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In ocean models that use a mode splitting algorithm for time-stepping the internal- and external-gravity
modes, the external and internal solutions each can be used to provide an estimate of the free surface
height evolution. In models with time-invariant vertical coordinate spacing, it is standard to force the
internal solutions for the free surface height to agree with the external solution by specifying the appro-

priate vertically averaged velocities; because this is a linear problem, it is relatively straightforward.
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However, in Lagrangian vertical coordinate ocean models with potentially vanishing layers, nonlinear
discretizations of the continuity equations must be used for each interior layer. This paper discusses
the options for enforcing agreement between the internal and external estimates of the free surface
height, along with the consequences of each choice, and suggests an optimal, essentially exact, approach.
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1. Introduction

Hydrostatic ocean models filter out sound waves, so the fastest
motions in such models are external gravity waves, propagating
horizontally at \/gH (where g is the gravitational acceleration
and H is the total ocean depth) - of order 200 ms~! in the deep
ocean. Shallow-water external gravity waves have nearly vertically
uniform horizontal velocities and are well characterized by two-
dimensional equations. The next fastest motions are horizontal
velocities and internal gravity waves, both with speeds of a few
meters per second and rich three-dimensional structures. Ocean
models are about two orders of magnitude less costly to integrate
in time if they separate integration of the external mode from the
internal evolution of the model.

In models with time-invariant vertical coordinates (sigma- or Z-
coordinate models or their stretched equivalent with a free sur-
face), gravity waves are typically handled with an external mode
solver (using either a rigid lid or a free surface). In either case,
the time-filtered evolution of the free surface height gives a bound-
ary condition on the vertical velocity, which is determined diag-
nostically from the vertically structured continuity equation. The
discretization of the continuity equation in such models is invari-
ably linear in the velocities, and it is straightforward to use a finite
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volume formulation and obtain exact consistency between the
time-averaged external mode solution and the internal model
structure. Even when the free surface height does vary modestly
with time (such that no levels ever vanish with a given definition
of the vertical coordinate), the algorithm used is still essentially
the same; most importantly a linear (in velocity) discretization of
the continuity equation is still appropriate, and a finite volume rec-
onciliation of the changes in the interior structure with the evolu-
tion of the free surface (Griffies et al., 2001; Campin et al., 2004).
With this exact finite volume reconciliation, there are no issues
with tracer or mass (volume if Boussinesq) conservation.

By contrast, Lagrangian vertical coordinate models! use the con-
tinuity equation prognostically to describe the evolution of the
thickness, hy, of each vertically discrete layer k:

ohy
— ==V - (ughy). 1
o =V () (1)
(For simplicity, vertical fluxes and precipitation minus evaporation
are ignored here - they do not alter the discussion.) The layer thick-
nesses can be summed vertically to obtain an estimate of the free
surface height

K
My=_ hx—D, 2)
k=1

! See Adcroft and Hallberg (2006) for a full discussion of the differences between
the solution approaches in Lagrangian and Eulerian vertical coordinate ocean models.
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where D is the time-invariant bottom depth.? The vertical sum of
the layer continuity equations gives the barotropic continuity
equation,

9 K
ng (;ﬁm0=vmwm (3)

which uses the definitions of the total thickness and the barotropic
velocity,

K 1 K
HEth and UH<;ukhk>. (4)

k=1

In the horizontally and temporally continuous equations, the two
estimates of the free surface height, # and 7}, are perfectly consis-
tent. However, discretization in time or in the horizontal spatial
directions can break the consistency between Egs. (1) and (3). A
widely used approach to solve Eqs. (1) through (3) for # and 7y, is
the barotropic-baroclinic split time stepping scheme, in which the
two-dimensional shallow water equations [(3) and the vertically
averaged momentum equations] are used to estimate the evolution
of the free surface height, 5, for the time interval At, over which the
full three-dimensional equations are also advanced. The two-
dimensional equations can be advanced either explicitly with many
short time steps (e.g. Killworth et al., 1991; Bleck and Smith, 1990;
deSzoeke and Higdon, 1997; Hallberg, 1997; Shchepetkin and
McWilliams, 2005) or implicitly (e.g. Dukowicz and Smith, 1994;
Campin et al., 2004). Both the explicit and implicit approaches
can be represented schematically as

,,,n+1 _ nn

T:—V-(UH):—V~(V(U7H)>, (5)
where the angle brackets are used to denote whatever time averag-
ing of velocities and thicknesses are used to determine the volume
fluxes that advance the free surface height over a time step, At. The
function V represents the spatial discretization of the barotropic
fluxes, and may be a nonlinear function of U or H. The superscripts
nand n + 1 refer to successive (baroclinic) time levels (there may be
many shorter sub-cycled time levels averaged over by the angle
brackets). The precise meaning of the angle brackets is determined
by the choice of split time stepping scheme. For many split explicit
schemes (e.g., Bleck and Smith, 1990; Killworth et al., 1991; Hall-
berg, 1997; Higdon, 2005) the angle brackets are approximately a
simple time average, while for Shchepetkin and McWilliams
(2005) it would be a weighted filter that extends past time level
n+ 1. With an implicit scheme, the angle brackets are likely to be
the values at time level n + 1.

The layer continuity equations are integrated over the same
time period as (5) with a single large time-step, At; this is repre-
sented schematically as
h'' — hy

At

The layer thicknesses, hy, must be non-negative, which generally re-
quires the use in (6) of a discretization (here represented as the
function F) of the horizontal volume fluxes (u;h;) that depends non-
linearly on the velocities, inevitably reverting to upwind differenc-
ing for sufficiently strong flow out of a relatively thin cell. For the
discrete (in time and space) equations to have a consistent (single)
estimate of the free surface height, the time average barotropic

=-V- (llkhk) =-V- F(uk, hk) (6)

2 The discussion presented here makes the Boussinesq approximation. Without it
the thicknesses would be measured in units of Pascals instead of meters, the roles of
the bottom depth and sea surface height are replaced by surface and bottom pressure,
and volume conservation becomes mass conservation. The discussion presented here
would be identical without the Boussinesq approximation if this change of variables
were made.

fluxes, (V), and vertically integrated baroclinic fluxes, > F, must
satisfy

K
(V(U.H)) = F(ug hy). (7)
k=1

Failure to satisfy this constraint implies the existence of two esti-
mates of the free surface and a possible inconsistency in the model
equations. Satisfying this constraint is non-trivial due to the non-lo-
cal in time and space nature of the constraint, and is especially non-
trivial when either of V or F are non-linear.

The accumulated horizontal volume fluxes used to update the
free surface height, (U H), can be related to an effective time-mean
barotropic velocity by

_(UH)_ V(u.H))
Vm T m ®

where (H) is an appropriate time-mean total thickness. (U) is com-
monly used in strategies to reconcile Egs. (5) and (6).

At this point the layer equations could be advanced with a
velocity whose thickness weighted vertical mean has been re-
placed by the time-mean barotropic velocity, (U). Replacing the
instantaneous vertically averaged velocity,

UO _ Elk(:] Flkuk

; 9)
zlk(:lhk
by the time-mean barotropic velocity gives new layer velocities of
.
. " hu
= (U) -y -, (10)
Zj:l hj

whose vertical average matches the time-mean barotropic velocity.
Here the hy are estimates of the thicknesses at the faces of the con-
trol volumes, but except in the linear limit, flk cannot be guaranteed
to agree with the effective thicknesses from the continuity equa-
tion, defined by hy =t - F@k, he)/ (- ), where fi is the unit vec-
tor normal to the faces of the control volume. (In one-dimension, hy
is just the volume flux divided by the velocity.) Eq. (10) alters the
vertical mean velocity, but deviations from this mean

u, = u; — Uy, (11)

are unaffected by this adjustment. With the adjustment in (10), an
estimate of the layer time-filtered thicknesses can be advanced by

= Bl — ALV - F(ﬁk, hk) —h' — AtV - (ﬁkﬁk) (12)

Like the definition of the averaging in the angle brackets, the timing
of the layer velocities in (10) and of the thicknesses used for the
fluxes in (12) are determined by the underlying baroclinic time-
stepping scheme. If a predictor-corrector scheme is used (as in
the examples in Section 3), mass conservation only requires that
the final correction to the layer thicknesses be consistent with
(12), although it is often useful for the overall stability of the
scheme if similar constraints to be applied to the predictor steps
as well (Higdon, 2008).

In the limit where the volume fluxes vary linearly with the
velocities, it is possible to select the discretizations of the fluxes
and the thickness weights such that

5 . o K .
he=he=h* and (H)=> h, (13)
k=1

where the overbar-x represents the arithmetic mean of adjacent
thicknesses (or any other plausible interpolation of the thicknesses
to the velocity points that is independent of the velocity). So in the
linear limit, summing (12) over the layers and subtracting the bot-
tom depth, D, combined with (10) and (13) and the identity
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k=1 j=1 j=1 k=1 k=1 k=1 k=1
(14)
gives
K o~ K _
et = Z {hz — AtV - (ukhk) } —D=nj — AtV - [(U} Z kx:|
k=1 k=1

K K K
— AtV - Z Kuk — Z hjuj/ h]> hk:|
=1 = =
=1y ="+ 0" = AV - (U)H) = (1 — ") + ™. (15)
So in the linear limit, the two estimates of the free surface — #™!
from the advancing the barotropic equations, and #*' from the
evolution of the sum of the layer thicknesses - are identical at
one timestep if they were the same at the previous timestep.
Unfortunately, in the general case it is not possible to make all
the equalities between the various thicknesses in (13) hold. As
emphasized above, the layer continuity equations must be positive
definite, so hy typically depends nonlinearly on u. But (H) must be
known to calculate (U) and fy is needed to determine uy, so it is
impossible to guarantee either that h, = h or that (H) = S35, hy.
In this more general case, simply advancing the layer equations
with (12) leads to a mismatch between the barotropic estimate

of the free surface height and the estimate from the sum of the
layer thicknesses. Specifically

K
M =" = (g - n") + ALV - [<U> <<H> - hk)]
k=1

hye — e 220 | (16)

k
—AtV-Y
k=1

With many upwind-biased advection schemes, the sums of the dis-
crepancies between the thicknesses are often on the order of half
the bottom depth change between adjacent grid points. With an
advective baroclinic Courant number of order 0.1, it is not atypical
to generate discrepancies between these two estimates of the free
surface height of order a few percent of the depth of the ocean with-
in a single time step (see Figs. 1 and 2). Without some strategy for
reconciling these two estimates with one another, these discrepan-
cies will grow with time - linearly at first, but more likely as a ran-
dom walk later on. Without some corrective measure, the solutions
quickly become absurd.

This paper describes some of the options for enforcing agree-
ment between the external estimate of the free surface height
and that due to the sum of the layer thicknesses in Lagrangian ver-
tical coordinate ocean models. The disadvantages of several meth-
ods that have traditionally been used are described, and a new
approach that avoids the primary difficulties is proposed.

Uncorrected Absolute Sea Surface Height Discrepancies
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Fig. 1. The absolute value of the instantaneous discrepancy between the external and internal estimates of the free surface height after a single 3600 s baroclinic timestep,
from a 49-layer global ocean-climate model with a 1° nominal resolution. This particular image is taken from January 20 of Year 31 of a CORE-forced run (see Griffies et al.,
2009 for a full description of the CORE protocol), but it is representative of other times and configurations. Note that the greatest discrepancies occur where there are
significant topographic variations or strong flows, such as near the equator or in western boundary currents. As both solutions conserve volume, the global average of the
(signed) discrepancies is 0. Increasing the horizontal resolution will not tend to reduce the magnitude of these discrepancies, as the advective Courant number is typically
held steady or even increases with increasing resolution, and finer resolution models will typically have comparable magnitude topographic and layer thickness variations at

the smallest resolved scales.
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Fig. 2. The area-weighted histogram of the absolute value of the instantaneous discrepancy between the external and internal estimates of the free surface height after a
single 3600 s baroclinic timestep, using a 49-layer global ocean-climate model with a 1° nominal resolution. The solid line shows the distribution from the same state as
depicted in Fig. 1. The dashed-dotted line shows the distribution after iteration to within a SSH tolerance of less than 10~ m for the barotropic velocities used in the layers’
transports to be consistent with the barotropic transports, as described later in the paper.

2. Options for reconciling the estimates of the free surface
height

2.1. Layer dilation

Bleck and Smith (1990) note that the barotropic estimate of the
free surface height is a much more credible estimate of the sea sur-
face height than the sum of the layer thicknesses. In essence, it has
been subjected to the very strong flattening effects of divergent
accelerations driven by the pressure gradients due to any slopes
of the free surface, whereas the estimate from the sum of the layers
has not. To force the sum of the layer thicknesses to conform to the
barotropic free surface, one can uniformly dilate or compress all of
the layers by whatever factor is necessary. The layer thicknesses
then evolve as

Y = SHY — AtSV -F(ﬁ,ﬁ hk)

(17)
where S is the horizontally varying but vertically uniform scaling
factor given by

_ D 4!
K [hZ AtV F(ﬁk, h,()] '

With this approach the two estimates of the free surface height
agree exactly, and there is minimal additional computational ex-
pense and no additional lateral communication required.

The big problem with this approach is that the layer continuity
equations are no longer cast in the flux-divergence form of (1) and
(12), so the layers do not conserve their individual masses (Hall-
berg, 1997; Higdon, 2005). Globally, mass is still conserved be-
cause the barotropic solution conserves mass and the sum of the
layer masses agree with the barotropic mass. But the nonconserva-
tion of mass by layers leads to spurious diapycnal mass fluxes and
nonconservation of heat and salt. These fluxes are small enough
that MICOM and subsequently HYCOM (Bleck, 2002) have been

S

(18)

successfully applied to answering many questions about the
ocean.? But these spurious diapycnal mass fluxes mean the aban-
donment of one of the most valuable properties of isopycnal coor-
dinate ocean models - that they are uniquely able to robustly
reproduce the exceedingly adiabatic nature of the interior ocean
(Griffies et al., 2000). For long-term climate studies, nonconserva-
tion of heat and salt is a serious liability with this approach.

2.2. Flux-form reconciliation

The most obvious way to robustly conserve heat and salt and
avoid spurious diapycnal mass fluxes is to keep the layer continu-
ity equations in flux-conservative form. The problem then is how
to deal with the differences in the two estimates of the free surface
height.

The first step that can be taken with any approach is to guess
values of (U) that will minimize the discrepancy. With nonlinear
layer continuity equations, this guess can never be perfect. But it
will minimize the magnitude of any corrective fluxes or reduce
the number of iterations required to obtain an acceptable reconcil-
iation between the external and internal solutions for the free sur-
face height.

2.2.1. Barotropic pseudo-mass source

For many applications, the instantaneous free surface height
and barotropic flow are relatively unimportant. In this case, it
may be acceptable to use the difference between the barotropic
and layer estimates of the free surface height as a spurious mass
source only in the barotropic equations.

3 As detailed in Bleck and Smith (1990) and more explicitly in Appendix B of Bleck
et al. (1992), MICOM and HYCOM use an upwind modification of their initial
estimates of the layers’ fluxes to partially compensate for some of the discrepancies
between the baroclinic and barotropic mass fluxes, but they ultimately rely upon
layer dilation to enforce consistency between the two estimates of the free surface
height.
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Src—— Zh” (D+y" (19)
The barotropic continuity equation becomes

n+1 _ 40
W= | v.(wH) = src (20)

At

This source term will drive a divergent barotropic flow field that
will tend to drive the free surface height from the sum of the layer
thicknesses toward the barotropic estimate. The mass of each layer
is exactly conserved due to the unaltered layer continuity equa-
tions, as are the total amounts of salt, heat and other tracers.

The down-side of this approach is that it tends to create
unphysical external gravity waves, but it was successfully used
in Hallberg Isopycnal Model (HIM) simulations for about a decade,
such as the eddy-permitting Southern Ocean simulations of Hall-
berg and Gnanadesikan (2006). The geostrophically adjusted baro-
tropic residual from this source is quite small since the scale of the
forcing is typically close to the grid scale and much smaller than
the external deformation radius. However, with strongly variable
forcing these external gravity waves can become quite intense,
and nonlinearities in the equations may lead to significant non-
physical terms from the large external gravity waves. For some
simulations, such as tidal studies, the external gravity waves are
the signal of interest and this approach is unacceptable.

2.2.2. Upwind corrective layer fluxes

If the instantaneous free surface height and barotropic flow are
important, the barotropic fluxes must be respected. If the layer
continuity equations are to be kept in flux-form, the layer fluxes
must be adjusted so that their sum agrees with the barotropic solu-
tion. One way to adjust the layer fluxes is by adding a corrective
flux to the layer fluxes after they are calculated.

Higdon (2005) notes that a predictor-corrector approach can be
combined with upwind corrective fluxes to force the layers’
summed fluxes to agree with the barotropic fluxes. An initial pre-
diction of the updated layer thicknesses is

h; = h! —AtV~F<ﬁk,hk). (21)

The difference between the barotropic fluxes and the sum of these
initial-estimate fluxes is

ZF(uk, ). (22)

To be useful, whatever corrective fluxes are applied must respect
the positive definiteness of the layer equations. Higdon (2005)
shows that upwind fluxes based on these predictions of the layer
thicknesses satisfy this requirement. That is, if ;"™ are the pre-
dicted layer thicknesses in the upwind dlrectlon based on the re-
quired direction of the corrective fluxes, the corrective velocity is

A(UH)

A(UH) =

U = S (23)
and the corrected layer thicknesses are

Bt = by~ AEV - (U, (24)
Combining Eqgs. (21) and (24) gives

Bt = b — ALV - (F (g ) + U< B P, (25)

4 This approach has also been independently developed multiple times in
unpublished work by M. Bentsen, ]J. Dukowicz, and P. Schopf, and these ideas are
partially present in Bleck and Smith (1990), but the clearest exposition in the
literature can be found in Higdon (2005).

which when summed vertically and combined with (22) and (23)
gives

K K K K _
SR =S hY - AR (ZF(uk,hk) +Lf,’3wd e “Pwmd>
k=1 k=1 k=1 Z h

=1

K
=Y hy—AtV-(UH). (26)
k=1

The problem with using barotropic corrective upwind fluxes is
that the layers where the corrections are applied may be displaced
from the layers that would be most nearly consistent with the lay-
ers’ continuity equations. Near a sloping bottom, there are often
layers that are massless on the slope but thick over the abyss. If
the corrective fluxes fluctuate randomly, these deep layers will
only partake of the corrective fluxes when they are upslope. This
leads to an unphysical rectified numerical pumping of dense flow
upslope, and an abyssal circulation around isolated topographic
highs and around slopes, not dissimilar to the physical “Neptune”
effect of Holloway (1992). In eddy-permitting North Atlantic sim-
ulations, barotropic upwind corrections can lead to unphysical
abyssal gyres with transports of tens of Sverdrups (P. Schopf, per-
sonal communication).

One way to avoid these strong unphysical abyssal flows is to use
only the layer thicknesses above the shallowest of the adjacent bot-
tom depths, rather than the full upwind thicknesses (Higdon (2005)
and M. Bentsen, personal communication). This expedient seems to
give reasonable circulations in many instances. But with this ap-
proach, the corrective fluxes do not, in general, correspond to any
purely barotropic flow added to the instantaneous layer velocities.

2.2.3. Iterative flux-form reconciliation

In some sense, the entire problem is that the barotropic trans-
port, the time-mean barotropic velocity, and the layer transports
determined by the layers’ discretizations of the continuity equa-
tion using that time-mean barotropic velocity over-constrain the
evolution of the free surface height. The approach of Bleck and
Smith (1990) is to partially disregard the layers’ transports, while
the fictitious mass source for the barotropic equation partially
disregards the barotropic transport. The upwind corrective fluxes
only approximate an adjustment to the time-mean barotropic
velocity; consequently this approach displaces the compensating
fluxes from the layers in which they would occur in the limit of
continuous time. The fourth option, described below, is to regard
both the barotropic transport and the layers’ discretizations as
definitive and modify the time-averaged barotropic velocity (or
acceleration) used to determine the layers’ fluxes. In that this ap-
proach closely emulates what happens in the continuous limit,
with the dominance of external gravity waves in determining
the most rapid adjustment of the free surface height, this option
might be preferable to the previous ones from consideration of
first-principles.

Instead of replacing an estimate of the vertically averaged veloc-
ity with the time-mean barotropic velocity (U) as in (12), the layer
velocities can adjusted by a different, as-yet-unknown, barotropic
velocity U, chosen such that the sum of the layer transports are

iF[(uk + ﬁ),hk] = (UH). (27)
k=1

In this case, the new estimate of the free surface height based on the
layer thicknesses becomes

e = Zh"“ —D:ZK:h}:—D—AtXK:V-FKuk+l~l>7hk]

k=1 k=1
=n"— AtV - (UH) + (nh = ") =™ + (np = 1"). (28)
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So the two estimates of the free surface height retain consistency.

The challenge for making use of (28) is how to determine U. The
positive definite algorithms used for the fluxes in the continuity
equation [schematically indicated by F(uy,h,) in (28)] are typically
continuous and monotonically increasing with u, up to some frac-
tion (perhaps all) of the mass in a cell within a timestep. So pro-
vided that the barotropic transport is reasonable (e.g. less than a
quarter of the total mass of a water column is moved through each
of the four faces within a timestep), an acceptable value for U
should exist. In the limit of horizontally uniform layer thicknesses,
U will be equivalent to the adjustments used previously in (10) to
calculate ak.

For some discretizations of the continuity equations, the trans-
port through each face of a layer’s tracer cell is independent of the
velocities at the other faces of that tracer cell. In such cases, pro-
vided that the fluxes through a face vary continuously with the
velocity component normal to the face, V = fi- U, and

i{ﬁ.F[(uHVﬁ),hk]} >0 (29)
ov

everywhere (even if the derivative itself is discontinuous), the solu-
tion for U = V1 is unique (depending on the staggering of the dis-
crete variables, it may be convenient to give a non-zero transverse
component to U, but on an Arakawa C-grid this seems unneces-
sary). As (29) is essentially the thickness used for marginal changes
in the fluxes, this is a very reasonable restriction, and one that is
satisfied by a wide variety of positive definite continuity solvers.
An iterative Newton’s method approach should be able to find the
appropriate values for the normal velocity components V, iterating
to find the solution to (27) using

fi- {<UH> - ZLF[(W + Vmﬁ) , hk] }
oL o Fl(n 7o) ]

There are many discretizations of the continuity equation that are
not differentiable everywhere, and at these points a reasonable esti-
mate of the effective thickness of the layer (which is essentially
what the left side of (29) is) can be substituted. However, avoiding
this minor complication does suggest that there may be a prefer-
ence for selecting continuity solvers in which both the flux and
the partial derivative of the flux with the velocity at the face are
continuous with u (especially as u - fi changes sign), such as with
a piecewise parabolic method (at least before it is limited to avoid
overshoots). In any case, finding the correct velocities U to agree
with the barotropic transports is a one-dimensional search for the
bounded root of a monotonic function, and there are many robust
and efficient methods for solving this problem.

The facility of this approach is readily illustrated by considering
in more detail how it would interact with the piecewise parabolic
method (PPM) (e.g., Collela and Woodward, 1984). With PPM, the
fluxes are constructed by first setting up a parabolic subgridscale
distribution of thicknesses within each cell, h;(x). The integral of
these subgridscale distributions always agrees with the discretized
cell volume. The edge values are initially common interpolations,
but the common edge values of neighboring cells may be adjusted
separately to ensure monotonicity, or (by ensuring that the subgrid-
scale distributions are positive throughout the cell) positive defi-
niteness. The fluxes are then calculated by integrating these
distributions over the area that is swept through the face within a
timestep. That is, if the velocity u;1/2 at point i+ 1/2 is positive,
the flux is

‘7m+1 _

(30)

1 Xit1/2
Fiiqppk = m / hix(x) dx, (31)

Xip1/2=Ui1/2kAL

so the marginal thickness becomes

OF 12k

= hix(Xi1/2 — Uiz 20AL), (32)
Ui 12k

Both (31) and (32) need to be calculated with each iteration, but the
subgridscale distributions only need to be calculated once. With
PPM, (31) is just the evaluation of a cubic expression, while (32)
is a simple quadratic expression. In practice a single iteration is only
about a third as costly as setting up the PPM distributions in the
first place.

This iterative approach works exactly as in the one-dimensional
discussion of (31) and (32) with directionally split discretizations
for the continuity equations, in which the fluxes through the faces
in one direction are calculated and used to partially update the
thickness before the fluxes in the other direction are calculated. Po-
sitive definiteness is easily assured with a directionally split dis-
cretization. By alternating the order in which the directions are
calculated, a first-order in time discretization error can be avoided
(Strang, 1968; Durran, 1999). For the tracer equations the remain-
ing directional-splitting errors can cause violation of monotonicity,
unless particular care is taken (Easter, 1993). The continuity equa-
tions, though, are not inherently monotonic, and small-scale
imbalances will tend to mostly radiate away as gravity waves.
There do not appear to be particularly significant undesirable con-
sequences from using a directionally-split discretization of the
continuity equation.

For other discretizations of the continuity equation, such as the
(directionally split) scheme of Hsu and Arakawa (1990) traditionally
used in HIM, or the (unsplit) MPDATA scheme (Smolarkiewicz, 1984)
used in HYCOM, the fluxes are the result of a multi-stage calculation,
and therefore the fluxes through a face depend (in some cases non-
linearly) on the neighboring velocities as well as the velocity at that
face.If the flux algorithms are applied robustly, then the appropriate
values of U are not independent, but involve nonlocal contributions.
For such discretizations, it may be impractical to calculate the partial
derivatives of the flux to find the exact set of velocities such that
ZLFL(uk + lNI), hy| = (UH). The nonlocal terms (which are typi-
cally relatively small, especially with a small Courant number) could
probably be treated as though they were fixed with the neighboring
first guess velocities, but this could destroy the positive-definiteness
of the schemes. A flux-corrected-transport style limiter could be ap-
plied to retain positive definiteness, while keeping the flux calcula-
tions local to each water column. Alternately an iterative approach
could be used to determine the complete field of U including the
nonlocal terms and without altering the discretization, but this
would introduce potentially costly communications with each iter-
ation. If the iterations introduce small updates to the fluxes, the full
algorithm need not even be used for these updates. For instance, a fi-
nal upwind iteration (upwind in the sense of the final corrective flux,
not the full fluxes) along the lines described in Section 2.2.2 might be
convenient as it can be used to enforce exact consistency between
the barotropic flux and the sum of the layer fluxes in a single step.
On balance, though, flux discretizations (such as PPM) that depend
only locally on the velocity will be much more convenient to work
with.

There is one other subtlety to the reconciliation that could be
considered: a vertically uniform force does not lead to a vertically
uniform acceleration if vertical viscosity and bottom drag are taken
into account. Starting with Hallberg and Rhines (1996), vertical vis-
cosity and bottom drag using upwind biased estimates of thickness
have proven quite adept at representing the flow near the point
where layers intersect the sloping bottom by suppressing apparent
down-slope pressure-driven accelerations in nearly massless lay-
ers while permitting on-slope flows to inflate such layers. Vertical
viscosity must be treated implicitly (after linearization, if neces-
sary), and may greatly reduce the near-bottom velocity that results
from a barotropic force. Schematically, if the change in the velocity
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Fig. 3. The area-weighted histogram of the absolute discrepancies between the two estimates of the free surface height, from the same model as shown in Fig. 1, as a function
of the number of corrective iterations used, averaged over 73 realizations 5 days apart. With 6 bins per decade, a single instance contributes about 1076 to this curve. The
curves move progressively to the left with each iteration, and converge rapidly once the velocities do not change sign in any layer between iterations. Also shown here, with a
dotted line, is the histogram of the absolute discrepancy at one time from Fig. 2 using U = (U) — U, to approximately adjust the velocities to agree with the time-mean
barotropic velocity without iterative corrections. A PPM discretization is used for the continuity solver, as described in (31). The first iteration simply uses U° = 0 in (30),
which is clearly worse than using U° = (U) — Uy, but this simplification does not appreciably slow the iteration toward convergence.

after a timestep, ouy, due to an incremental barotropic acceleration
SA is only a fraction r, of the integrated acceleration, so that

Sty = ri(AtA), (33)

the corrective velocity in each layer should not be the vertically uni-
form U, but proportional to r. The effects of vertical viscosity can be
written as

Vip12At
hkuliprl = hk (u;: + AkAt) + ﬁ (“Zi} - uzﬂ)
Vi_1,2At
R Ve (! —urth) (34)

hi_1/2

where hy is the thickness of a layer, while hy.1j, is the effective
thickness over which the stress between layers is calculated and
Vi+1/2 1S the viscosity between layers, with boundary conditions that
the velocity at the bottom is zero, and the viscosity at a free-slip free
surface is zero. Eq. (34) is linear in the velocities and accelerations,
so the r, can be determined by solving the tridiagonal equation

Y At
hir = hie(1) + 2222 1y — 1) — =222

35
hii1/2 by 2 5

with the boundary conditions at the free surface that ro = ry, and at
the no-slip bottom that ry.; = —ry. The 1, are between 0 and 1,
asymptoting to 1 far from the no-slip bottom. This tridiagonal equa-
tion is very similar to that for the velocities themselves (34) and can
be solved efficiently at the same time.

Taking the vertical viscosity into account, it is not a barotropic
velocity that is needed, as in (27), but rather a barotropic acceler-
ation averaged over a timestep, so that (27) is replaced by the
search for the acceleration A such that

> Fl(u + rAAt), hy] = (UH)
1

(36)

N
k=

The layer transports increase monotonically with A, making this
again a one-dimensional search for the root of a monotonically
increasing function.

This iterative, flux-form reconciliation between the two esti-
mates of the free surface height has been used in a variety of different
applications, including a global 1° climate model similar to that
shown in Fig. 1, and high-resolution tidal simulations following on
from the work described by Simmons et al. (2004). As shown in
Fig. 3, the two estimates typically agree everywhere to within a tol-
erance of 107® m after three or four iterations. The cost of this ap-
proach is not a substantially larger fraction of the ocean models
CPU time than other continuity solvers, and may even be dramati-
cally less in parallel models since it requires no communication be-
tween processors. As a desirable side-effect, determining the
barotropic velocity correction that yields consistent barotropic and
layer volume fluxes also eliminates the potential for temporal insta-
bility due to aliasing of rapidly varying external gravity waves into
the layer thickness fluxes, as described by Higdon (2008). This ap-
proach seems to be a highly attractive method for forcing the two
estimates of the free surface height to agree, without any obvious
significant liabilities.

3. Two illustrations of the liabilities with traditional approaches
Two examples can be used to illustrate the complications with

some approaches to reconciling the two estimates of the free sur-
face height.
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3.1. Spurious diapycnal mixing in DOME

The Dynamics of Overflows and Mixing Experiment (DOME)
established a set of standard idealized test cases that have been used
to study the representation entraining gravity currents in numerical
ocean models (Legg et al., 2006), with physical parameters that are
broadly characteristic of real oceanic overflows. Here, one of these
test cases is used to illustrate the magnitude of the problems with
non-conservation that arise when layer dilation is used to reconcile
the two estimates of the free surface height.

The DOME test-case 1 was spun up for 50 days using the Gen-
eralized Ocean Layered Dynamics (GOLD)® model in a purely iso-
pycnal coordinate configuration with an unsplit time stepping
scheme. This f-plane case has an initial linear density stratification
with a density range of 2kgm~3, and a 1% bottom slope extending
down 3600m, and is forced by a geostrophically balanced inflow
atop the slope at the density at the bottom. A vigorously entraining
dense plume develops and extends along the slope. Sponges at the
ends of the domain allow it to attain a statistically steady state. In
the present configuration, the diapycnal mixing (and plume entrain-
ment) is due to the shear-mixing parameterization of Jackson et al.
(2008) and a weak background diffusivity. See Legg et al. (2006)
for full details of the DOME configuration, or Legg et al. (2008) for
a discussion of this particular model configuration.

After the model has spun up, the inflow of dense water and the
sponges at the edges were then turned off, and the run carried on
using each of the methods of reconciling the flows described above
and the split time-stepping algorithm of Hallberg (1997), or with
an unsplit time stepping scheme as the reference solution, for
two test cases. In the first test case, the parameterized diapycnal
mixing was deliberately disabled. As this is a purely isopycnal-
coordinate configuration, it should be able to preserve the histo-
gram of watermasses without change. Fig. 4a shows that for both
the non-split run and for a run using a split time-stepping scheme
with the iterative flux-form reconciliation proposed in this paper,
the volume of water below each isopycnal is unchanged. This is
also true of the upwind flux form solution. By contrast, when layer
dilation is used to reconcile the two estimates (as in Bleck and
Smith (1990)), there are significant changes in the volume of water
below isopycnals, equivalent to domain-averaged fluxes of order
0.1m day~! averaged over 5 days in this example. These changes
are the basin-averaged residuals of even larger localized non-con-
servation of layer volume of both signs, but they are not com-
pletely random. As they arise from differences between the
baroclinic and barotropic estimates of the mass fluxes, they do lead
to systematic and accumulating biases over timescales of days or
longer, as illustrated in Fig. 5.

The significance of these changes can be assessed with a second
set of DOME runs, in which the diapycnal mixing was left on
(although the inflow and sponges are still disabled). There is signif-
icant shear-driven diapycnal mixing, with the Jackson et al. (2008)
scheme yielding 5-day average diffusivities averaged over the dense
water plume of order 1072 m? s}, and peak values of time mean dif-
fusivities as highas 10~ m?s~!. This vigorous mixing leads to down-
ward movements of the isopycnals near the bottom and upward
isopycnal movements at the top of the plume as it entrains, as seen
in Fig. 4b. The iterative flux-form solution agrees reasonably well
with the unsplit solution (as does the upwind flux-form solution),
while there are clear discrepancies between the mean interface
height changes in the unsplit solution and the solution that uses
layer dilation. The diapycnal mixing in this case is strongly nonlin-
ear, so it is impossible to attribute all of these discrepancies in layer

5 GOLD is a generalized ocean model being developed at NOAA GFDL as the
successor to both HIM and the Modular Ocean Model (MOM). As configured here, the
solutions are essentially the same as would have been obtained with HIM.
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Fig. 4. The change after 5 days in the depth that each isopycnal would have if the
model were adiabatically adjusted to the minimum potential energy state. That is,
the change in the depth below which the volume of ocean equals the volume of
water below each interface. This is a measure of how well the census of
watermasses is preserved. In the top panel (A), the model was run with all
parameterized cross-isopycnal mixing disabled; the correct solution is uniformly 0
change in this case. The bottom panel (B) uses the Jackson et al. (2008) shear mixing
parameterization and a background diapycnal diffusivity of 10~* m? s~!. An unsplit
integration (solid) is here as a reference, and is run with a very short time step to
resolve the barotropic waves. The iterative flux-form scheme (dashed) and upwind
flux-form scheme (dotted in B) agree very well with the reference solution. By
contrast when layer dilation is used to reconcile the two estimates (as proposed by
Bleck and Smith (1990) and used in MICOM and HYCOM), there is significant
nonconservation of integrated layer volume in (A) and significant departures from
the reference solution in (B).

volume directly to the dilation, but it is highly suggestive that the
magnitude of the discrepancy is comparable to that seen in the adi-
abatic case in Fig 4a. These volume conservation imbalances due to
the dilation are of haphazard sign, and cannot be directly translated
into a diffusivity, but it may be worth noting that in this particular
test case, the spurious regionally-averaged watermass volume
modifications due to the reconciliation approach of Bleck and Smith
(1990) are comparable in magnitude (if not everywhere of corre-
sponding sign) to that given by a diapycnal diffusivity of order
103 m? s~!, which is two orders of magnitude larger than the
observationally inferred background diffusivity of the interior
ocean (Ledwell et al., 1993; Kunze and Sanford, 1996).

There is also a significant non-conservation of integrated den-
sity in this test case with the dilation approach, but not with either
the flux-form or the unsplit solutions. To the extent that this com-
parison and this test case are meaningful, they strongly suggest
that the use of this dilation will be highly problematic for the
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Fig. 5. The change over time in the same mean interface anomalies shown in Fig. 4a for the adiabatic case using the layer dilation proposed by Bleck and Smith (1990). The
correct solution is uniformly O change in this case. This figure illustrates that these spurious watermass changes accumulate over timescales of days, but are likely to be akin

to a random walk on longer timescales.

use of such a model for long-term climate studies. There is circum-
stantial evidence to support this conjecture, for example in the in-
ter-model comparisons of Griffies et al. (2009).

3.2. Surface gravity waves in a climate model’s Black Sea

The importance of an essentially exact approach for reconciling
the two estimates of the free surface height can be illustrated by con-
sidering the Mediterranean and Black Seas taken from a 1° resolution
global model. This region is particularly illustrative for several rea-
sons. The density ranges of the Black and Mediterranean Seas are
quite distinct from the main body of the ocean; the Black Sea is much
fresher and lighter, while the Mediterranean is atypically salty and
dense. This poses a particular challenge for an isopycnal coordinate
model that is configured for global applications, as there will be rel-
atively few layers of the right density classes; in the example shown
in Fig. 6, there are just 10 interior layers active in the Mediterranean
and just 1 interior layer in the Black Sea, in addition to the 4 variable
density mixed- and buffer-layers that are available everywhere.
With so few layers, the assumption in (13), that the various esti-
mates of the layer thicknesses at velocity points are equivalent, is
rather poor near topography. In addition, the large-scale boundary
currents and the large-scale external gravity wave fields in these iso-
lated seas are relatively weak compared to the open ocean basins, so
any signal radiated from numerical imbalances will be easily
detected.

The differences in the quality of the solutions using different
methods of reconciling the free surface height estimates are partic-
ularly evident in Fig. 6, which shows the instantaneous deviations
of the sea surface height from its 2-day mean in a model of the Med-
iterranean and Black Seas, extracted from the global model shown in
Fig 1. The large values with the pseudo-mass-source reconciliation,
of order tens of cm up to a few m, are indicative of external gravity
waves bouncing around these two seas. There are physical sources
forlarge-scale external gravity waves — namely wind-driven seiches,
but these are much smaller than the numerical error induced signals
in the bottom panel of Fig. 6. By contrast, the iterative flux form (top
panel of Fig. 6) gives quite plausible magnitudes for the high fre-
quency variability in the sea-surface height.

This difference in the quality of the solutions can also be easily
seen in the RMS deviations of the Black Sea surface height from its
instantaneous spatial mean (Fig. 7). The Black Sea is small enough
that the sea surface height deviations associated with the geo-
strophic flows are relatively modest (e.g., Staneva et al., 2001),
and this makes the deviations from the spatial mean a good
measure of the amplitude of the surface gravity wave field. With

the pseudo-mass-source reconciliation the numerically induced
large-scale external gravity wave field is roughly 20 times stronger
than in a model run with a very short time step and no mode
splitting. The unsplit model has very similar amplitude gravity
waves with the iterative flux form reconciliation. Although there
are many applications of ocean models for which the surface grav-
ity wave field may be unimportant, there are undesirable conse-
quences from having such large amplitude waves as found with
the pseudo-mass-source version. These waves steepen near the
boundaries (they are dynamically equivalent to tsunamis), and
can lead to such large velocities that the model’s CFL limits are vio-
lated and the model solution diverges.® But even beyond numerical
stability, the ocean is in fact a nonlinear system, and such large
gravity waves can compromise the physical relevance of the sys-
tem, for example by driving excessive shear-driven mixing or
enhancing the quadratic bottom drag. From these simulations, it
would seem advisable not to use the pseudo-mass-source reconcil-
iation of the two estimates of the free surface height in realistic
ocean models, while the iterative flux form reconciliation works
quite well.

In these simulations, the upwind flux form approach gives a
similar external gravity wave field to the iterative flux form ap-
proach and to an unsplit solution — which is to be expected since
by construction the two estimates of the sea surface height agree.
The same is not true everywhere for the long-term mean circula-
tion. The 1-year time mean sea surface height relative to the time-
and spatial-mean sea surface height over a marginal sea, (1), is
roughly equivalent to a time-mean geostrophic streamfunction.
For the Black Sea in these simulations, the mean-squared differ-
ence between (1) for an iterative flux-form solution and an unsplit
solution is 9 mm?, while for an upwind flux form solution this dif-
ference is 80 mm?, compared with a mean-squared value for (1) it-
self of 268 mm?. The Black Sea circulations are qualitatively similar
overall, but the iterative flux form circulation is clearly much closer
to the unsplit solution. The Black Sea is particularly challenging be-
cause the free modes can be prominent. In the Mediterranean, both
iterative and upwind flux form solutions are quite similar to the
unsplit solution. Both have mean-squared differences in (') from
the unsplit solution of 1cm?, which is small compared with a
mean-squared value for () itself of 37 cm? The Mediterranean
has better vertical resolution in these simulations than does the

5 The Black Sea occasionally generated such large velocities in an early version of
the global model shown here (which used a time-filtered variant of pseudo-mass-
source reconciliation) that an unduly short timestep was required for stability. These
problems were largely the motivation for pursuing this work in the first place.
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Fig. 6. The magnitude of the deviation of the free surface height from its 2-day mean value in a 1° CORE-forced simulation of the Black and Mediterranean seas extracted from
the global model shown in Fig. 1. The top panel uses the iterative flux-form reconciliation, while the bottom panel uses the pseudo-mass source reconciliation. A model run
with a short time step and no mode splitting (not shown) is similar in magnitude to the top panel. Both models have been spun up for 165 days, and this time is typical of the

magnitudes of the sea-surface height anomalies throughout the spring.

Black Sea, and the overall circulation is better governed by large-
scale dynamics, so it is perhaps not surprising that the simulated
Mediterranean circulation is less sensitive to numerical choices
than is the Black Sea. Based on these runs, both the upwind and
iterative flux form approaches are stable and may give acceptable
results, but the iterative approach appears to be the more robust
and accurate of the two.

4. Conclusion and discussion

Time-split ocean models generate two distinct estimates for the
evolution of the free surface, one from the barotropic solver and
the other from the vertical integration of the interior continuity
equation. In models with a linear continuity solver (as is true of
essentially all fixed-grid models), it is straightforward to cause
the vertical integral of the interior continuity equation to exactly
agree with the external solution by using the appropriate barotrop-
ic velocity. Lagrangian vertical coordinate models, however, must
use nonlinear continuity solvers to ensure positive definiteness of
the vertical coordinate. This has led to several different approaches
for how to reconcile these two estimates of the free surface height
in practical Lagrangian vertical coordinate ocean models.

The approach of dilating the water column to agree with the
barotropic estimate of the free surface height (Bleck and Smith,
1990) has been used extensively in a wide variety of simulations,
particularly with HyCOM and MICOM. Any spurious generation

of external gravity waves is limited, but at a serious price. Although
total mass is conserved, neither heat, total salt, nor any other tracer
can be exactly conserved with this approach. Also, there can be sig-
nificant numerical transfer of water between density classes. In the
overflow test case examined here, the spurious transfer of water
was quite large — equivalent in magnitude to that arising from a
diapycnal diffusivity of order 10~ m? s~'. This particular test case
is oceanographically relevant, but is surely an over-estimate of the
magnitude of the spurious watermass modification that should be
expected for the ocean as a whole. But as minimizing spurious
watermass modifications is ostensibly one of the primary motiva-
tions for using an isopycnal (or hybrid-isopycnal) coordinate mod-
el for long-term oceanographic studies and climate simulations,
abandoning this desirable property seems very ill-advised. For
climate studies, non-conservation of heat or salt will seriously
complicate the analysis of an ocean model. The dilation approach
is probably only advisable for relatively short-term ocean simula-
tions, when careful watermass conservation is not an especially
important property.

Flux-form methods for reconciling the two estimates conserve
tracers by construction. The challenge for these techniques is to en-
sure that the resulting circulations are reasonable. Adding a fake
mass source to the barotropic solver is one way to drive the two
estimates of the free surface height back toward one another.
Tracers and watermasses are exactly conserved because the layer
equations retain their original flux-convergence form. Although it



R. Hallberg, A. Adcroft/Ocean Modelling 29 (2009) 15-26 25

Black Sea RMS Sea Surface Height Deviations

—_
(=]

< o o
IS o @
T

RMS SSH Anomalies (m)
o
[
T

o
o

Pseudo-mags—source Reconciliation

L Iterative Flux—form Reconciliation -

) F M A M

J A g 0 N D
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those cases are dominated by the passage of storms in the wind stress datasets.

has been used for about a decade in HIM (e.g., Hallberg and Gna-
nadesikan, 2006), this approach can lead to the generation of
large-amplitude external gravity waves that will be highly prob-
lematic in any simulation where the exact sea-surface height is
of interest. These waves are particularly prominent in cases with
high-frequency (i.e., realistic) forcing variability. Given that this
is not very much more computationally efficient than other flux-
form approaches to reconciling the two estimates of the free sur-
face height, this approach has clearly been superseded.

An upwind velocity correction can be used to force the sum of
the layers’ fluxes to equal the time-mean barotropic fluxes (e.g.,
Higdon, 2005). Tracers and watermasses are conserved by con-
struction, and there is not spurious generation of large external
gravity waves. This approach also has the advantage that the cor-
rections can be determined in a single step, and it is essentially
independent of the choice of discretization for the continuity equa-
tion. The challenge with this approach is that a full-depth (baro-
tropic) correction can lead to (spurious) rectified flow of the
densest water up slopes, while limiting the correction to the water
column that is entirely above the bathymetry introduces baroclinic
shears to counteract an essentially barotropic imbalance and can
lead to a small rectified down-slope drift of dense bottom bound-
ary currents relative to the true solution (as occurs in the DOME
test case).” Because different thicknesses are used to determine
the original and upwind-corrective fluxes, it is even possible
for the net mass fluxes in a layer to be in the opposite direction
to the sum of the original and corrective velocities. The success
of this scheme is sensitive to the estimate of the barotropic
velocity, (U), used in the uncorrected internal continuity
equations; as an extreme test, when a lagged barotropic velocity
is used in place of the time average, the solutions with the upwind
velocity correction diverge for the Black and Mediterranean seas
test case in Section 3, even though the two estimates of the free
surface height agree perfectly. Despite these caveats about the care
with which this scheme must be implemented, it can lead to
acceptable simulations and avoids the greatest problems with
the dilation or pseudo-mass-source approaches.

Finally, a new approach described here is to determine the addi-
tional barotropic acceleration (or velocity increment) that will
cause the sum of the layer fluxes to agree with the barotropic
fluxes. Like the upwind flux-form correction, this approach exactly

7 This inconsistency is avoided if the same restrictions of the transport to the water
above the shallowest neighboring topography are applied everywhere in the
continuity equations, in the upwind corrections, and in the barotropic solver,
although this will lead to only a first-order accurate representation of the topographic
influence on the ocean flow.

conserves tracers and watermasses and avoids spurious generation
of large external gravity waves. It also has the advantage that the
vertical distribution of the fluxes are entirely consistent with the
model’s dynamics and the chosen discretization for the internal
continuity equations; in this sense it can be expected to closely
reproduce what would have been obtained with an unsplit time-
stepping scheme with a very short timestep — something that in
fact happens in all the tests presented here. This approach is insen-
sitive to the time-averaged estimate of the barotropic velocity, (U),
except perhaps as a starting point for the iterations to determine
the internally consistent barotropic velocity U. The difficulty with
this approach is that it is necessarily iterative with a nonlinear con-
tinuity discretization, and its implementation will vary strongly
with the choice of continuity discretization. There are viable conti-
nuity solvers where the volume fluxes depend non-locally on the
velocities (e.g., Hsu and Arakawa, 1990), for which there may not
even be a unique solution. If an appropriate continuity discretiza-
tion (e.g., PPM) is used, though, the iterations converge to a unique
solution very rapidly and this approach is not significantly more
time-consuming than other approaches. Based on the examples
shown here and many others that were not shown, this new itera-
tive flux-form reconciliation appears to be a very attractive ap-
proach to advancing the free surface of a time-split Lagrangian
vertical coordinate ocean model, without any compromise of con-
servation and without generation of spurious waves or flows.
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