formodel expansions). The datawere downloaded

from the CMIP3 (http://www-pcmdi.gov/ipcc/about_

ipcc.php AU2) and CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5)
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FIG. 1. Time series of global-mean annual-mean surface air temperature (2m)

anomalies from the (a),(b) CMIP3 and (c),(d) CMIP5 preindustrial control runs (black

curves): run (left) I and (right) II. Observed global-mean surface temperature

(HadCRUT4, combining SST and land surface air temperature anomalies) is also shown

in blue on the diagrams for comparison. The blue curves labeledResidual (HadCRUT4. . .

were created by subtracting the multimodel ensemble-mean surface temperature (using

masked SSTs and land surface air temperatures from the 20c3m all-forcing historical

runs for either CMIP3 or CMIP5) from the observed temperature. Orange straight lines

(one or two segments) through the control run time series depict the long-term linear

drift. The long-term drift over the year range shown is calculated at each grid point and

then subtracted from the model control run series before performing further analysis in

our study. Short vertical orange segments denote two places where specific control runs

were divided into two separate segments and the linear drift computed separately for

each segment. In those cases, the residuals from the drift were formed and then com-

bined back into a single series. The various curves in the figure have been displaced

vertically by arbitrary constants for visual clarity. Curves labeled with an asterisk denote

CMIP3 models that did not include volcanic forcing in their historical runs. The number

in brackets by each model name denotes how many all-forcing ensemble members were

available; when there are two numbers in brackets, the second refers to the number of

natural-forcing ensemble members. Curves labeled with a 0 were excluded from the

remainder of our analysis because of various issues such as discontinuities in time series,

short record length, or unavailable sea surface temperature data in the CMIP3 archive.

The vertical axis tic mark spacing is 0.28C.

Fig(s). 1 live 4/C
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model archives. We regridded (averaged) the model

data from the 20c3m historical runs and control runs

onto the observational grid. In cases where we needed to

use combined model land surface air temperature and

SST data to compare with observations, we used a pro-

cedure resembling that used for the observations but

based on the model’s own land–sea mask. For example,

if any land is present in a grid box, a minimum of 25%

land coverage is assumed, even if the fraction of the grid

box covered by land is less than 25%. Our general ap-

proach in this study is to attempt to mimic observations

with the models, in terms of data coverage over time. To

mimic the space–time history of data gaps in the ob-

servations, we masked out (withheld from the analysis)

TABLE 1. Expanded names of models from CMIP3 and CMIP5 in Fig. 1 (listed in order of which they appear in Fig. 1).

Model Expansion

CMIP3

BCCR-BCM2.0 Beijing Climate Center, Climate System Model, version 1.1

CCCma CGCM3.1 Canadian Centre for Climate Modelling and Analysis Coupled GCM version 3.1

CNRM-CM3 Centre National de Recherches M�et�eorologiques Coupled Global Climate Model version 3

CSIRO MK3.0 Commonwealth Scientific and Industrial Research Organisation Mark version 3.0

CSIRO MK3.5 Commonwealth Scientific and Industrial Research Organisation Mark version 3.5

GFDL CM2.0 Geophysical Fluid Dynamics Laboratory Climate Model version 2.0

GFDL CM2.1 Geophysical Fluid Dynamics Laboratory Climate Model version 2.1

GISS-AOM Goddard Institute for Space Studies, Atmosphere–Ocean Model

GISS-EH Goddard Institute for Space Studies Model E, coupled with the HYCOM ocean model

GISS-ER Goddard Institute for Space Studies Model E-R

IAP FGOALS-g1.0 Institute of Atmospheric Physics Flexible Global Ocean–Atmosphere–Land System Model

gridpoint, version 1.0

UKMO HadGEM1 Met Office Hadley Centre Global Environmental Model, version 1

UKMO HadCM3 Hadley Centre Coupled Model, version 3

NCAR PCM1 National Center for Atmospheric Research Parallel Climate Model, version 1

NCAR CCSM3.0

MRI-CGCM2.3.2a Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model,

version 2.3.2a

MPI ECHAM5 Max Planck Institute ECHAM5

MIUBECHOG Meteorological Institute of the University of Bonn, ECHO-G Model

MIROC3.2(medres) Model for Interdisciplinary Research on Climate 3.2, medium-resolution version

MIROC3.2(hires) Model for Interdisciplinary Research on Climate 3.2, high-resolution version

INM-CM3.0 Institute of Numerical Mathematics Coupled Model, version 3.0

INGV ECHAM4 Istituto Nazionale di Geofisica e Vulcanologia ECHAM4

IPSL CM4 L’Institut Pierre-Simon Laplace Coupled Model version 4

CMIP5

INM-CM4 Institute of Numerical Mathematics Coupled Model, version 4.0

HadGEM2-ES Hadley Centre Global Environmental Model, version 2 (Earth System)

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth System Model with MOM4 ocean component (ESM2M)

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory Earth System Model with GOLD ocean component (ESM2G)

GFDL CM3 Geophysical Fluid Dynamics Laboratory Climate Model, version 3

FGOALS-g1.0 Flexible Global Ocean–Atmosphere–Land System Model gridpoint, version 2

CSIRO Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6.0

CNRM-CM5 Centre National de Recherches M�et�eorologiques Coupled Global Climate Model, version 5

CMCC-CMAU6 Centro Euro-Mediterraneo per i Cambiamenti Climatici Climate Model

CCSM4.0 Community Climate System Model, version 4.0

CanESM2 Second Generation Canadian Earth System Model

BCC-CSM1.1 Beijing Climate Center, Climate System Model, version 1.1

NorESM1-M Norwegian Earth System Model, version 1 (medium resolution)

MRI-CGCM3 Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3

MRI-CGCM3 Meteorological Research Institute Coupled Atmosphere–Ocean General Circulation Model, version 3

MPI-ESM-MR Max Planck Institute Earth System Model, medium resolution

MPI-ESM-LR Max Planck Institute Earth System Model, low resolution

MIROC-ESM Model for Interdisciplinary Research on Climate, Earth System Model

MIROC-ESM-CHEM Model for Interdisciplinary Research on Climate, Earth System Model, Chemistry Coupled

MIROC5 Model for Interdisciplinary Research on Climate, version 5

IPSL-CM5B-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, low resolution

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, medium resolution

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace Coupled Model, version 5, coupled with NEMO, low resolution
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model data at times and locations where data were la-

beled missing in the observations. Finally, we computed

the model’s climatology over the same years as for ob-

servations (1961–90) and then created anomalies from

this climatology. For example, this same procedure was

used for 150-yr samples from the model control runs for

analyses where we wanted to ensure that the control

runs hadmissing data characteristics that were similar to

those of the observed data.

The historical forcings for the CMIP3 20c3m historical

forcing runs are summarized in Rind et al. (2009, Table

3.6). An important distinction among the models is the

treatment of volcanic forcing. Of the 24 CMIP3 models

we examined, 10 models include volcanic forcing, whereas

14 do not. However, as discussed further below, for most

of our assessments, we used a maximum of 19 of the

24 CMIP3 models of which eight included volcanic forc-

ing while 11 models (identified by and asterisk after

model name in Figs. 1a,b) did not. We refer to these sets

of models as the 8 volcanic and 11 nonvolcanicCMIP3

model subsets, respectively. All 23 of the CMIP5models

included in this study included volcanic forcing in their

20c3m runs. However, only 7 of the 23 CMIP5 models

had natural-forcing-only runs that extended to 2010 (see

Fig. 1). These natural-forcing runs extending to 2010

were necessary for some of our detection and attribution

analyses concerning anthropogenic forcing, and those

seven models form the CMIP5 seven-model subset re-

ferred to in subsequent section.

3. Model control run analysis

a. Global-mean time series

The global-mean surface air temperature series from

the CMIP3 and CMIP5 model control runs are shown in

Fig. 1. Data are displayed with arbitrary vertical offsets

for visual clarity. The figure also shows the observed

surface temperature anomalies from HadCRUT4. The

curves labeled residual were obtained by subtracting the

multimodel mean of the historical volcanic forcing runs

(either CMIP3 of CMIP5) from the full observed time

series. These observed residual series thus contain esti-

mates of the internal variability of the climate system as

derived from the observations in combination with the

climate models’ response to estimated historical forcing.

In section 3b, we will further refine this estimate of ob-

served internal variability.

The model control runs exhibit long-term drifts. The

magnitudes of these drifts tend to be larger in the CMIP3

control runs (Figs. 1a,b) than in the CMIP5 control runs

(Figs. 1c,d), although there are exceptions. We assume

that these drifts are due to the models not being in

equilibrium with the control run forcing, and we remove

the drifts by a linear trend analysis (depicted by the

orange straight lines in Fig. 1). In someCMIP3 cases, the

drift initially proceeds at one rate, but then the trend

becomes smaller for the remainder of the run. We ap-

proximate the drift in these cases by two separate linear

trend segments, which are identified in the figure by the

short vertical orange line segments. These long-term

drift trends are removed to produce the drift corrected

series. The procedure for removing the trends involves

calculating and removing the linear trends (over the

time periods shown in Fig. 1) at each model grid point

separately. The orange trend lines shown in Fig. 1 depict

also the starting and ending years for the trends used for

each model.

Five of the 24 CMIP3 models, identified by (-) in

Fig. 1, were not used or practically not used beyond

Fig. 1 in our analysis. For instance, the FGOALS-g1.0

has a strong discontinuity near year 200 of the control

run. We judge this as likely an artifact due to some

problem with the model simulation, and we therefore

chose to exclude this model from further analysis. The

MIROC3.2(hires) and INGV ECHAM4 model control

runs are so short in length that they are essentially un-

used in our analysis, since we require the control run

record to be at least three times as long as a trend that is

being assessed. For two other models, we were not able

to successfully obtain sea surface temperature infor-

mation from the CMIP3 archive, and so these were ex-

cluded from further analysis.

While some of the trends in the CMIP3 and CMIP5

control runs (Fig. 1) approach the observed ;150-yr

trend in terms of general magnitude, these few cases are

associated with either the long-term drifts discussed

above or with a few spurious discontinuity issues (e.g.,

IAP FGOALS-g1.0). Controlling for these apparent

problems, none of the control runs in the CMIP3 or

CMIP5 samples exhibit a centennial scale trend as large

as the trend in the observations. On the other hand, the

variability of observed residual series appears roughly

similar in scale to that from several of the control runs.

Three of the CMIP3 control runs illustrated in Fig. 1

(GISS-AOM, GISS- EH, and GISS-ER) have much

lower levels of global surface temperature variability

than in the observed residual series. For some sensitivity

tests on the multimodel assessments, we have excluded

these three models to test for robustness.

b. Geographical distribution of variability

In this section, we describe a method for comparing

the geographical distributions of observed variability

with model control run variability. The geographical

distribution of an adjusted standard deviation of
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low-pass-filtered (.10yr) surface temperature from ob-

servations (OSDAU3 ) is shown in FF2 igs. 2b,e,h. These observed

estimates contain adjustments (described in detail below)

that make them more suitable for comparison to the

variability in the model control run. This is necessary

because the variability within the model control runs is

generated strictly internally within the models and does

not contain contributions from external climate forcings.

In contrast, observed temperature will contain some

mixture of variability due to external climate forcing

FIG. 2. Standard deviation (8C) of low-pass-filtered (.10 yr) internal variability of surface temperature derived from (a),(d),(g) CMIP3

or CMIP5 preindustrial control runs; (b),(e),(h) an observed estimate (OSD); and (c),(f),(i) the difference between the control runs and

the observed estimate. The long-term linear drifts (time periods identified by the orange line segments in Figs. 1a,b) were removed prior to

computing the control run standard deviations. Themodel control run results are based on themean standard deviation of (top to bottom)

8 CMIP3 models that have all-forcing runs with volcanic forcing, all 23 CMIP5 models, and 7 CMIP5 models that included at least one

experiment with natural forcing only and extending to 2010. Note that the control runs on which the figure are based do not have episodic

volcanic forcing and have been masked for observed missing data periods. Therefore, the observational estimate of internal variability

(OSD) is derived from observations with adjustments for variance associated with various natural or anthropogenic forcing agents. See

text for details of the adjustment.
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agents and internally generated processes in the climate

system. The models’ average standard deviation fields,

based on the full available time series of surface air

temperature from each control run, are shown in Figs.

2a,d,g. Prior to computing the individual model standard

deviations, the long-term drift has been subtracted from

each control run as discussed in section 3a. The indi-

vidual model standard deviations are then averaged for

the three model sets to form the fields in Figs. 2a,d,g.

Difference maps, computed as the models’ average low-

frequency standard deviations minus OSD, are shown in

Figs. 2c,f,i.

We now describe the process for computing OSD

(Figs. 2b,e,h). At each grid point, we low-pass filter the

observations using a decadal filter with a half-power

point at 9 yr. Rather than compare this variance directly

to variance from a model control run, we first attempt to

estimate howmuch of an amplification of variance there

is in the observed estimate owing to the presence of

forced variability (in addition to internal, unforced

variability). We then correct or adjust for this amplifi-

cation in two stages. For each of the three sets of models

(CMIP3 8-model set, CMIP5 23-model set, and CMIP5

7-model subset), analyzed separately, we use the grand

ensemble mean of the model all-forcing runs (n5 8, 23,

or 7) as an estimate of the forced signal to remove from

observations. This provides the first level adjustment for

the observations, which is slightly different for each set

of models. However, since the true forced response of

a given model is only approximately known, given the

limited number of ensemble members that are used to

estimate this forced response, it follows that some re-

sidual forced variance will remain in the observed series

after this initial adjustment. We try to estimate how

much variance remains by using the same procedure that

we used for observations but applying it to each in-

dividual all-forcing run ensemble member. That is, for

a given model, we consider each of its all-forcing en-

semble member separately and remove the multimodel

ensemble mean (as for observations) to derive an in-

ternal variability estimate. We average this estimate

across all of that model’s ensemble members to create

an average standard deviation for that model and then

average across all models to create a multimodel en-

semble internal variability standard deviation estimate.

Next, we consider the model control runs, and compute

the average standard deviations for a sample of 50

randomly drawn 110-yr time series from each control run,

average those, and then average across all of the control

runs to create an ensemble-average internal variability

estimate from the control runs. For each of the 110-yr

segments, the control model data are masked with the

observed mask for the given grid point before being

low-pass filtered. By comparing the internal variability

estimate derived from the all-forcing runs with that

from the control runs for the same models, we derive

the second level adjustment. This average adjustment is

then applied to the standard deviation from the first-

level adjusted observations to obtain a new observed

internal variability standard deviation estimate (OSD)

that is more suitable to compare with the model control

runs. Given this method (which includes two separate

levels of adjustment) we can now more defensibly com-

pare the model control run and observed low-frequency

variability.

We stress that our variance-comparison procedure

described above is only a very rough test of decadal

variance consistency and is not even attempted in data-

poor regions such as the deep Southern Ocean. There

are inherent limitations to our estimates because there is

only so much observational data and only so many en-

semble members supplied by the modeling centers. In

terms of observational temporal coverage, in order for

a comparison to be done between model and observa-

tions at a grid point, we require at least 50 points (out of

110) to be available in the 110-yr annually resolved de-

cadal filtered record. A 40% temporal coverage is re-

quired for an annual mean to be considered valid, and

the decadal filter does amodest degree of gap infilling by

computing a filtered value if at least four of seven annual

values are available within a 7-yr-wide sliding window.

The adjusted standard deviation of low-pass-filtered

observations OSD) forms the basis of the observed es-

timates and difference maps in Figs. 2 and 3 F3, and of the

variance consistency tests that will be described later in

this report.

The adjusted observed fields (OSD) suggest that the

strongest low-frequency internal surface temperature

variability occurs over higher-latitude land and oceanic

regions of the Northern Hemisphere. The modeled fields

also show these features, though they are somewhat

stronger in the models than for the observed estimate.

Thus, a feature that stands out in the modeled minus

observed (OSD) standard deviation field (Figs. 2c,f,i)

is the tendency for model-simulated low-frequency

internal variability to exceed the observed estimate in

high-latitude oceanic and continental regions of the

Northern Hemisphere. Another feature is a tendency

for the modeled variability to be too small over much of

the remaining ocean regions and Southern Hemisphere

as far south as about 408S. Limited data coverage pre-

cludes an assessment of low-frequency variability over

of the Arctic Ocean, Antarctica, and the Southern

Ocean south of 408S (gray regions on the maps).

The general features shown in the ensemble-mean

difference maps in Figs. 2c,f,i are also present to some
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degree for many of the individual models (Fig. 3).We also

list inFig. 3 the spatial correlation coefficients between the

individual model standard deviation fields (not shown)

and the observed field (OSD). These spatial correlations

vary from about 0.5 to 0.7 for themodels shown, indicating

a relatively good agreement between individual models

and observations in the overall spatial structure of the

variability. This gives us some confidence in the models’

ability to simulate at least the broad-scale features of

surface temperature low-frequency variability.

There are a number of caveats to the comparison

presented here. For example, uncertainties remain in

FIG. 3. As in Figs. 2c,f,i, but for individual models in the (a) CMIP3 and (b) CMIP5 sets of models used in Fig. 2. The red number at the

top-right above each panel lists the spatial correlation of the model’s low-pass-filtered standard deviation field vs the observational

estimate (OSD) in Fig. 2. For the seven-model subset of CMIP5models, the comparison is with the observations adjusted according to just

those seven models and their respective all-forcing and control runs. See text for further details.
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estimating the forced variability component from ob-

servations, which is used to create the observed residual,

and thus there are uncertainties in the observed internal

variability estimate used for comparison to the model

control runs, as noted earlier. In addition, the available

observational records are relatively short compared

with many of the model control runs. As noted by

Wittenberg (2009) and Vecchi and Wittenberg (2010),

long-running control runs suggest that internally gen-

erated SST variability, at least in the ENSO region, can

vary substantially between different 100-yr periods

(approximately the length of record used here for ob-

servations), which again emphasizes the caution that

must be placed on comparisons of modeled versus ob-

served internal variability based on records of rela-

tively limited duration.

4. Global-mean surface temperature: Historical
forcing runs

a. Time series of global-mean surface temperature

The global-mean time series of surface temperature

from the 20c3m historical runs are compared with ob-

servations (black curves) in FF4 ig. 4 in a form similar to

that presented by Hegerl et al. (2007). The historical

dates of large volcanic eruptions are shown by vertical

brown lines. An analysis of the model time series for the

CMIP3 and CMIP5 all-forcing experiments is presented

in Figs. 4a–c, and for the available CMIP5 natural-

forcing-only experiments in Fig. 4d. The large shaded

region on each plot shows the 5th–95th percentile range

of a single model realization from the multimodel sam-

ple. The multimodel sample is formed by combining the

distributions of each of the models, with each model

having an equal probability weight in the multimodel

distribution. The subdistribution from each model is

centered on that model’s ensemble mean with the dis-

tribution about that mean based on the control run for

that model. Thus the multimodel distribution incor-

porates the uncertainty due to differences between the

model ensemble means (i.e., forcing and response-to-

forcing uncertainties) and uncertainties due to internal

variability for each model.

The analysis shows that for the all-forcing runs (Figs.

4a–c) most of the time the observed annual means lie

within the 5th–95th percentile range of single model

realizations, implying that there is a consistency between

the observed record and themultimodel ensemble of runs

taken as a whole. However, the range for the CMIP5

natural-forcing-only simulations (Fig. 4d) clearly sepa-

rates from the observed time series after about 1960, in-

dicating that natural-forcing-only runs are inconsistent

with observations, particularly for the late-twentieth-

century global warming.

The narrower shaded region between the two thick

red lines (Figs. 4a–c) depicts the 5th–95th percentile

range of the multimodel ensemble mean. This is fairly

narrow, indicating that the multimodel ensemble means

of these particular sets of models are fairly well con-

strained, with relatively small uncertainty. The ensem-

ble means of the CMIP3 and CMIP5 volcanic models

(Figs. 4a,c) track the observations remarkably well, al-

though the apparent volcanically induced temporary dips

are not in full agreement with the observed behavior for

those periods. For example, in Figs. 4a,c, the multimodel

responses to the Pinatubo andKrakatau eruptions appear

to be larger than in observations. These apparent dis-

crepancies in the volcanic responses will require further

analysis (see, e.g., Stenchikov et al. 2009) and are not

a focus of the present study. For example, one must

carefully assess the role of internal climate variability in

judging whether these differences are significant.

The combined volcanic and nonvolcanic CMIP3 en-

semble (Fig. 4b) shows a substantially wider envelope of

model behavior, as expected with the larger number of

models and with the wider discrepancy in forcing among

these models. Since the nonvolcanic runs have a sub-

stantially less realistic representation of the forcing, we

will generally emphasize the eight CMIP3 models with

volcanic runs in Fig. 4a in our remaining forced model

assessments for the CMIP3 models in this study.

b. Spectra of global-mean surface temperature

F F5igures 5a,b show the variance spectra of observed

global-mean temperature (black curves, with a shaded

range for the 90% confidence intervals) and of the in-

dividual CMIP3 and CMIP5 volcanic forcing historical

runs (red curves) from Figs. 4a,c, using data from the

years 1880–2010. The data were not detrended prior to

computing the spectra. Before plotting, the raw spectra

were smoothed using a nonoverlapping sliding boxcar

window that groups the raw spectra into groups of three

calculable frequencies. The 90% confidence intervals

on the observed spectrum assume six degrees of freedom

for each spectral estimate (group of three) shown. The

sum of the variance is plotted at the central frequency of

the sliding boxcar window. The enhanced power at low

frequencies in Figs. 4a,b relative to Figs. 4c,d is associated

with the strong warming trend in both observations and

the all-forcing model runs. There is a strong tendency for

the model spectra to lie within the 90% confidence in-

tervals of the observed spectra, particularly at periods

longer than 10yr (frequency , 0.1 yr21).

The spectra in Figs. 5c,d are based on residual time

series from observations or model historical runs, where
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the multimodel ensemble surface temperature time se-

ries from the 20c3m volcanically forced historical runs is

first subtracted from the observed global-mean tem-

perature series or from the individual model histori-

cal runs to form residual time series. As a result of this

filtering procedure, most of the long-term warming

trend (e.g., Figs. 4a,c) is removed from the time series.

The agreement between variance spectra of model and

observed residual time series in Figs. 5c,d is not as good

as for the original unfiltered spectra (Figs. 5a,b), par-

ticularly for the CMIP3.

Overall, the results of these comparisons suggest that

themodel simulations have a plausible representation of

variability of the climate system, in terms of the spatial

pattern of variability and the direct comparison of the

time series of observed and historical run global mean

surface temperature. The spectral results suggest that

the models, particularly the CMIP3, may have some

shortcomings in global low-frequency variability simu-

lations, although there are uncertainties in estimates of

the internal climate variability as obtained by creating

observed residual time series. Overall, these findings

FIG. 4. Time series of global-mean surface temperature anomalies (8C, combined SST and land surface air temperature) from obser-

vations (HadCRUT4; black curves). The red curves depict the 5th and 95th percentiles of annual-mean anomalies for the multimodel

mean (thick) or of single model realizations (thin lines with gray stippling) for the (a),(b) CMIP3 and (c) CMIP5 20c3m historical all-

forcing runs. The mean curve is not shown but lies approximately midway between the 5th and 95th percentiles. The series in (a) are from

eight CMIP3 models run with volcanic forcing. The historical runs in (b) include 19 CMIP3 models with and without volcanic forcing

(as identified in Figs. 1a,b). All of the 23 CMIP5model runs included in the computations in (c) incorporated volcanic forcing. (d) The blue

curves are based on seven CMIP5 models that had natural-forcing-only runs extending through 2010. See text for description of how the

confidence limits were computed. The time series have been recentered so that the ensemble-mean value, averaged for the years 1881–

1920, is 0. Model data weremaskedwith the observed spatially and temporally evolvingmissing datamask. The total number of individual

experiments included in each panel was (a) 26, (b) 51, (c) 79, and (d) 25.
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encourage us to use the models to assess surface tem-

perature trends at the regional scale in the following

sections, with the caveat that there is likely room for

improvement in the model simulations of internal vari-

ability. Further tests of low-frequency variability are

presented in section 6.

5. Trend assessments: Global-mean and regional
time series

a. Methodology for the sliding trend analysis: CMIP5
models

In this section, we compare the observed and simulated

historical (20c3m) temperature trends obtained from

global or regional averages, to assess whether a linear

trend signal has emerged from the background noise of

internal or natural climate variability, as estimated by

the models. The primary focus is on the seven CMIP5

models that have natural-forcing-only runs extending to

2010.While we can extend all-forcing runs to 2010, when

necessary, using RCP4.5 projections, this is not tractable

for the natural-forcing-only runs. We can use these

seven CMIP5 model runs together to assess whether the

observed trends have emerged from the background of

natural variability and whether they contain an attrib-

utable anthropogenic component. We also examine the

full sample (23 models) of CMIP5 runs for our all-forcing

run versus control run analysis. For these 23 models and

for the 8 CMIP3 models that include volcanic forcing

(but for which we generally do not have natural-forcing-

only runs), we can ask a more limited set of questions,

FIG. 5. Variance spectra as a function of frequency for observed global-mean surface temperature (combined SST and land surface air

temperature) in black with 90% confidence intervals shown by the shading, plotted against spectra for the individual (a) CMIP3 and

(b) CMIP5 all-forcing historical runs with volcanic forcing (red) based on the time series in Figs. 4a,c. (c),(d) Spectra based on residual

observed or model historical run time series, where the multimodel ensemble surface temperature from the 20c3m all-forcing (with

volcanic) historical runs [(c) CMIP3 (d) CMIP5] is subtracted from the observed and from eachmodel’s global-mean temperature series to

form residual time series prior to computing the spectra (see text for details).

Fig(s). 5 live 4/C
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namely whether the linear trend signal to 2010 in the

observations has emerged from the background of in-

ternal climate variability and whether the all-forcing run

trends are consistent with the observed trends.

We assess the trends across a wide sliding range of

start years beginning as early as 1861. All trends in the

analysis use 2010 as the end year. The general procedure

we use is illustrated in FF7 ig. 7a for global-mean surface

temperature. The black-shaded curve in the figure shows

the value of the linear trend in observed global-mean

temperature for each beginning year from 1880 to 2000,

in each case with the trend ending in the year 2010. The

HadCRUT4 observed dataset contains an ensemble of

100 estimates, and these are used to create an ensemble

of observed trend estimates. The black shading depicts

the 5th–95th percentile range of this ensemble. The first

year plotted for global-mean temperature was 1880 be-

cause the areal coverage and temporal coverage re-

quirements for a trend to 2010 were reached in that year.

The observed temperature trend to 2010 is about 0.58C
(100 yr)21 (equivalent to 0.058C decade21) beginning

early in the record (late 1800s) and increases to about

28C (100 yr)21 (equivalent to 0.28C decade21) by around

1980. The observed trend has decreased for more recent

start dates, falling below 18C (100 yr)21 (equivalent to

0.18C decade21) for trends beginning in the late 1990s.

The blue curve in Fig. 7a shows themean of ensemble-

mean trends for the natural-forcing-only runs of the

seven CMIP5 model subset (see caption). Each of the

seven models is weighted equally in the mean of ensem-

ble means, even if a modeling center provided a greater

or smaller than average number of within-model en-

semble members. The light blue shading in Fig. 7a shows

the 5th–95th percentile range of trend values for the

natural-forcing-only runs, which is constructed using

the long-term drift-adjusted control run variability (Figs.

1c,d) from each model. Under an assumption that in-

ternal variability in the control run is not substantially

FIG. 6. Map illustrating averaging regions examined in Figs. 7–9. Regions shown are as follows: Europe (Euro); northern Asia (NAs);

southern Asia (SAs); Africa (Afr); Indian Ocean (IO); Australia (Aus); tropical western Pacific (TWP); tropical eastern Pacific (TEP);

tropical Indian Ocean/western Pacific warm pool (IOWP); North Pacific (NP); Alaska (AL); southeastern United States (SEUS); con-

tinental United States (ConUS); rest of continental United States, other than SEUS (RofUS); South America (SAmer); Canada (Can);

NorthAtlantic (NAtl); subtropical NorthAtlantic (SNA); tropical NorthAtlantic (main development region) (TNA); and SouthAtlantic

(SAtl).
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FIG. 7. Trends [8C (100yr)21] in area-averaged annual-mean surface temperature as

a function of starting year, with all trends ending in 2010. The black curves are trends from

observations (HadCRUT4), where observational uncertainty is depicted as a range showing

the 5th–95th percentile ranges of trends obtained using the 100-member HadCRUT4 en-

semble. Blue curves are ensemble means for natural-forcing-only runs using a subset of

sevenCMIP5models that had natural-forcing runs to 2010. Red curves are ensemblemeans

of the all-forcing runs from the same seven CMIP5 models. See Fig. 6 for definitions of

averaging regions. The different models are weighted equally for the multimodel ensemble

means, regardless of the number of ensemble members they had. The pink shading shows

the 5th–95th percentile range of the distribution of trends obtained by combining random

samples from each of the seven CMIP5model control runs together with the corresponding

model’s ensemble-mean forced trend (all-forcing runs) to create a total multimodel distri-

bution of trends that reflects uncertainty in both the forced response and the influence of

internal climate variability. The blue-shaded region shows the same but for the natural-

forcing-only runs.Violet shading indicateswhere the pink- and blue-shaded regions overlap.

Gaps in the curves indicate inadequate data coverage for a trend to 2010 for those start

years. Requirements include the following: 33% areal coverage to define an index time

series point for amonth, 40%ofmonths available for a year to be nonmissing, and 20%of all

years available in each of five equal segments for a time series have adequate coverage for

a trend. The seven-model CMIP5 subset used here and in subsequent assessment figures

that incorporate natural-forcing runs are: CanESM2, CNRM-CM5, CSIRO Mk3.6.0,

FGOALS-g2, HadGEM2-ES, IPSL-CM5A-LR, and NorESM1-M.
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different from that in the forced runs, we can use the

long control run for each model to estimate the com-

ponent of interrealization uncertainty that would be

present in the forced trends; this is helpful, since most

centers did not provide enough ensemble members to

precisely assess this component of the uncertainty.

To prevent any one model from dominating the

analysis, our approach also attempts to weight the var-

ious models roughly equally. Thus, even if one modeling

center provided a much longer control run than the

others, each of these models would still get an equal

weighting in constructing a multimodel sample of in-

ternal climate variability. Control runs from each of the

seven CMIP5 models contribute equally to the multi-

model sample from which the percentile range is con-

structed, as long as a particular model control run is

eligible for use, meaning here that the length of the us-

able part of the control run is at least 3 times the length

of the observed trend being examined.

Each randomly selected control run trend (from the

seven models used) is combined with that model’s

ensemble-mean natural-forcing-only trend for that trend

length, thus creating a distribution of historical natural-

forcing-only trends that includes the uncertainty due to

both internal variability and the spread of forced re-

sponses across the seven models. The blue region is the

5th–95th percentile range of this distribution of trends,

and thus relates to the uncertainty of single ensemble

members (which mimics the real world, itself a single

ensemble member). Therefore, the distribution of trends

used to construct the percentile range includes un-

certainty due to both the different natural forcings and

responses of the individual models, and the uncertainty

due to the internal variability as simulated in the con-

trol runs. The random resampling approach is neces-

sary because the available control runs for the various

models are of different lengths and yet we purposely

chose to give each available model an equal vote in

estimating internal variability. The samples are drawn

from the control runs in the form of 150-yr samples with

randomly chosen start dates, with each sample masked

with the observed mask of missing data over the period

1861–2010 to create datasets with missing data char-

acteristics that are similar to those of the observations.

The analysis in Fig. 7a shows that observed global

temperature trends-to-2010 of almost any length are

detectable compared to the CMIP5 natural-forcing-

only runs and simulated internal variability—even for

trends as short as those beginning around 1990. Note

that the spread of uncertainty expands for shorter

trends, reflecting the fact that the model can internally

produce relatively larger-magnitude trend rates over

relatively short periods.

The dark red curve and light pink shading in Fig. 7a

depict the intermodel mean of ensemble means and the

5th–95th percentile uncertainty range for the all-forcing

runs (i.e., natural and anthropogenic forcings combined)

and control runs for the seven-model CMIP5 subset.

These are constructed in an analogous way to the natural-

forcing-only curves and blue shading and thus depict the

uncertainty due to both internal variability and to the

different models’ responses to historical climate forcing

agents (all forcings, in this case). The violet shading in

the plot is the region where the pink and blue shading

overlap, indicating that the 5th–95th percentile ranges

of the all-forcing and the natural-forcing simulated

trends at least partially overlap.

In Fig. 7a, the black (observed) curve is always within

the pink- (or violet-) shaded region, meaning that global-

mean temperature trends are not significantly different

from the CMIP5 historical all-forcing run ensemble on

any time scale, including the most recent weak trends

beginning in the late 1990s.

When the black-shaded curve in Fig. 7a lies entirely

within (or above) the pink-shaded region and entirely

outside of the blue-shaded region, we conclude that

the trend from that point to 2010 has a detectable an-

thropogenic component. Given that the observed global-

mean surface temperature trends with start dates through

about the mid-1990s lie within this region of the graph,

we conclude that the observed global surface tempera-

ture warming to 2010 is at least partially attributable to

anthropogenic forcing according to these model data

and observations. Inspection of Fig. 7a further indicates

that this detection and attribution result is sufficiently

strong that the uncertainty associated with the combined

effects of internal climate variability, uncertainty in the

model responses to natural forcing, and the uncertainty

in the observed ensemble could be a factor of 2 larger

than shown here and the same conclusion would still

hold for start dates from the late 1800s to about the mid-

twentieth century. Our attribution conclusion for an-

thropogenic forcing and global-mean temperature is

not as strong as in the Intergovernmental Panel on Cli-

mate Change (IPCC) Fourth Assessment Report (AR4;

Hegerl et al. 2007), partly because we are not focusing in

this study on quantifying the magnitude or fractional

contribution of the anthropogenic forcing. Also, our

technique does not use information in spatial patterns to

distinguish between different forcings or to quantify the

effect of individual forcings (e.g., greenhouse gases).

Rather, our focus is on evaluating the evidence for de-

tectable and attributable net anthropogenic influence

on surface temperature in various regions around the

globe, using the best estimates as provided by current

models (without any rescaling). We essentially compare
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two alternative hypotheses (natural and anthropogenic

forcings versus natural forcings only) and focus down

even to the scale of individual 58 3 58 grid boxes, which is
important for regional climate change assessment.

There are some important caveats to the approach that

we use, aside from the obvious one that we rely on models

to estimate the internal climate variability levels (which

are compared to a derived observed estimate OSD in

section 3b). The limited number of ensemble members for

the individual models means that there is additional vari-

ance in the grand distributions of trends (i.e., pink- and

blue-shaded regions) because of our imperfect knowledge

of each model’s forced response. However, the net impact

of this limitation on the spread of the total distribution is

a complicated function of several factors. These include the

following four factors: 1) the number of ensemblemembers

a particular model has (which we now show in Fig. 1; the

larger the number of ensemble members, the smaller the

overestimate of variance); 2) where the models with few

ensemble members sit in the distribution (if they are close

to the outer edge, the overestimate can be greater than if

they are near the middle of the distribution); 3) what is the

variance of the model with few ensemble members or that

sits at the outer edge of the distribution; and 4) what is the

relative size of the spread of the individualmodel ensemble

responses versus the internal variability of the models near

the outer edge of the distribution.

We can also estimate an upper limit on the over-

estimate of the standard deviation, based on the number

of ensemble members we use, as about 15%–40% at

most, with the worst case being for a single ensemble

member, where the variance is as much as doubled, so

the standard deviation is 40% overestimated. However,

given the four factors mentioned above, the effect will

typically be considerably smaller than this.

It is also worth noting that the effect of an over-

estimation of variance in our framework is to make

trends too difficult to detect (compared to internal var-

iability or to the internal variability plus natural forcing)

but to also make it too easy for all-forcing trends to be

consistent with observations.

We could in principle attempt a simulation to essen-

tially estimate confidence intervals on our confidence

intervals, but these would be situation dependent and

would vary for different locations around the globe, time

period, etc. We have chosen to leave this extension for

further studies but note that the above issues should be

considered in evaluating our results.

b. Detection/attribution findings for various regional
indices

The sliding trend/ detection and attribution analysis

discussed above for global-mean temperature can be

applied to various regions around the globe. Here we

briefly summarize the findings of such an application

(panels shown in Figs. 7 and 8 F8).

1) MAJOR LARGE-SCALE REGIONAL INDICES

For global sea surface temperature (SST) (Fig. 7b),

trends to 2010 are clearly detectable for starting years up

to about 1990. The observed trends are only marginally

attributable to anthropogenic forcing for trends begin-

ning around the mid-twentieth century; otherwise, an

attributable anthropogenic signal is clearly apparent for

the detectable trends. For global land surface tempera-

ture (Fig. 7c) ,an attributable anthropogenic signal is

clearly seen in the observed trends for all start dates

from about 1885 up to about 1990, so the case for attri-

bution is slightly more robust than for global sea surface

temperature. The anthropogenic warming signal is so

much stronger over land than over ocean that it is

readily detectable and attributable despite the greater

intrinsic variability over land than over ocean. Northern

Hemisphere temperature (Fig. 7d) roughly mirrors the

results for global temperature and global land temper-

ature, with robust detection and attribution for start

years up to about 1990. Southern Hemisphere temper-

ature (Fig. 7e) results are similar though not quite as ro-

bust as for the Northern Hemisphere, as the start dates

with attributable anthropogenic influence extending up

to about 1980 rather than 1990.

The Northern Hemisphere extratropics (308–908N)

series (Fig. 7f) has robust detection and attribution up

to around a 1990 start date, but the Southern Hemi-

sphere extratropics (308–908S; Fig. 7g) series is slightly
less robust than theNorthernHemisphere, as detection–

attribution extends to starts dates up to about 1980. The

trends for the southern extratropics are relatively con-

stant over a range of start dates from 1900 to 1970, in

contrast to Northern Hemisphere series, which shows

a period of higher warming trend rates for trends to 2010

beginning in the second half of the twentieth century.

The southern extratropics trends from 1900 are mar-

ginally consistent with the all-forcing model trends, as

they are near the upper edge (95th percentile) of the

modeled distribution. An interesting feature of the

northern extratropics and southern extratropics trends is

that there is essentially no start date for which the 5th–

95th percentile range of the all-forcing and natural-

forcing-only simulated trends are not at least partially

overlapping. That is, in some sense the all-forcing and

natural-forcing trends from the models are not com-

pletely distinguishable from each other. The same will

be true for many of the subsequent regional series ana-

lyzed, especially for land regions and ocean regions with

pronounced multidecadal variability. Tropical surface
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temperatures, which combine land and ocean (Fig. 7h)

regions, show robust detection and attribution for trends

to 2010 with start dates as late as about the late 1970s.

2) REGIONAL SEA SURFACE TEMPERATURE

INDICES

Tropical SSTs (208N–208S; Fig. 7i) show similar robust

detection and attribution results (for start dates as late

as about the 1970s) to those for the tropical surface tem-

perature as a whole. Indian Ocean SSTs (Fig. 7j; see

Fig. F66 AU4to identify Indian Ocean region) exhibit robust

detection and attribution for start dates up to about

1990, despite a larger observational uncertainty, partic-

ularly for trends beginning from the 1940s through the

1980s. A similar result is seen for the tropical Indian

Ocean/western Pacific warm pool index (Fig. 7k) and for

FIG. 8. As in Fig. 7, but for additional regions as labeled (see Fig. 6).

Fig(s). 8 live 4/C
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the tropical west Pacific (Fig. 7l), which are important

regions as they are dominant large-scale regions for

tropical convection; these have a detectable anthropo-

genic component for trends beginning up until about

1980. The tropical east Pacific (Fig. 7m) shows a detect-

able anthropogenic component for trends to 2010 be-

ginning from the 1880s to about 1920. However, trends

beginning from 1920 to 1970 are only marginally de-

tectable as the black region (observations, including

uncertainties) is not clearly outside of the blue (natural

forcing) region. North Pacific SSTs (258–458N; Fig. 7n;

see Fig. 6 to identify region) have a detectable anthro-

pogenic component but only for start dates up to about

1910. A marginally detectable signal is found for start

dates up to about 1930 and for a narrow range of start

years in the 1970s. Otherwise, the trends are not de-

tectable according to our analysis.

We analyzed four separate regions of the Atlantic

Ocean, as this basin is noted for pronounced multi-

decadal variability. In the SouthAtlantic (Fig. 7o), there

is a detectable anthropogenic warming for start dates up

to the late 1970s. An interesting feature in this region is

that warming trends from the 1890s are slightly higher

than even the 95th percentile of the model simulations.

North Atlantic SSTs (458–608N; Fig. 8a) exhibit no de-

tectable trends outside of the range of natural variability

for any start dates, according to our analysis. This region

is notable for having probably the least detectable signal

of any of our study regions around the globe. Despite the

lack of detectable trends, the observed trends are at least

consistent with the all-forcing runs, which have a very

wide 5th–95th percentile range of trends due to the large

simulated internal variability, as will be shown later in

this section. In the subtropical NorthAtlantic (208–458N;

Fig. 8b) an anthropogenic signal is detected for start

dates from about 1890 to 1920 and around 1970, but

otherwise is only borderline detectable up to about 1980.

In the tropical North Atlantic main development region

for Atlantic tropical cyclones (Fig. 8c), there is a de-

tectable anthropogenic warming to 2010 for start dates

up to about 1960 and then only intermittently for start

dates up to about 1990.

3) MAJOR LAND REGION TEMPERATURE INDICES

We now summarize the characteristics of surface tem-

perature trends in major continental regions, beginning

with Eurasia, Africa, and Australia. The Europe tem-

perature index (Fig. 8d) has detectable anthropogenic

warming trends for start dates up to about 1990, as the

observed trends (even accounting for observational un-

certainty in the HadCRUT4 dataset) are outside of the

range of the natural-forcing trends but lie well within the

range for the all-forcing trends. TheAfrica index (Fig. 8e)

has detectable anthropogenic warming trends for start

dates up to about the year 2000. Our analysis of African

temperature trends only extends back to start dates be-

ginning in the mid-1920s, due to more limited data cov-

erage. For northern Asia (Fig. 8f), our start dates extend

back to the early 1900s and show a clear detectable an-

thropogenicwarming signal for start dates extending from

there up to about 1980. For southern Asia (Fig. 8g), our

analysis shows a similarly strong detectable anthropo-

genic warming signal for start dates extending from the

late 1800s through about 1990. An interesting feature of

the African and southern Asia results is that the 5th–95th

percentile range of the all-forcing trends frommuch of the

twentieth century is much wider than the range for the

natural-forcing runs. Since the contribution from internal

variability (estimated from the control runs) is the same

for the two sets of trend results, the uncertainty range of

the all-forcing ensemble-mean trends across the models

must be comparable to or substantially larger than the

uncertainty due to internal climate variability alone. The

Australia temperature index (Fig. 8h) shows detectable

anthropogenic warming trends for start dates from the

late 1800s to about 1970.

Considering now the land regions of North and South

America, the index for Canada (Fig. 8i) shows detect-

able anthropogenic warming trends for start dates up to

about 1970. In contrast, for the Alaska index (Fig. 8j),

a detectable anthropogenic warming trend to 2010 is

most clear for start dates over the more limited range of

1940–70. Trends for post-1970 start dates are generally

not detectable, and trends for start dates from about

1910 to 1940 are only marginally detectable. For the

continental United States (Fig. 8k) an anthropogenic

warming trend to 2010 is detectable for start dates of

about 1900–75. For start dates of about 1860 to 1900, the

warming signal is only marginally detectable. The tem-

perature index for Mexico (Fig. 8l) indicates that ob-

servational uncertainties play an important role for

detection and attribution results in this region. A de-

tectable anthropogenic warming trend is seen for start

dates of about 1910–20 and about 1965–80; otherwise,

the trends are not detectable. In contrast, for the South

America index (Fig. 8m), the temperature trends to 2010

are mostly detectable for start dates from about 1910 to

1950 but are not necessarily attributable to anthropo-

genic forcing for these periods because the observed

trend range is not entirely within the pink region (range

of all-forcing simulated trends). Rather, they appear

systematically smaller than the simulated trends, after

accounting for observational uncertainties. Anthropo-

genic warming trends to 2010 are detectable for the

South America index but only for a limited set of start

years in the early 1970s.
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Temperature trends for the southeastern United

States index (Fig. 8o) are of particular interest because

the trend behavior in this region is different from most

other land regions around the globe, as has been pointed

out in a number of previous studies (e.g., Knutson et al.

1999, 2006; Portmann et al. 2009). According to our

present analysis, trends to 2010 in this index are de-

tectable only for a limited range of start years (mid-

1950s to the mid-1970s). For that limited set of start

years, an anthropogenic warming trend to 2010 is de-

tectable in our analysis. The trends in the index to 2010

at least are consistent with all-forcing runs for all start

years after about 1940, but the warming trends even

after 1940 are for the most part not strong enough to be

detectable against the background of natural forcing and

internal climate variability. This behavior contrasts with

the index for the rest of the continental United States

(that lies outside of the southeastern United States)

(Fig. 8o), where an anthropogenic warming trend to

2010 is broadly detectable for start years ranging from

about 1870 to the mid-1970s.

c. Consistency test findings using CMIP3 and CMIP5
models

Our regional temperature indices analysis in sections

5a and 5b (i.e., Figs. 7 and 8) focused on the subset of

seven CMIP5 models that had natural-forcing-only runs

that extended to 2010. Here we conduct a complimen-

tary assessment (for a more limited set of regions) that

compares these results with similar analyses for the 8

CMIP3 models (all-forcing and control runs) and with

the full set of 23 CMIP5 models (all-forcing and control

runs). Where necessary, the all-forcing 20c3m runs were

extended to 2010 using A1B (CMIP3) or representative

concentration pathway 4.5 (RCP4.5) (CMIP5) pro-

jection runs; this procedure was not tenable for the

natural-forcing-only runs because of the strong differ-

ences in forcing between natural-only and the A1B or

RCP4.5 scenarios for the extension years to 2010. Our

analyses for the CMIP3 models (and the 23 CMIP5

models as shown in the middle column of FF9 ig. 9) there-

fore only compare internal climate variability (control

runs) with all-forcing historical runs. Thus, we cannot

use these results to draw firm conclusions about de-

tection of anthropogenic trends, because the alternative

hypothesis (natural forcing) is not available through

2010 for all of the models. Nonetheless, we can draw

some conclusions about detection of significant trends

(against a background of internal climate variability)

and about consistency of observed trends versus the

trends in the all-forcing 20c3m experiments.

Our procedure is illustrated for the global tempera-

ture analysis in Figs. 9a–c. Figure 9c is identical to Fig. 7a

and is repeated here for reference only. Figure 9a shows

the 5th–95th percentile range for the observed trends to

2010 (black shading); the 5th–95th percentile range for

the all-forcing runs from the eight CMIP3 models (pink

shading, with the red curve depicting the ensemble

mean); and the 5th–95th percentile range of control run

trends from the same eight CMIP3 models (green shad-

ing). Violet shading illustrates regions of overlap of the

pink- and green-shaded regions. Where the black curve

lies outside of the green-shaded region, the observed

trend is detectable compared to internal climate vari-

ability in the CMIP3 runs. Where the observed curve lies

within the pink shading, the observed trend is assessed as

consistent with the CMIP3 all-forcing ensemble of runs.

Figure 9a (CMIP3) indicates that the observed global-

mean temperature trends to 2010 are detectable (in-

consistent with internal climate variability in the eight

CMIP3 models) for start dates from about 1880 to the

mid-1990s and are consistent with the CMIP3 all-forcing

run trends to 2010 for essentially all start dates from

1880 to 2000. Similar conclusions are evident for the 23

CMIP5 models as shown in Fig. 9b. As noted earlier,

similar results are seen for the seven CMIP5 models

when we incorporate the natural-forcing-only runs in

the tests (Fig. 9c), although there the detectability of the

observed trend extends to start dates as late as about

1990 rather than into the mid-1990s.

For tropical SST (Figs. 9d–f) the CMIP5 models, in-

cluding the seven-model subset with natural-forcing-

only runs to 2010 (Fig. 9f), indicate robust detection and

attribution for trends to 2010 for almost all start dates as

late as about the late 1970s, as discussed earlier. The

consistency with the all-forcing runs (all 23 CMIP5

models) is only marginal for a period of start dates

around 1960. A similar consistency result is seen for

the 23 CMIP5 models (Fig. 9e) where we compare their

all-forcing runs with their control variability. The ob-

served trends to 2010 appear to be detectable against the

internal variability (control run) background of the 23

CMIP5 models for start dates as late as about 1990. For

the eight CMIP3 models (Fig. 9d), the observed trends

to 2010 are detectable for start dates up to 1990, similar

to the CMIP5 models (Fig. 9e). However, the 8 CMIP3

all-forcing runs are not as consistent with the observed

trends to 2010 as the 23 CMIP5 all-forcing runs. In fact,

the CMIP3 all-forcing runs appear only marginally

consistent with the observed trends to 2010 for most of

the start dates from 1880 through about 1980. This il-

lustrates that the relatively modest levels of estimated

internal variability in this basin lead to a strongly de-

tectable warming signal but also make it difficult for

a model to be assessed as consistent with the observa-

tions, as the margin for error is relatively small.
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TheNorthAtlantic (458–658N)was highlighted earlier

as a region with no detectable trends compared with the

CMIP5 natural-forcing-only runs and internal climate

variability combined (Fig. 9i). This is perhaps not sur-

prising, given the substantial intrinsically generated

fluctuations on multidecadal time scales in this region

(see, e.g., Yang et al. 2013). We see from the green- and

violet-shaded regions in Figs. 9g,h that the range of

trends to 2010 due to internal climate variability alone

in the CMIP3 and CMIP5 models is quite large and

appears to largely account for a similar wide range of

simulated trends in the all-forcing runs. This also helps

allow the observed trends to 2010 to be consistent with

the CMIP3 and CMIP5 all-forcing trends for all of the

FIG. 9. As in Fig. 7, but based on (left) all-forcing runs from eight CMIP3 models that include volcanic

forcing in their historical simulations and the eight corresponding control runs (without volcanic forcing);

(middle) all-forcing and control runs from all 23 CMIP5 models; (right) all-forcing, natural-forcing-only,

and control runs from the same sets of CMIP5 models as used in Figs. 7 and 8 (see Fig. 7 caption).

Fig(s). 9 live 4/C
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start dates examined, despite the fact that the observed

trends are not detectable (i.e., not distinguishable from

control run variability alone).

For the southeastern United States index (Figs. 9j–l),

there is slightly more evidence for detectable trends to

2010 versus the internal variability samples in Figs. 9j,k

(start years 1950–80) than versus the combined natural-

forcing/internal variability sample of trends from the

seven CMIP5 models (blue shading in Fig. 9l) with the

latter having only marginally detectable trends and only

for start dates from the mid-1950s to the mid-1970s. For

start years prior to about 1940, the distribution of ob-

served trends lies near the edge and even outside of

this 5th–95th percentile range for the all-forcing runs

(pink/violet-shaded envelopes), especially for the CMIP3

model sample (Fig. 9j). We thus conclude that, even ac-

counting for internal variability, the CMIP3 and CMIP5

historical runs trends to 2010 tend to be inconsistent or

only marginally consistent with the observed south-

eastern U.S. surface temperature trends, particularly for

starting dates in the early twentieth century. This means

that the CMIP3 and CMIP5 all-forcing runs can be fal-

sified, at least for this relatively small region, and further

implies that there remain as yet unexplained discrep-

ancies between the historical simulations and observa-

tions for trends in this region. We note that our tests are

conducted on a large sample of at least partly inde-

pendent regions, and thus we would expect some frac-

tion of the area to have values that are too high or low

because of chance. Further discussion of this issue in the

context of global significance testing can be found, for

example, in Knutson et al. (1999).

The results for the rest of the continental United

States index (outside of the southeastern United States;

Figs. 9m–o) are fairly consistent between the CMIP3

(Fig. 9m) and the CMIP5 models (Figs. 9n,o), although,

as discussed above, the nature of our conclusions are

different for Figs. 9m,n than for Fig. 9o, with the latter

one including also the ensemble mean and additional

uncertainty range associated with the different model

responses to natural forcings.

6. Gridpoint-scale detection and attribution tests

a. Multimodel ensemble assessment

1) 1901–2010 TRENDS

The procedures in section 5 that were used to cate-

gorize observed trends at individual grid points as de-

tectable, attributable in part to anthropogenic forcing,

consistent with all-forcing runs, etc., can be applied at

the gridpoint scale and the categories can be displayed

in map form, for a selected trend period. For example,

F F10ig. 10 shows the results of such a category analysis for

the observed versus modeled trends for 1901–2010, with

the bottom row showing category maps for the CMIP3

all-forcing runs (Fig. 10e) and CMIP5 all-forcing and

natural-forcing-only runs (Fig. 10f). The linear trend

maps for observed temperature (1901–2010) and the

CMIP3 and CMIP5 all-forcing ensemble means are

shown in Figs. 10a–d for reference. The observed trend

map shows broad-scale warming trends since 1901 at

almost all locations around the globe, with areas of

cooling in only a few regions, mainly in the high-latitude

North Atlantic and the southeastern United States. The

CMIP3 and CMIP5 multimodel ensemble trends show

broadly similar magnitude and pattern of cooling to

observations, where the agreement can be quantitatively

tested by our consistency tests as described in the pre-

vious section. For the tests described in this section, we

use only the ensemble-mean observed trend and thus do

not consider observational uncertainty, which was ex-

amined in the previous section.

Figure 10f, for the seven CMIP5 models with both all-

forcing runs and natural-forcing-only runs to 2010,

builds upon the regional time series analysis shown in

Figs. 7 and 8. The white regions in Fig. 10f indicate

where the observed trend is not detectable compared to

the natural-forcing-only runs (where the uncertainty

estimates incorporate both simulated internal climate

variability from the seven control runs and uncertainties

in the natural-forcing-only ensemble mean). The dark

gray regions in Fig. 10f do not have sufficient data cov-

erage for our tests. To determine if a grid point has

sufficient coverage to include in our maps and analyzed

area, we divide a given trend period (e.g., 1901–2010)

into five roughly equal periods and require that each of

the five periods has at least 20% temporal coverage for

annual means, where an annual mean is considered

available if at least 40% of the months are available for

the year. The various colored (nonwhite and nongray)

regions in Fig. 10f indicate where the trends are de-

tectable, with the category identified on the legend.

The yellow-orange regions show where the warming

trend is detectable but still less than the lower end (5th

percentile) of the all-forcing trend distribution. The

light-red and dark-red regions indicate where the ob-

served trend has a detectable anthropogenic compo-

nent; for the darkest red regions the observed warming

trend is so large that it exceeds the 95th percentile of the

modeled distribution, but here we still interpret this as

implying a detectable anthropogenic component. For

cooling trends (blue regions), we have analogous terms

to those used for the various warming cases, although

these cases are almost absent for the 1901–2010 trends in

our analysis.
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The results for Fig. 10f show that most of the global

area with sufficient temporal coverage is categorized as

having attributable anthropogenic warming (either

consistent in magnitude or significantly larger than in

the all-forcing runs). The larger-than-simulated warm-

ing trends occur preferentially in the extratropical South

Pacific, South Atlantic, far eastern Atlantic, and far

western Pacific. In only a relatively small percentage of

the globe is the observed trend classified as not a de-

tectable change (white regions in Fig. 10f). These in-

clude mainly the mid- to high-latitude North Atlantic,

eastern United States, and parts of the eastern tropical

and subtropical Pacific.

A similar analysis for the CMIP3 all-forcing runs

(eight models with volcanic forcing) is shown in Figs.

10a,c,e. The category names for the assessment (Fig.

10e) are different than for the CMIP5 models (Fig. 10f)

because a natural-forcing-only ensemble is not available

in the archive for the CMIP3 models. Therefore, our

categories for CMIP3 (see legend) are limited to as-

sessing consistency, either with the internal variability of

the control runs or with the all-forcing runs, and we do

FIG. 10. Geographical distribution of surface temperature trends [8C (100 yr)21, 1901–2010] in (a),(b) HadCRUT4 observations (same

in both panels); (c) CMIP3 eight-model ensemble mean (all-forcing, volcanic models); and (d) CMIP5 seven-model ensemble mean

(all-forcing, volcanic models). (e),(f) The observed trend is assessed in terms of the multimodel ensemble-mean trends and variability in

the historical forcing and control runs (CMIP3 and CMIP5); the different colors depict different categories of assessment result; the

categories are listed in the legends below. Panel (e) compares observed trends with trends from eight CMIP3 all-forcing models and their

eight control runs. Panel (f) compares observed trends with trends from the CMIP5 seven-model subset, including all-forcing, natural-

forcing, and control runs.
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not address the question of attribution to anthropo-

genic forcing. The observed widespread warming trends

shown in Fig. 10a are assessed as detectable (compared

with control run or internal climate variability) over

most of the global region with sufficient coverage. Only

in some regions of the North Atlantic, eastern United

States, and North Pacific (white regions in Fig. 10e) is the

observed trend not detectable. In only a very minor

fraction of the analyzed area is there a detectable cooling

trend since 1901 (blue shading in Fig. 10e), according to

our analysis. Yellow-orange regions (where the warming

trend is detectable but less than simulated) occur pref-

erentially in the lower latitudes and are more common

in the CMIP3 assessment than the CMIP5 assessment.

Regionswith significantly greater than observedwarming

trends (dark red) tend to occur more outside of the

tropics for the CMIP3 assessment (Fig. 10e) but are fairly

common even in the tropics for the CMIP5 assessment

(Fig. 10f).

2) 1951–2010 TRENDS

F F11igure 11 explores how the results seen for 1901–2010

trends in Fig. 10 are altered when we analyze the trends

for 1951–2010. The observed trend map (Fig. 11a) shows a

more spatially varying structure than the trend map for

1901–2010 (Fig. 10a). The Asian and North American

extratropical land regions have warmed substantially

more than oceanic regions since 1951. This amplification

of warming over land since 1951 is also evident in the all-

forcing 20c3m ensemble means for both the CMIP3

FIG. 11. As in Fig. 10, but for trends from 1951 to 2010.

Fig(s). 11 live 4/C
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eight-model set (Fig. 11c) and the CMIP5 seven-model

(Fig. 11d), although the contrast between the conti-

nental and oceanic regions is more pronounced in the

observed trend map than in the multimodel ensembles,

especially for CMIP3. This is also seen in the category

maps (Figs. 11e,f) where dark-red shading (observed

warming significantly greater than simulated) is more

prevalent over Asia and Alaska in the CMIP3 assess-

ment (Fig. 11e) than in the CMIP5 assessment (Fig. 11f).

The observed trend map (Figs. 11a,b) shows a region

of notable cooling over the midlatitude North Pacific

and a smaller region of cooling trends in the high-

latitude North Atlantic just south of Greenland. These

cooling regions are assessed as having no detectable

change (Figs. 11e,f), meaning that the cooling trends lie

within the 5th–95th percentile range of the simulated

trends from the model control runs (CMIP3) or com-

bined control run/natural-forcing runs (CMIP5). Non-

detection of trends for 1951–2010 (white category, Figs.

11e,f) is also found over large regions of the North

Pacific, the central equatorial Pacific, the mid- to high-

latitude North Atlantic, the far Southern Ocean near

Antarctica, and in a few scattered continental regions

such as the south-central or southeastern United States.

Figure 11f indicates where observed trends (1951–

2010) are attributable, at least in part, to anthropogenic

forcing (light-red and dark-red regions). These regions

cover most of the global area that has detectable trends

and for the 1951–2010 trends are comprised predom-

inantly of regions where the trends are consistent with

the all-forcing ensembles (i.e., light red). In addition to

the land regions (parts of Asia and Alaska) mentioned

earlier, parts of the tropical Indian Ocean and South

Pacific also have warming trends that are not only at-

tributable in part to anthropogenic forcing but are even

significantly larger than simulated in the CMIP5 all-

forcing runs (dark-red shading). The category results for

the eight CMIP3 models (Fig. 11e) are generally similar

overall to those for the CMIP5, although the categories

in Fig. 11e do not include attribution to anthropogenic

forcing (see legend), since the CMIP3 set of models does

not include natural-forcing-only runs that are necessary

for such an attribution.

Regions in Figs. 11e,f with warming trends that are

detectable but significantly less than simulated in the all-

forcing runs (yellow-orange regions) are not that com-

mon but are mainly found in the tropical and subtropical

latitudes. This, combined with the greater prevalence of

dark red (stronger than simulated warming) in the

higher latitudes, implies that, for the 1951–2010 trends

overall, the all-forcing runs (CMIP3 andCMIP5) tend to

exhibit too strong a warming trend at lower latitudes but

too little warming in high latitudes.

3) 1981–2010 TRENDS

The trend assessment results for the much shorter

period 1981–2010 are presented in F F12ig. 12. The observed

trend map (Fig. 12a) has much more spatial structure

than for either of the longer trend periods in Figs. 10a

and 11a. Since 1981, there have been extensive regions of

cooling trends over the tropical and subtropical eastern

Pacific, Gulf of Alaska, and much of the high-latitude

Southern Ocean. The trend assessment (Figs. 12e,f)

shows that, for the most part, the cooling trends in these

regions are not detectable. In fact, since less than 5% of

the globe has detectable cooling trends, the percent of

occurrence of the blue regions is not significantly dif-

ferent from what could occur from sampling variability

alone.

The large expanses of the globe without detectable

trends (1981–2010) in Fig. 12 contrasts with the earlier

finding of detectable warming in most analyzed regions

for the longer trend analyses (Figs. 10, 11). The loss of

a detectable signal, as one proceeds to later start dates in

the twentieth century—and shorter trend periods—is

not unexpected. For example, the results in Figs. 7–9

showed how the trend rates for internally generated

trends in the model become higher for shorter trend

periods, as the models can produce strong internally

generated trend rates over relatively short periods.

Comparing the category maps for different start dates

(Figs. 10–12), the loss of detectability, as one proceeds to

later start dates, occurs first in the extratropical North

Atlantic (north of 408N) and over large parts of the

North Pacific, extending into the tropics, as seen for the

1951–2010 trends (Fig. 11). For the late-twentieth-

century start dates (e.g., 1981–2010; Fig. 12), the region

of no detectable warming expands to cover most of the

southern oceans, south of 408S, and extending south

from 208S in the South Atlantic. This nondetection re-

gion also expands to include most of the eastern tropical

and subtropical Pacific and much of the northern ex-

tratropics over Eurasia, North America, and the North

Pacific.

Of the regions with detectable trends for 1981–2010

(Figs. 12 e,f), the vast majority of grid points have trends

that are consistent with the models (light red) and thus

are at least partly attributable to anthropogenic forcing

(CMIP5; Fig. 12f) or, in the case of the CMIP3 models

(Fig. 12e), at least consistent with all-forcing runs. These

areas include large regions of the tropics, subtropics, and

midlatitudes within about 408–508 of the equator (except
for the eastern Pacific). The relatively robust emergence

of a significant warming signal over a relatively short

time period (30 yr) in the lower latitudes, as in Fig. 12f,

is reminiscent of the recent study of Mahlstein et al.
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(2011), who conclude that the earliest emergence of

significant greenhouse warming will occur in the sum-

mer season in low-latitude countries. They examined

land regions and looked at signal emergence for partic-

ular seasons (whereas we examine land and ocean regions

and focus on annual means). However, both studies point

toward early emergence of anthropogenic warming sig-

nals in lower latitudes, as opposed to most high-latitude

continental regions. Some exceptions we note in Fig. 12f

include the significant anthropogenic warming trends

(1981–2010) in the vicinity ofGreenland and in some land

regions near the edge of the Arctic Ocean.

There is relatively little yellow-orange area (which in

our convention designates warming that is detectable

but significantly less than simulated) on the assessment

maps for 1981–2010 (Figs. 12e,f). The rare occurrence of

this category for the later trend start dates can be ex-

plained by referring to the sliding trend analyses in Figs.

7–9. The unshaded area on those graphs between the

pink- and blue-shaded envelopes corresponds to de-

tectable warming that is less than simulated. However,

this region typically systematically shrinks as one prog-

resses to later start dates. That is, for shorter trend pe-

riods, it becomes much more difficult to distinguish the

simulated all-forcing trend distribution from the trend

distribution of the natural-forcing-only runs (CMIP5) or

from the control runs (CMIP3).

4) ENSEMBLE-MEAN ASSESSMENT STATISTICS

ACROSS TIME

In F F13ig. 13, we explore how the percent of analyzed

area with various category classifications changes for

FIG. 12. As in Fig. 10, but for trends from 1981 to 2010.

Fig(s). 12 live 4/C
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different start years (all for trends ending in 2010).

Figure 13b shows the aggregate percent area results for

the CMIP5 models, using the seven models that have

natural-forcing-only runs extending to 2010. The total

percent of analyzed area (i.e., regions with sufficient

data coverage) that was assessed as having attributable

anthropogenic warming trends (black curve) was about

80% for trends over the period 1901–2010. This drops to

about 65% for start dates from 1931 to 1971, before

dropping sharply to about 25% for the shortest period

(1991–2010). There is a temporary increase in percent of

area with attributable anthropogenic warming for the

1971 start date, which is apparently due to the temporary

pause in global warming from about 1940 to 1970, which

FIG. 13. Summary assessment of observed vs model ensemble-mean trends to 2010. The

percent of global analyzed areas meeting certain criteria (see graph labels) are shown as

a function of start year (all trends ending in 2010). (a) Assessments of the 8 CMIP3 (solid lines)

vs the 23 CMIP5 (dashed lines) multimodel ensemble means (historical 20c3m all-forcing runs

with volcanic forcing and associated control runs). (b) Assessment of the CMIP5 multimodel

ensemble means and control runs using the seven-model subset of CMIP5 models (with

natural-forcing-only runs extending to 2010), the all-forcing runs from the same seven models,

and their seven control runs. The black curves are the sum of the red and orange curves; the sum

of black 1 cyan 1 green 1 blue 5 100%.

Fig(s). 13 live 4/C
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was preceded by a relatively strong rate of global

warming during early twentieth century (Delworth and

Knutson 2000). The end of this pause, around 1970, is

a time period during which the prospects for detection of

a warming signal are at least temporarily enhanced

against a backdrop of a gradually declining percentage

as the start date is moved forward through the twentieth

century. The blue curve in Fig. 13b (percent of analyzed

area with no detectable change) shows generally oppo-

site behavior to the black curve, increasing from a low of

about 10%, for 1901–2010 trends, to a high point of over

60% for the latest start period analyzed (1991–2010).

The analysis thus illustrates the advantages of a long

record for detectability of the warming trend. The green

curve shows that roughly 15% of the analyzed area has

warming that is detected but less than simulated, for

start dates through about 1941. This percentage then

declines for later start dates as the increasing dominance

of internal variability for short trend periods makes it

much more difficult to distinguish the all-forcing and

natural-forcing trend distributions and thus more diffi-

cult for a trend to lie between the two distributions as

discussed earlier. The percent of area with trends that

are attributable to anthropogenic forcing but signifi-

cantly greater than simulated (red curve) also dimin-

ishes as the start datesmove later in the century, possibly

because of the growing width of the simulated trend

distributions associated with internal climate variability,

implying that it becomes difficult for an observed trend

to be large enough to be inconsistent with the all-forcing

distributions on the high side.

Figure 13a summarizes the comparison between the

CMIP3 (8 models with volcanic forcing) and CMIP5 (23

models) results (solid lines versus dashed lines) for

various common categories. This figure shows the per-

cent areas corresponding to the maps in Figs. 10a,c,e;

11a,c,e; and 12a,c,e for the CMIP3 models but for

a range of start dates. For the CMIP5, we use results for

all 23 models that have volcanic forcing, since a natural-

forcing-only experiment (extending to 2010) is not re-

quired for the comparisons shown in Fig. 13a, and thus

we are not limited to the seven-model subset of CMIP5.

The percent area where the warming for the period

1901–2010 is detected and either consistent or greater

than simulated (black curves) is about 70% for CMIP3

and over 75% for CMIP5. This percentage decreases for

start dates of 1931 or 1941, before rising to a temporary

peak of about 70% for the 1971 start date and then

falling again for later start dates. As discussed earlier,

temporary rise for midcentury start dates is likely due to

the enhanced detectability of trends that start within the

relative trough or temporary interruption of global

warming that occurred around this time following the

relative peak in global temperatures around 1940. For

start dates up to about 1931, the black curve for the

CMIP5 models (dashed) is about 5% higher on average

than the (solid) one for the CMIP3 models. Thus, the 23

CMIP5 model all-forcing runs appear at least slightly

more consistent with observed trends than the eight

CMIP3 all-forcing runs, at least for the case of trends to

2010 starting earlier than 1940. However, for trends with

start dates from 1941 through about 1971, the opposite is

true, and the CMIP3 all-forcing runs appear modestly

more consistent with observations. Other features in

Fig. 13a are generally similar to those described for the

seven CMIP5 models (Fig. 13b), although the category

descriptions (conclusions about attribution) are neces-

sarily different. The general temporal behavior of the

various curves through time is remarkably similar be-

tween the solid (CMIP3) and dashed (CMIP5)models in

Fig. 13a.

b. Model by model trend assessment

In contrast to the analyses in the previous subsection

(Figs. 10–13), which focused on the multimodel en-

semble means versus observations, in this subsection

we consider the individual models within the CMIP3

and CMIP5 ensembles and assess what percentage of

individual models meet certain criteria. That is, the

determination of whether a given CMIP3 or CMIP5 in-

dividual model is included in a category (e.g., warming

detectable and consistent) for a given grid point is based

on the evaluation of the historical runs and control runs

for that model alone. In this section, we also introduce

and apply a variance consistency test as an addition

consistency test for the models versus observations.

We will introduce and describe the various tests as we

discuss the different panels in F F14ig. 14, which contains

the analysis of the eight CMIP3 models (with volcanic

forcing) versus observations for linear trends over the

period 1901–2010. Figures 14a,b present the observed

and multimodel ensemble-mean trend maps for refer-

ence; these were discussed earlier for Fig. 10. Figure 14c

shows the fraction (or percent) of models, at each grid

point, that have no detectable trend. The area-weighted

global average of this fraction is 0.09, and the most

prominent regions with no detectable trend are in the

North Atlantic (south of Greenland), the midlatitude

North Pacific, and the southeastern United States. Fig-

ure 14d shows the fraction of models at each grid point

with warming that is detectable but less than simulated

in the all-forcing runs. The global-average fraction is

0.22, and the most prominent regions of occurrence are

in the tropics, meaning that the eight CMIP3 models,

viewed independently, have a tendency to simulate

too rapid a century-scale warming in the tropics. The
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warming is detectable and consistent with the all-forcing

runs for a global-average fraction of 0.34 of the models

(Fig. 14e), with a spatial pattern that is fairly evenly

distributed around the analyzed areas of the globe. The

warming is detectable and significantly greater than

simulated for a global-average fraction of 0.32 of the

models (Fig. 14f), with the most prominent occurrence

of this category being in the middle to high latitudes of

both hemispheres.Warming is detectable for about 89%

of the models, on average around the globe (Fig. 14g):

essentially the inverse of the results in Fig. 14c.Warming

is detectable and consistent or greater than simulated

for two thirds of the models, on average (Fig. 14h),

which shows essentially the inverse of the pattern in Fig.

14d and indicates that the simulated warming tends to

be too weak in middle to higher latitudes in the CMIP3

all-forcing runs. The observed and CMIP3 simulated (all

forcing) trends are assessed as consistent for 39% of the

models on average (Fig. 14i); this category includes ca-

ses where the trend is not detectable but still consistent

with the all-forcing runs (see, e.g., Figs. 7–9). This frac-

tion field (Fig. 14i) has a fairly even spatial distribution

over the global analyzed area.

One limitation of our approach is that models with

unrealistically large internal variability have some ad-

vantage over models with more realistic variability, in

that it is easier for high-variability models to have trends

that are consistent with observations, since themargin of

error is greater. To address this concern, here we apply

a second test (a variance consistency test) to the models.

Then a model that has both a consistent trend and

consistent variability, compared with observed estimates,

will be ranked more highly in a metric test compared

with a model with consistent trends but inconsistent

FIG. 14. Geographical distribution of (a) HadCRUT4 observed and (b) CMIP3 multimodel (volcanic models) ensemble-mean surface

temperature trends [8C (100 yr)21, 1901–2010]. (c)–(k) The observed trend is assessed in terms of the eight individual CMIP3 models

(trends and variability), where the fraction of the eight individual CMIP3 models whose historical all-forcing runs meet the criteria listed

above each panel. The criteria are as follows: (c) no detectable change; (d) warming that is detectable but significantly less than simulated

in the all-forcing runs; (e) warming that is detectable and consistentwith the all-forcing runs; (f) warming that is detectable but significantly

greater than simulated in the all-forcing runs; (g) warming that is detectable; (h) warming that is detectable and either consistent with or

greater than the simulated (all forcing) runs; (i) observed and simulated trends that are consistent (though the observed trend may not be

detectable); (j) observed and simulated internal low-frequency variability that are consistent; and (k) conditions for (i) and (j) where both

are satisfied (i.e., the simulated variability and trend are both consistent with observations). The white numbers at the bottom of the maps

in (c)–(k) indicate the area-weighted global average of the mapped fields.

Fig(s). 14 live 4/C
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variability. In other words, this expands our consistency

tests into a two-dimensional space (trend and internal

variability).

The variance consistency test for the eight CMIP3

models with volcanic forcing (Fig. 14j) is constructed as

follows: For each grid point, we estimate the adjusted

observed standard deviation of low-frequency (.10 yr)

internal variability (OSD) as discussed in section 3b.

This variability is compared with a distribution of low-

frequency standard deviations from the model control

run, which is obtained by drawing 50 random 110-yr

samples of combined SST and surface air temperature

from the drift-adjusted control run (see section 3a),

masking missing data periods with the observed mask

for the given grid point, low-pass filtering, and com-

puting the 50 standard deviation estimates. If the OSD

value for the grid point lies within the 5th–95th per-

centile range of the combined control run distribution,

the model is assessed as having low-frequency internal

climate variability that is consistent with the observa-

tions according to this test. There are important limita-

tions of this test, which we recognize at the outset. When

applied to a single model, as done here, a single model’s

control run may not be long enough to provide an ade-

quate sample of the 5th–95th percentile range of low-

frequency (.10 yr) variance estimates; indeed, this is

an important reason to advocate for longer control runs

(or larger ensemble sizes) in future CMIP designs. In

addition, the observed residual, which is needed for

comparisons with control run variability, has some un-

certainties, as the multimodel ensemble-mean forced

response only approximately removes the forced climate

signal from the observations. Our adjustment procedure

used to create OSD, described in section 3b, attempts

to account for this uncertainty.

Figure 14j illustrates the results of applying the test.

On average, 26% of CMIP3 models have variability

consistent with observations, according to the test. Lo-

cations where the modeled low-frequency variability is

consistent with observations are fairly evenly distributed

around the globe, although the fraction is notably low in

the southeastern Pacific and South Atlantic basins.

Figure 14k shows the map of the fraction of the

CMIP3 models where both the variability and trend are

consistent with observations on a gridpoint basis ac-

cording to our tests. The global-average fraction is 0.11,

indicating that achieving consistency with both tests si-

multaneously at the gridpoint scale is a challenge for the

CMIP3 models.

The variance consistency test can also be applied to

the global-mean temperature series (e.g., Figs. 4b, 5c,

and 9a). We find that seven of the eight CMIP3 models

(88%) have low-frequency variance for their global-mean

temperature that is consistent with the observed residual,

according to our test, with one model having variance

that is significantly too low.

F F15 F16igures 15 and 16 present the same analysis as Fig. 14

but for the 23 CMIP5 models with all-forcing runs (Fig.

15) and for the subset of 7 CMIP5 models that have at

least one natural-forcing-only run extending to 2010

(Fig. 16). The mapped results for the 23 CMIP5 models

(Fig. 15) are rather similar overall and have similar

spatial features to those for the 8 CMIP3 models (Fig.

14) discussed above. One notable difference is that the

CMIP5 models in both Figs. 15 and 16 have a greater

global-mean fraction of models with consistent low-

frequency variance (0.30–0.31) than the CMIP3 models

in Fig. 14 (0.26). The globally averaged fraction of

models that have both consistent trend and variance

(Fig. 14k) is about the same in CMIP5 (0.12) as in the

CMIP3 sample (0.11). Figure 16, for the seven-model

subset of CMIP5 models, shows where trends are as-

sessed as containing attributable anthropogenic trend

contributions. The analysis indicates that the globally

averaged percent of the seven CMIP5 models with at-

tributable anthropogenic warming at the gridpoint scale

over the 1901–2010 period is 70% (Fig. 16h). The globally

averaged percentage of models with both attributable

anthropogenic warming and consistent low-frequency

variance is 22%, according to the tests described above

(Fig. 16l).

The variance consistency test can also be applied

to the global-mean temperature series for both the full

set of 23 CMIP5 models and the 7-model subset of CMIP5

models. This test indicates that 15 of the 23 CMIP5 models

65%), and four of the seven–model CMIP5 model sub-

set (57%), have global-mean low-frequency variance

that is consistent with observations. This is a smaller

fraction than for the CMIP3 models (88%). In cases of

inconsistency, the model variance is too low more often

than too high (6 low versus 2 high for the 23 CMIP5

models and 2 low versus 1 high for the CMIP5 7-model

subset). For cases other than the global mean, Figs. 2

and 3 depict where the low-frequency variability of in-

dividual models, or the ensemble-average low-frequency

variability across the models, tends to be either too low

or too high, compared to the adjusted observed inter-

nal variability estimate (OSD).

As has been discussed mentioned earlier, there are

a number of limitations in our trend variance estimates

and consistency tests. We hope to improve on the vari-

ance consistency tests in a future study; for example,

there are other model–observation comparison para-

digms that can be explored (e.g., Annan andHargreaves

2010). Meanwhile, we stress the need for longer control

runs and/or greater numbers of independent ensemble
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members from the models in order to more robustly

assess the various models’ low-frequency variability.

FF17 igure 17 summarizes several globally averaged trend

consistency metrics as a function of trend start year for

the individual models in the CMIP3 and CMIP5 sam-

ples. Figures 17b,d,f also assess the consistency of the

models’ low-frequency variability, as these include both

a trend consistency test and a variability consistency test.

In the various panels of Fig. 17, we compare, across the

models, the fraction of analyzed area where there is both

a detectable change in observations and where this de-

tectable change is consistent with the individual climate

models. Note that these metrics do not include the

fraction of area where a climate model is consistent with

observations but there is not a detectable trend.

While all metrics have shortcomings, the particular

metrics in Fig. 17 have at least some useful compensation

properties. For example, for a model with unrealistically

large internal variability, the enhanced potential for con-

sistency of modeled and observed trends due simply

to the larger internal variability is partly compensated by

a reduction in the area assessed as having detectable

trends according to that model. The two-dimensional

(trend and low-frequency variance) consistency tests

provide for an even greater compensating balance against

the potential metric problem mentioned above.

The results in Figs. 17a,c show that the individual

CMIP3 and CMIP5 models have rather similar behavior

in terms of fraction of globally analyzed area with con-

sistent detectable trends (typically ranging from 20%

to 50%). There is somewhat more spread among the

CMIP5 models, although there are more models in the

CMIP5 sample as well. This trend consistency metric

tends to reach a peak value around 1960–70 start dates

before declining for later start dates, for reasons dis-

cussed for Fig. 13. When a variance consistency test is

added (Figs. 17b,d), the percent of analyzed global area

with both consistent trends and consistent low-frequency

variance drops substantially, to typically about 10%–

20%. Clearly the variance consistency test proposed

here can pose a challenging test for the current models.

We have plans to explore other types of variance con-

sistency tests in our future work.

For the seven-model CMIP5 sample (Fig. 17e), the

percent of analyzed global area with attributable an-

thropogenic trends (including trends that are detectable

but greater than simulated) is close to 80% for 1901–2010

trends, for five of the seven models, with the remaining

FIG. 15. As in Fig. 14, but for 23 CMIP5 models with volcanic forcing.

Fig(s). 15 live 4/C
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two models having lower percent area (40%–60%). All

seven models end up in the range of 40%–70% for this

metric for the latest starting date analyzed (1991). The

metric that tests for both attributable anthropogenic

trend and consistent low-frequency variance (Fig. 17f)

indicates that the seven models have a range of percent

area of 17%–35% for the 1901–2010 trends, but this

range decreases to about 10% or less for the 1991–2010

trends.

7. Supplemental material and further sensitivity
studies

The analysis presented in this study introduces a frame-

work for trend analysis that hasmany possible applications

and extensions. For surface temperature, there are many

figures that are variations on the ones presented here but

were too numerous to include in this article. Therefore, we

have created a website based largely on this analysis that

contains additional supplemental figures (http://www.gfdl.

noaa.gov/surface-temperature-trends). For example,

the website contains plots for individual seasons that

complement the annual-averaged analysis in this study.

We show plots using alternative percentiles (97.5th and

2.5th) instead of 95th and 5th, plots excluding certain

low variability models from the analysis, etc. Addi-

tional regional plots like Figs. 7–9, including ones for

individual seasons, are available, as well as maps for

different trend start dates. In addition, a number of

plots based on analysis of individual CMIP3 or CMIP5

models, as opposed tomultimodel ensemblemeans, are

available.

FIG. 16. Geographical distribution of (a) HadCRUT4 observed and (b) CMIP5multimodel ensemble-mean surface temperature trends

[8C (100 yr)21, 1901–2010]. The observed trend is assessed in terms of trend and variability using the seven CMIP5 models that had

available an all-forcing ensemble and natural-forcing-only runs extending to 2010. (c)–(l) The fraction of the seven individual CMIP5

models at each grid point whose all-forcing, natural-forcing-only, and control runs together meet the criteria are listed above the panel.

The criteria are as follows: (c) no detectable change; (d) warming that is detectable (inconsistent with natural-forcing runs) but signifi-

cantly less than simulated in the all-forcing runs; (e) attributable anthropogenic warming that is detectable (inconsistent with natural-

forcing-only runs) and consistent with the all-forcing runs; (f) attributable anthropogenic warming that is significantly greater than

simulated in the all-forcing runs; (g) warming that is detectable; (h) total that is attributable to anthropogenic warming [i.e., sum of (e) and

(f)]; (i) observed and simulated trends that are consistent (though the observed trend may not be detectable); (j) observed and simulated

internal low-frequency variability that are consistent; (k) conditions for (i) and (j) where both are satisfied (i.e., the simulated variability

and trend are both consistent with observations); and (l) conditions for (h) and (j) where both are satisfied (i.e., there is attributable

anthropogenic warming and low-frequency variance is consistent with observations).

Fig(s). 16 live 4/C
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FIG. 17. Individual (a),(b) CMIP3 and (c)–(f) CMIP5 models are assessed for (a)–(d) consistency with detectable observed surface

temperature trends to 2010; (e),(f) attributable anthropogenic trends; and (b),(d),(f) consistency of both simulated trend and internal

variabilitywith observed estimates. Trend results are shown for start years from1901 to 1991 (all trends ending in 2010). Plotted is the percent

of analyzed global area where each individual model’s (see legends) multirealization ensemble-mean forced trend and internal variability

meet the criteria listed above the panel. The trends are analyzed at each grid point where there is sufficient temporal data coverage for the

trend in question (see text). Note that (e),(f) include areas where the observed trend is detectable and either consistent with or greater than

simulated, whereas (c),(d) include only areas with observed trends that are detectable and consistent with simulations.

Fig(s). 17 live 4/C
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8. Summary and conclusions

The purpose of this analysis has been to introduce and

apply a framework for assessing regional surface temper-

ature trends using both the CMIP3 and CMIP5 models

and using a multimodel sampling approach. We examined

the behavior of the various control runs for the CMIP3

and CMIP5 models and used the control run variability

to help assess whether observed trends were unusual or

not compared with the models’ internally generated

variability. We also used the control run variability to

help assess whether observed trends were consistent

with trends from the historical (20c3m) simulations:

either all-forcing runs or natural-forcing-only runs. In

cases for the CMIP5 models where trends were demon-

strated to be inconsistent with natural forcing only but

consistent with the all-forcing runs, we conclude that an

attributable anthropogenic component is present in the

observed trend. For cases such as the CMIP3 model as-

sessments, where natural-forcing-only runs are generally

not available, we tested for detectable trends (compared

to internal climate variability) and for consistency be-

tween observed and all-forcing historical (20c3m) runs.

In the separate CMIP3 and CMIP5 analyses, we

generally attempt to give different models equal weight,

even when a modeling center provides fewer ensemble

members or shorter control runs. Tests are applied at

global and regional scales, as well as at individual grid

points on the observed data grid where there is sufficient

data coverage over the period of the trend. Results are

summarized using classification maps and global per-

cent area statistics. Our analysis contains a substantial

assessment of the variability in the models, including

control run time series for visual inspection, standard

deviation maps of low-pass-filtered data, spectral anal-

ysis, and a low-frequency variance consistency test that

is applied to individual models.

One of the most important results from the assess-

ment is the identification of regions—and even grid

points—where an anthropogenic warming signal is de-

tectable in the observed temperature records. For trends

over the period 1901–2010, a large fraction (about 80%)

of the global area (with sufficient data coverage over

time) has a detectable anthropogenic warming signal.

Regions where the observed warming seems to be most

commonly underestimated by the models include the

Southern Ocean, the South Atlantic, the far eastern

North Atlantic, and off the east coast of Asia. The main

regions without detectable warming signals include the

high-latitude North Atlantic, the eastern United States,

and parts of the eastern and North Pacific. Moving for-

ward in time, for the much shorter period (1981–2010)

the observed warming trends over about 45% of the

globe are assessed as having a detectable anthropogenic

contribution. These regions include parts of the tropics,

subtropics, and midlatitudes (within about 408–458 of
the equator) and a narrow zonally oriented band near

the Arctic Ocean. Areas without detectable trends

(1981–2010) include much of the eastern Pacific, which

is a region influenced by strong interannual variability

associated with ENSO, and many extratropical regions

poleward of about 408N and 408S. The CMIP3 models

and the larger sample (23) of CMIP5 models yield re-

sults similar to those described above, although for these

samples we assess only the consistency of trends and

not whether they contain an attributable anthropogenic

component (due to the lack of natural-forcing runs with

which to do such an assessment).

The reduced global areawith detectable anthropogenic

trends as one examines later start dates for trends in the

record (all trends ending in 2010) illustrates the advan-

tages of long records for trend detection in the context of

this model-based assessment. In general, the shorter the

epoch, the larger is the potential contribution of internal

variability to the trend, leading to a greater spread (un-

certainty) for sampled trends.

There are numerous examples of modeled trends or

variability that are inconsistent with observations in our

study. As has been noted in a previous paper using a

similar methodology with two climate models (Knutson

et al. 2006), disagreement between modeled and ob-

served trends in this type of analysis can occur because

of shortcomings of models (internal variability simu-

lation and response to forcing), shortcomings of the

specified historical forcings, or problems with the ob-

served data. A certain fraction of area should be ex-

pected to have inconsistent results due to chance alone

[seeKnutson et al. (1999) for further discussion of global

significance testing in this context]. As a further exam-

ple, Wu and Karoly (2007) and Wu (2010) have noted

that disagreement between simulated and observed re-

gional surface temperature trends can result from short-

comings of models in simulating the observed warming

associated with the changes of the leading climate vari-

ability modes (e.g., the Arctic Oscillation).

Concerning observational uncertainty, the HadCRUT4

dataset (Morice et al. 2012) contains 100 ensemble

members that attempt to characterize the uncertainties

in the observations. We have performed some prelim-

inary tests using these ensembles to assess the spread of

observed trend estimates. These tests thus far indicate

that, even at the regional scale, the spread in trend es-

timates due to observational uncertainties, as contained

in the ensembles, is generally much smaller than the

spread in model simulated trends due to the internal

variability and differences in forced responses in the
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historical runs (e.g., Figs. 7–9). However, in some re-

gions (e.g., Mexico), the uncertainty in the observations

plays an important role in the assessment of detectable

anthropogenic contributions to trends.

We have attempted to at least partially address the

issue of model uncertainties in the simulation of internal

climate variability and in the response to historical

forcing by using multimodel ensembles and by assessing

consistency of both trends and low-frequency variabil-

ity. When we apply a two-dimensional screening test

(assessing simultaneously the consistency of the trend

and low-frequency variability), we find that most models

tend to be challenged to be consistent on both tests.

Overall, our variance consistency tests suggest that,

while the CMIP3 and CMIP5models provide a plausible

representation of internal climate variability, there is

considerable scope for improvement in the model sim-

ulations of internal climate variability, apart from their

simulation of trends and variability in response to various

forcing agents. From a different perspective, Shin and

Sardeshmukh (2011) have concluded that the CMIP3

models do not simulate historical trends of temperature

and precipitation as realistically as they do atmospheric

models forced by observed trends in tropical SSTs, a

problem they attribute to model errors as opposed to

climate noise (internal variability).

The CMIP3 and CMIP5 simulations used here rep-

resent ensembles of opportunity, which cannot neces-

sarily be expected to represent the true structural

uncertainty in the results, because of shortcomings/

uncertainties in the models and climate forcings. The

procedures in our paper assume that the intrinsic in-

ternal variability of climate has not changed significantly

since preindustrial times, as we are using control run

variability from preindustrial control runs for our forced

run consistency tests. If anthropogenic forcing had ac-

tually weakened the intrinsic variability in the real

world, then our estimated uncertainty range around the

all-forcing model responses would be too wide, making

it overly difficult to conclude that observations were

inconsistent with the all-forcing runs. Similarly, if an-

thropogenic forcing had actually strengthened the in-

trinsic variability in the real world, then our estimated

uncertainty range around the all-forcing model re-

sponses would be too narrow, making it too easy to

conclude that the observations were inconsistent with

the all-forcing runs.

While the above uncertainty issues lack a final reso-

lution, the methodology shown here can at least help to

quantify the uncertainties associated with the climate

change detection and attribution problem. The results

show that, when CMIP3 and CMIP5 historical runs are

confronted with observed surface temperature trends,

across a wide range of trend start dates, at various geo-

graphical locations around the globe, and even down to

the gridpoint scale, a pervasive warming signal is found

that is generally much more consistent with simulations

that include anthropogenic forcing than with simula-

tions that include either no forcing changes (control

runs) or that include only natural forcing agents (solar

and volcanic). Our conclusions about detectable an-

thropogenic contributions to the trends provide further

support for the claim of a substantial human influence on

climate, via anthropogenic forcing agents such as in-

creased greenhouse gases. A future enhancement of our

analysis would include an attempt to quantify the con-

tributions of specific natural and anthropogenic forcing

agents or subsets of agents in the CMIP5 all-forcing and

natural-forcing-only historical runs. This would provide

a more direct assessment of the relative influence of

different forcing agents on the observed temperature

trends at the regional scale.
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