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S2. THE EXTRAORDINARY CALIFORNIA
DROUGHT OF 2013/14: CHARACTER, CONTEXT,
AND THE ROLE OF CLIMATE CHANGE

DaNIEL L. SWAIN, MicHAEL TsiaNG, MaTz HAUGEN, DEePTI SINGH, ALLISON CHARLAND,
BALA RAJARATNAM, AND NOAH S. DIFFENBAUGH

Empirical analysis. We calculate the probability of a
2013-magnitude event by analyzing the National Cen-
ters for Environmental Prediction reanalysis (NCEP;
Kalnay et al. 1996) and the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) global climate model
ensemble (Taylor et al. 2012). We define a “2013-mag-
nitude event” as the mean January-December 2013
500-mb geopotential height (GPH) averaged over
35°-60°N and 210°-240°E, which emphasizes the
area in which 2013 GPHs were unprecedented in the
66-year reanalysis (Fig. 2.1e in the main report; Fig.
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S2.1). We justify the use of GPH to characterize the
event given both the rarity of the GPH anomalies and
the observed strength of the relationship between
northeastern Pacific GPH and California precipita-
tion (Fig. 2.1f,i in the main report; Mitchell and Blier
1997; Chen and Cayan 1994).

We restrict our probability analysis to the period
from 1979 onwards, in order to focus on the satellite
era, for which there is higher confidence in the accu-
racy of three-dimensional atmospheric fields in the
reanalysis. Our CMIP5 model ensemble consists of 13
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Fic. S2.1. Temporal and spatial structure of observationally-unprecedented 500-mb GPH

in 2013-14. Shown are the number of Feb—May (a), Oct-Jan (b), and calendar year Jan-Dec

(c) periods during 1948-2012 in which 500mb GPH exceeded the respective 2013 values.

(d), (e), and (f) are the same as (a), (b), and (c), respectively, but for standard deviation of

daily 500-mb GPH.
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models for which GPH data are available for the long
preindustrial control (pre-1850) simulations (Table
S2.1). We compare the preindustrial (P.I.) simulation
of each model with the 1979-2005 period of the 20th
century (20C) simulations. (The CMIP5 20C simula-
tions end in 2005.) We aggregate the 1979-2005 pe-
riod from each model’s 20C realizations into a single
20C dataset for each model.

We first bias-correct the North Pacific 500-mb
GPH data from each model by adjusting all simulated
values by the difference between the NCEP1 reanaly-
sis mean and the single-model mean:

GPH =GPH , +GPH

bias.corrected reanalysis

—GPH_) (1)

We then perform a Kolmogorov-Smirnov (K-S)
test on each model to assess goodness of fit between
the bias-corrected simulated distribution of annual
500-mb GPH and the reanalysis distribution. We find
that the GPH distributions in one model (CCSM4;
Fig. $2.2) are significantly different from the NCEP1
reanalysis at the p = 0.2 level (i.e., agreement between
the bias-corrected simulated distributions and the
reanalysis distribution is poor). We, therefore, exclude
CCSM4 from the remainder of our analysis.

To assess changes in the frequency of occurrence
of extreme GPH values between the P.I. and 20C pe-

Kolmogorov—Smirnov p-values

riods in each model, we first estimate the GPH value
associated with each of the 90-99th P.I. percentiles
(i.e., the P.I. 0.90-0.99 quantiles). We then count the
number of times that a value equaling or exceeding
this threshold occurs in the 20C simulations and
calculate the relative change:

AFreq = (Freq,,.— Freq,)/FreqPI (2)

Parametric analysis of CMIP5 data. We calculate the
return period of the 2013-magnitude event by first
finding a parametric distribution that is appropri-
ate for both the reanalysis and CMIP5 data. In
2013, GPH fell far in the upper tail of the reanalysis
record (and is clearly the most extreme event in the
reanalysis time series; Fig. 2.2a in the main report).
However, given the relatively short period of record
for satellite-era observations, there is considerable
uncertainty regarding the rarity of the event in a
broader climate context. In order to provide a “lower
bound” estimate on both the present-era probability
of a 2013-magntiude event and the relative change in
probability between a preindustrial control climate
(absent the effect of anthropogenic forcing) and the
historical period, we fit Pareto III-type distributions
to the 1979-2012 reanalysis distribution and the
1979-2005 CMIP5 distribution (Fig. 2.2 in the main
report). We use a Pareto distribution because of
its characteristic heavy upper tail. The use of a
heavy-tailed distribution means that our estimates
for return periods associated with a 2013-like
extreme upper-tail event are smaller than they
would be if we had used a distribution with a
more quickly attenuating tail, which is justified
given the inherent uncertainty in both the true
underlying distribution and in the selection of a
parametric distribution. However, given the large
variability of GPH and small sample size in the
post-satellite era (Fig. 2.2a in the main report), we
conduct extensive uncertainty quantification for
both the reanalysis return period (Fig. 2.2b in the
main report) and the CMIP5 20C and P.I. return
periods (Fig. 2.2¢ in the main report; Fig. S2.3).
To find the three parameters in each Pareto
IIT distribution, we graphically obtain the global
maximum by examining the 3D empirical prob-
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Fic. $2.2. Kolmogorov-Smirnov test results for each of
the 13 CMIP5 models for which geopotential heights are
archived for the P.l. simulations. Higher p-values suggest
higher confidence that the mean-corrected model distri-
butions match the NCEP reanalysis distribution. The B3
models are highlighted in green.
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ability space given the observations. We then
define a cube that surrounds the global minimum
and sample from a uniform distribution with the
graphically obtained bounds.

For fitting the Pareto to the CMIP5 simula-
tions, we choose a restrictive “best 3” (B3) subset
of CMIP5 models by selecting those models with
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K-Stest p values > 0.8 (i.e., those models whose mean-
corrected North Pacific GPH distributions are closest
to the full NCEP reanalysis distribution, including
the tails). The three models meeting this criterion
are GISS-E2-H, HadGEM2-ES, and NorESM1-M
(Fig. S2.2). We then aggregate the individual-model
bias-corrected GPH values over all of the 1979-2005
model years from all 20C realizations of each of the
B3 models. We then fit Pareto III distributions to
this aggregate data in order to estimate the overall
change in probability/shift in return period for a
2013-magnitude event.

To calculate the return periods in the CMIP5 B3
models, we first estimate the quantile of the 2013
event using the fitted NCEP distribution. We then
find the magnitude of an event of the same quantile
in the B3 20C simulations. We then estimate the prob-
ability of occurrence of an event of this magnitude in
the B3 P.I. and 20C simulations. Finally, we calculate
the associated return periods in the B3 P.I. and 20C
simulations along with the ratio (P.I. divided by 20C).

| BAMS OCTOBER 2014

Ratio of GPH Return Periods (P.1./20C)

In this analysis, all three distribu-
tions (reanalysis, P.I., and 20C) are
simultaneously resampled and used to
calculate return periods (and ratios of
return periods). We note that the same
parameter bounds are used in each it-
eration of the bootstrap. We report the
resulting distribution of return period
ratios (i.e., 1000 different estimates of
the relative change in probability of a
2013-magnitude event between the P.I. and 20C forc-
ing regimes) and again assign a “likely” and “very
likely” range on the basis of the fitted distributions
created using the resampled empirical distributions.

Assessing the role of natural versus anthropogenic forcing
in the late 20th century period. We perform additional
analysis using the CMIP5 20th century natural forc-
ing (NAT) experiments and compare these results to
those from the 20C historical experiments and from
the P.I. control experiments (Taylor et al. 2012). The
20C simulations include both natural forcings (such
as variability in solar irradiance and the inclusion of
volcanic aerosols) and anthropogenic forcings (such
as increasing concentrations of greenhouse gases),
while the NAT experiments are identical to the 20C
experiments except for the exclusion of anthropo-
genic forcings. The P.I. simulations assume constant
solar irradiance, and include neither anthropogenic
nor volcanic forcings.



We repeat our analysis of the empirical distribu-
tion of GPH in each model (described above) in order
to determine the relative change in extreme (90-99th
percentile) events between the different experiments.
Although we find large increases in the frequency
of occurrence of extreme GPH events in the 20C
simulations relative to the P.I. simulations (Fig. 2.2e
in the main report), we find little or no change in the
probability of occurrence between the NAT and P.I
experiments (Fig. 2.2f in the main report). That the
large simulated increase in the probability of extreme
GPH events only occurs in climate model simulations
that include natural and anthropogenic forcings and
not in simulations that include only natural forcings
suggests that the heightened probability cannot be
explained without the anthropogenic contribution.

Addressing the role of non-stationarity. Our return
period analysis—which requires fitting parametric
models to reanalysis and climate model data—is
predicated on a statistical assumption of stationarity
in each time series. Because we find a statistically
significant linear trend in the reanalysis time series,
we take two separate approaches in detrending these
data and performing additional analysis to quantify
the role of the long-term trend in driving the simu-
lated increase in probability of extreme GPH events
in the CMIP5 models.

In the first approach, we detrend the reanalysis
time series (excluding the extreme 2013 value) by
fitting a linear model to the data and subtracting the
accumulated trend at each point from the reanalysis

value. We then subtract the mean of the linearly
detrended values and add the mean of the original
time series:

GPH,,, = (GPH,,— GPH,,,) + GPH,  (3)

The “detrended” 2013 value is defined as the
difference between the actual 2013 value and its
expected value in the linear model. We then per-
form an analogous operation on each 27-year 20C
(1979-2005) realization from each of the B3 models
to obtain mean-preserved, detrended time series.
This approach yields a stationary series with the
same mean as the original data, which we verify by
analyzing the autocorrelation and partial autocor-
relation structure of the new time series (using the
Ljung-Box statistic). Our initial detrending ap-
proach controls for the existence of a linear trend in
GPH over the reanalysis/20C period, but it does not
remove the difference in the means between the 20C
and P.I. periods. In this analysis, we find that the
median P.I./20C ratio of extreme GPH probability
is 2.66 (and is greater than 2.4 with 66% confidence
and 1.81 with 95% confidence, respectively). While
slightly lower than the non-detrended P.I./20C ratio,
these results suggest that the simulated increase in the
probability of extreme GPH is a statistically robust
finding, even accounting for non-stationarity during
the reanalysis/20C period.

In the second approach, we fit a linear model to
the reanalysis time series (and each model realization)
as before, but in this instance, we detrend the time

TasLE S2.1. CMIP5 models used in Swain et al. 2014
Model piControl (rlilpl) | Historical Number | Natural Number
length (years) of Realizations of Realizations

CanESM2 996 5 5
CCSM4 501 8 =
CNRM-CM5 850 10 6
CSIRO-Mk3-6-0 500 10

GISS-E2-H 590 17 10
GISS-E2-R 850 23 —
HadGEM2-ES 280 5 4
IPSL-CM5A-LR 1000 6

MIROC5 670 5 =
MPI-ESM-LR 620 3 =
MPI-ESM-MR 990 3 =
MRI-CGCM3 500 5 |
NorESMI-M 501 3 =
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series without preserving the original mean in each
time series. This approach substantially reduces the
difference in the mean between the CMIP5 20C and
P.I. values (Fig. S2.3a). In this instance, we find that
the P.I./20C ratio is much smaller than using either
the original data or the mean-preserved detrended
data (median value = 1.08), with error bars that make
the trend statistically indistinguishable from zero
(with 66% confidence that the ratio exceeds 0.98 and
95% confidence that the ratio exceeds 0.75; Fig. S2.3c).
This result suggests that the linear trend in GPH over
the 20C period has a substantial influence on the in-

| BAMS OCTOBER 2014

crease in probability of a 2013-magnitude event that
is simulated by the CMIP5 models. Given the modest
simulated increase in GPH standard deviation (Fig.
2.2c in the main report) and the fact that the median
of the second detrended distribution of P.I./20C ratios
is positive [and the overall distribution is positively
skewed (Fig. S2.3¢)], there may be an additional con-
tribution to the probability by nonlinear interactions
(i-e., a trend in the variability). Further exploration
of this possibility is beyond the scope of the present
analysis, but will be the focus of future work.



S4. EXAMINING THE CONTRIBUTION OF THE
OBSERVED GLOBAL WARMING TREND TO
THE CALIFORNIA DROUGHTS OF 2012/13 AND
2013/14

CHRris FuNk, ANDREW HOELL, AND DAITHI STONE

Supplemental Methods. ENSO and ENSO-residual
Coupled Model Intercomparison Project phase 5 de-
compositions. Using regression, we estimated the
ENSO and ENSO-residual components of each set of
1900-2014 Coupled Model Intercomparison Project
phase 5 (CMIP5) SST and precipitation. Table S4.1
summarizes these simulations. The ability of these
models to evaluate Pacific-North American climate
variability has recently been evaluated by Polade et al.
(2013). In this study, the skill of the models, based on
single value decompositions of SST and precipitation,
ranged from 0 to V2. Table $4.1 shows the skills of the
models used in this study '. To represent ENSO, we
used the first principal component of tropical Pacific
SST (125°E-115°W, 15°S-15°N) over the 1900-2014
time period. For each simulation, a new principal
component was calculated and regressed against
the global SST and precipitation fields. Both the
results and the residuals from these regressions were
retained, decomposing the CMIP5 SST and precipi-
tation into ENSO and ENSO-residual components.

Empirical estimates of “trend mode” SST warming pat-
terns. Several recent studies have examined trends and
EOFs of global SST with the influence of ENSO re-
moved (Compo and Sardeshmukh 2010; Solomon and
Newman 2012). Removing ENSO-related variations
reduces the influence of interannual fluctuations and
increases the level of agreement among trend fields
calculated from different SST datasets. Here, we have
represented ENSO as the first principal component of
NOAA Extended Reconstructed (Smith et al. 2008)
tropical Pacific SST (125°E-115°W, 15°S-15°N) over

! These values were provided by Suraj Polade.
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the 1900-2014 time period. Using regression, we
isolated and removed 1900-2014 ENSO-related SST
variations, then defined the trend mode of variability
as the first covariance-matrix-based EOF of global
(70°S-70°N) seasonal SST anomalies. The 1900-2014
seasonal SST grids were converted to anomalies,
weighted by cosine-based weights to account for
latitudinal variations in area, and used to compute
the covariance matrix. To estimate the 2012/13 and
2013/14 trend SST fields, we multiplied the associated
2012/13 and 2013/14 first principal component scores
and EOF trend eigenvector.

Community Atmospheric Model version 5 simulations.
The impact of trend-related SST changes on precipita-
tion were explored using Community Atmospheric
Model version 5 (CAMS5) runs. CAMS5 is the atmo-
spheric component of the Community Earth System
Model version 1 (CESM1; Hurrell et al. 2013). The
CAMS5 model was run using a finite volume scheme
on a 0.9 x 1.25 degree grid. Shallow convection was
simulated using the scheme of Park and Bretherton
(2009); deep convection was simulated using a modi-
fied parameterization scheme of Zhang and McFar-
lane (1995). The CAM5 simulations were produced
using a data ocean model where ocean SST and sea
ice were specified in space and time. Two sets of 21
runs each were based on either the 2012/13 or 2013/14
observed ocean and ice conditions (NOA A Extended
Reconstruction SST; Smith et al. 2008). Another
two sets of 21 runs were based on the 2012/13 and
2013/14 observed SST with the 2012/13 and 2013/14
SST trend estimates removed (subtracted). For each
simulation, CAMS5 was initialized on 1 January 2012
or 2013 and run through the end of February of the
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following year. Ensembles were initialized with ran-
dom modifications to the fourth significant digit of
the initial conditions, resulting in different weather
patterns for each simulation.

TasLe S4.1. CMIP5 Historical climate change simulations.

Modeling Group & Model Name

Model
Acronym

Historical
Simulations

Skill (from Polade

et al.2013)

Canadian Centre for Climate Modelling and Analysis
Canadian Earth System Model version 2

CanESM2

5

0.88

National Center for Atmospheric Research
Community Climate System Model version 4

CCSM4

1.0

Community Earth System Model Contributors
Community Earth System Model version with Community
Atmospheric

Model version 5

CESMI-CAMS5

n.a.

Centre National de Recherches Météorologiques / Centre
Européen de

Recherche et Formation Avancée en Calcul Scientifique
Centre National de Recherches Meteorologiques (CNRM)
Coupled Global Climate Model, version 5

CNRM-CM5

0.89

NOAA Geophysical Fluid Dynamics Laboratory
Geophysical Fluid Dynamics Laboratory Earth System Model
version 2 with with modular ocean model version 4.1

GFDL-ESM2M

Institut Pierre-Simon Laplace
IPSL Community Model version 5

IPSL-CM5A-LR

0.57

Atmosphere and Ocean Research Institute (The University
of Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology
Model for Interdisciplinary Research on Climate, version 5

MIROCS

0.92

Max-Planck-Institut flir Meteorologie (Max Planck Institute
for Meteorology)
MPI Earth System Model Low Resolution

MPI-ESM-LR

0.77

Total Ensemble

25

8
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S6. SEASONAL AND ANNUAL MEAN
PRECIPITATION EXTREMES OCCURRING
DURING 2013: A U.S. FOCUSED ANALYSIS

THoMas R. KNUTsON, FANRONG ZENG, AND ANDREW T. WITTENBERG

tional background, discussion, and analysis, in-

cluding: region definitions, global precipitation
anomaly maps, and locations with extremes in 2013;
areal coverage of record or near-record anomalies
by year; spatial resolution issues for observed data;
additional sliding trend analysis and sensitivity tests;
a description of methodology for estimating the 2013
multimodel ensemble All-Forcing anomaly and the
fraction of attributable risk (FAR); and an assessment
of model-simulated precipitation and internal vari-
ability. Table S6.1 provides a list of the Coupled Model
Intercomparison Project phase 5 (CMIP5) models
used in the study.

I n this supplemental material, we provide addi-

Region definitions, global anomaly maps, and locations
with seasonallannual extremes in 2013. Figure S6.1
shows global maps of (a-e, left column) annual and
seasonal mean precipitation anomalies for 2013 and
(f-j, middle column) the grid locations with record
or near-record wet or dry conditions (seasonal or an-
nual mean precipitation ranked first, second, or third
highest or lowest in the available record of length at
least 100 years). The blue regions in the right column
outline the focus regions selected for the study based
on their 2013 anomalies. The six focus regions, in-
cluding the designated name and season or annual
mean, are the northern tier region of states along the
northern U.S./Canadian border region with extreme
positive annual-mean anomalies (“northern tier—
ANN”); in March-May (MAM) a similar region of
the northern United States extending slightly further
south, also with extreme positive anomalies (“upper
Midwest—MAM?”); during MAM, a region of record
or near-record low precipitation occurring over the

AMERICAN METEOROLOGICAL SOCIETY

southern U.S. Plains (“Southern Plains—MAM”);
in Northern Hemisphere (NH) summer (June-Au-
gust, JJA), extreme positive anomalies occurring
over regions of the eastern United States (“eastern
U.S.—JJA”); and in NH fall (September-November,
SON), extreme positive anomalies occurring in a
region of the north-central United States, but slightly
to the west of our upper Midwest region (“Northern
Plains—SON?”). Although the California region, as
resolved in the Global Historical Climatology Net-
work (GHCN) gridded data, was not identified in our
analysis as having extreme seasonal or annual pre-
cipitation in 2013 (i.e., ranked within the lowest three
on record), because of notable drought conditions
occurring there during 2013, we examined annual
precipitation anomalies in this region (“California—
ANN?”) as well as seasonal anomalies for December
2012-February 2013 (DJF) and MAM 2013.

Percent coverage of extreme annual mean wet and dry
anomalies by year (1900-2013). The extremes maps,
Fig. S.6.1 (f-j) show that the high and low mean
precipitation extremes were well dispersed around
the globe during 2013. Figure S$6.2 shows that about
2% of the global “available data” area experienced
annual mean dry extremes (first, second, or third
lowest rainfall) in 2013, while about 5% experienced
wet annual mean extremes (first, second, or third
highest rainfall). Since extremes are expected to occur
in some places around the globe in any given year,
an interesting question is whether 2013 is unusual
in terms of the percent area with extreme annual
mean values. As a preliminary analysis of this issue,
we show in Fig. $6.2 the time series of the fraction of
area with wet and dry annual mean extremes over
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2013 Precipitation Anomalies and Extremes United States
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Fic. S6.1. Left column: precipitation anomalies for 2013 (annual or seasonal)
in mm day'. The middle column panels indicate where the anomalies for 2013
are ranked Ist, 2nd, or 3rd wettest or driest in the available record of at least
100 years in length (see Fig. 6.1 legend in the main report). Dark, medium, and
light blue depict grid boxes where the 2013 seasonal or annual means rank Ist,
2nd, or 3rd wettest on record. Dark red, red, and orange are Ist, 2nd, and 3rd
driest on record. Percent values alongside the color bar in the middle-column
panels indicate the percent of global available area with the indicated category
of 2013 extreme — where the ‘““available area” has adequate data coverage for
at least 100 years (Fig. 6.1 caption in the main report). The blue regions in
the right column depict the domains of the six U.S. focus regions selected for
our study based on their 2013 extreme anomalies.

the entire record (1900-2013). We include two differ-
ent measures: (a) the fraction of area with top-three
or bottom-three ranked values for each year using
the data up to that year and (b) the fraction that is
ranked top-three or bottom-three using all years that
are eventually available in the series (1900-2013).
These metrics show that there has been a tendency

| BAMS OCTOBER 2014

for a larger areal coverage of wet annual mean ex-
tremes versus dry extremes in recent decades, and
particularly since about 1990. The time series sug-
gest a possible emerging trend in prevalence of wet
annual mean precipitation extremes over dry annual
extremes. However, the assessment of whether there
is a significant trend in these measures is a nontrivial



(@) Annual-mean Precipitation Extremes (vs record to date)

Resolution dependence (observed data). Ow-
ing to the coarse grid on which the data are

available, we examine only a very spatially
smoothed precipitation anomaly—though
-1  the grids are similar to the grid scales of the
climate models. Preliminary analysis of an
alternative much higher resolution global
gridded precipitation dataset (Becker et al.
2013) not only confirms the general occur-
rence of extreme precipitation anomalies
during 2013 in the regions that we focus
on, but it also indicates that the record or
near-record seasonal anomalies are typically

2020 concentrated within relatively small sub-

regions compared to the grid boxes depicted

in Fig. S6.1. A separate analysis of about 60
individual U.S. stations in the northern tier
region reveals that eight of these stations
had unprecedented annual anomalies in
2013 (Cody Hewitt, Rutgers University, 2014,
personal communication). Daily timeseries at
these eight stations indicate that the unusual
annual totals were typically comprised of
several large precipitation events, typically
occurring in the spring, summer, or autumn.
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FiG. $6.2. Time series show the fraction of global available
area each year with annual mean precipitation anomalies
that are ranked Ist through 3rd wettest (blue line) or driest
(red line) for each year from 1900 to 2013. The rankings
in (a) are based on the available data to date for each par-
ticular year (which means that occurrences of new records
and near-records are very common in the earlier years).
Rankings for (b) are based on the full available record,
including years that come after the year in question. This
removes the “early year’ bias of the method shown in (a).

task. For example, Livezey and Chen (1983) describe
issues associated with global significance of areal
coverage of locally significant results. Christiansen
(2013) addresses the problem of the significance of
numbers of record occurrences of warm temperatures
and finds that trends in warm daily records for the
Northern Hemisphere extratropics since the 1940s are
very statistically significant, while trends in monthly
warm records are not significant. An assessment of
whether the trend suggested in Fig. S6.2 represents a
significant change or whether 2013 is a “special” year
in any sense in terms of global coverage is beyond the
scope of the present study but will be the subject of
future investigation.
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Sliding trend analysis for all focus regions and
sensitivity to excluding 2013 data. Figure S6.3
shows the sliding trend analysis (All-Forcing
runs versus Control runs) for each of the six
focus regions. Note that the reason we use
control runs in our analysis to create the
distributions of trends and of variability for
the All-Forcing cases (e.g., Fig. 6.2 in the
main report and Fig. $6.3) is that the CMIP5
archive does not contain enough individual
All-Forcing ensemble members to sample the
internal variability of the individual models
adequately for various start dates. Therefore, we
have chosen to use samples of variability from the
control runs to estimate the range of possible trends
around the mean estimates provided by the CMIP5
individual model All-Forcing runs. The All-Forcing
5th to 95th percentile range in Fig. 6.2 in the main
report and Fig. S6.3 is based on the aggregate distri-
bution of All Forcing trends and includes a spread
due to both differences in ensemble mean response
of the various individual models as well as intrinsic
(control run) variability, with all control runs sampled
equally frequently (see Knutson et al. 2013 for further
methods details).

Figure $6.3 (middle column) shows the sliding
trend analysis for trends extending to 2013, while the
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Fic. S6.3. Left (a—-f) column shows time series for each of six regions
and is analogous to the left column of Fig. 6.2 in the main report. The
center (g-l) column is as in Fig. 6.2 in the main report, but shows the
sliding trend analysis for each of the six focus regions for trends to
2013. The right column (m-r) analyzes trends for the same regions
but excludes 2013 as a sensitivity test. See Fig. 6.2 in the main report
caption and text for further details.

right-hand column shows trends to 2012, to test the
effect of leaving out the highly anomalous end year
(2013). While excluding 2013 has only a minor impact
on the detection results for the northern tier—ANN
region Fig. $6.3 (g,m) for trends starting prior to 1930,
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it has a major impact on the late 20th
century trend detection results for
the eastern U.S.—]JJA region Fig.6.3
(k,q). The latter detection result is
not robust to excluding 2013 and
thus depends quite critically on the
one highly unusual year. Results
for the upper Midwest—MAM are
intermediate between these results;
leaving out 2013 substantially reduces
the robustness of the trend detection,
but the trends from the early 20th
century to 2012 are still generally
detectable according to the models.
We now discuss the three re-
maining U.S. regions from Fig. 6.1
in the main report, which were
not discussed in detail in the main
text (California—ANN, South-
ern Plains—MAM, and Northern
Plains—SON). Two of these regions
did not exhibit significant linear
trends according to statistical tests
on linear trends over 1900-2013
(California—ANN and Southern
Plains—MAM). These regions also
do not have detectable long-term
trends according to the model-based
trend detection tests shown in Fig.
$6.3 (h,j). California region trends
were also not detectable for the DJF
or MAM seasons (not shown). The
U.S. Northern Plains—SON region
analysis (Fig. $6.3]) indicates some
detectable trends to 2013 (All-Forcing
runs versus Control runs). Trends to
2013 are detectable beginning in the
1930s, 40s, and 50s, as shown by the
blackline extending above the purple
shaded region. However, for this re-
gion the All-Forcing ensemble mean
response (red line) is relatively small
or even negative, except for trends be-
ginning quite late in the 20th century,
at which point the observed trends
are not detectable. Note that the pink
shaded region (5th to 95th percentile
of All-Forcing trends) is slightly

broader than the control run trend distribution but is
also centered around the purple (control run overlap)
shading, in contrast to the positive skewing of the
pink shaded region compared to the purple shading
for the other regions in Fig.S6.3. This lack of positive



skewing of the All-Forcing shaded region compared
to the control is also indicative of the very weak All-
Forcing response in the models for this region. The
broadening of the pink region relative to the green/
purple region is due to the former runs having a di-
versity of model responses to external forcings, while
the latter runs had unchanging preindustrial forcings.
The very small CMIP5 century-scale ensemble mean
All-Forcing responses (red line) in the Northern
Plains—SON region suggest that internal variability
is the dominant contributor to the observed long-
term trends in this region. This finding assumes
that the All-Forcing response is adequately modeled
by the CMIP5 models. Finally, our sensitivity tests
excluding 2013 (Fig. S6.3r) indicate that the Northern
Plains—SON region trend detection results are not
very robust to the exclusion of 2013.

The Southern Plains—MAM region time series
exhibits some additional interesting behavior. The
time series (Fig. S6.3d) shows several decades with
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very pronounced variations prior to about 1945,
followed by several decades with much smaller vari-
ability. Although we find no detectable trends in this
region, we suggest that the observed dataset here may
require further assessment for possible temporal
inhomogeneities, perhaps associated with secular
changes in the observing network.

Although not shown here, we also performed
some sliding trend analysis comparing the observed
trends to CMIP5 Natural Forcing-only distributions.
However, we had difficulties with this analysis owing
to the relatively few models with available Natural
Forcing runs extending to 2012, the relatively small
number of ensemble members (in some cases, only
one) for the available models, and the relatively few
distinct modeling centers that have provided such
runs so far. For these reasons, we are not presenting
results from the All-Forcing versus Natural Forcing
sliding trend analysis in this study.
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Fic. S6.4. CMIP5 multimodel ensemble mean All-Forcing (red) or Natural Forcing-only
(blue) 9-yr running-mean anomalies relative to a 1900-1940 baseline. Time series shown
are based on annual (a), March—-May (b), or June—August (c) averaged data. Observed 9-yr
running means are shown by the black thick lines in each diagram, with the linear trends of
annual means shown by the black dashed lines. Results are shown for a) northern tier-ANN,
b) upper Midwest—MAM, and c) eastern U.S.—]]A regions/seasons. The red circles at year
2013 show the 9-yr running mean All-Forcing anomaly centered on 2013. All-Forcing en-
semble time series values that include any years beyond 2005 (and thus include some RCP4.5
projection values for at least some models) are denoted by the red-dashed segments. See

text for further details.
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Methodology for estimating the 2013 multimodel en-
semble All-Forcing anomaly and the FAR. The time series
(Fig. 6.2 a,d,g in the main report) depict the CMIP5
multimodel All-Forcing ensemble mean, relative to
the 1900-40 baseline, as a dark red line; the upward-
sloping black-dashed lines depict the observed linear
trends from 1900 to 2013 (or 1950-2013 for Fig. 6.2g
in the main report). The All-Forcing response is small
and difficult to see in Fig. 6.2 in the main report, so
itis shown in an expanded view (with nine-year run-
ning mean smoothing) for each region in Fig. 56.4
(thin red lines). Note that the All-Forcing ensemble
mean responses are much smaller than the observed
nine-year running mean changes and smaller than
the observed linear trends (dashed black lines). The
ensemble mean has considerable year-to-year varia-
tion (Fig. 6.2 a,d,g in the main report), so estimating
the All-Forcing model ensemble’s mean for the year
2013 is difficult. Our approach is to estimate the
2013 value by using a temporally smoothed (nine-
year running mean) version of the ensemble mean

time series. To obtain a nine-year running mean
value centered on 2013, we extended the All-Forcing
response curves to 2017 using the RCP4.5 scenarios in
the model archives. The smoothed 2013 All-Forcing
values (red circles in Fig. $6.4) are then used to shift
the control run distributions in Fig. 6.2¢,f,i in the
main report to create the All Forcing distributions
for 2013 shown in Fig. 6.2¢,f,i in the main report and
used for our FAR analysis. The red curves in Fig.
S6.4 are dashed for values from 2001 on to indicate
that these values are at least partly influenced by the
RCP4.5 extensions beyond 2005 in the model data.
The blue curves in Fig. S6.4 show the Natural
Forcing-only ensemble (10-model) results analogous
to those for the All-Forcing ensemble just discussed.
In principle, these could be used to create “Natural
Forcing-only” versions of the distributions in Fig.
6.2¢,f,i in the main report from which a fraction of
attributable risk to anthropogenic forcing could be
estimated. We have chosen not to do this, however,
because of the lack of a long-term detectable trend in
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Fic. S6.5. Maps of standard deviation of low-pass (>10 yr filtered) precipitation anomalies
(mm day’') based on annual data for: (a) GHCN observed residuals (1900-2013); and (b)
the ensemble-mean standard deviation from the 23 CMIP5 control runs used in this study.
The observed residuals were formed by subtracting the CMIP5 multi-model ensemble All-
Forcing/RCP4.5 response from the observations to create annual mean residual anomalies
series for comparison with the control run (intrinsic variability) simulations. (c) Bias map
computed as the modelled standard deviation in (b) minus the observed residuals standard
deviation in (a). (d) Same as in (c) but expressed as percent bias: [(model — observation)/

observation] x 100%.
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these focus regions compared to the Natural Forcing-
only distributions, as discussed previously.

FAR is the fraction of attributable risk for anoma-
lies as large as certain threshold values (here we use
the second-ranked year in the observed record), and
it is based on the All-Forcing anomaly distributions
for 2013 compared to the unforced anomaly distribu-
tions. In this case, the fraction of risk is attributable
to anthropogenic and natural forcing combined.
The occurrence ratio (All-Forcing : Control) is the
occurrence rate of anomalies as large as those for the
second-ranked year under the All-Forcing scenario,
divided by the corresponding rate in the control run
distribution. FAR and the occurrence ratio are com-
puted as follows: FAR = 1-pc/pf, and the occurrence
ratio is pf/pc, where pfand pc are the occurrence rates
within the All-Forcing and Control run distributions,
respectively, of anomalies exceeding the defined
thresholds shown in the plots (thick gray vertical
lines) in Fig. 6.2¢,f,i in the main report.

Assessment of model-simulated precipitation and inter-
nal variability. How adequate are the CMIP5 models’
simulations of precipitation in the focus regions? Of
particular interest is the climate variability in their
control runs, which we have used to estimate the real
world’s intrinsic (unforced) climate variability. For
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the CMIP5 models, an assessment of the ensemble-
mean precipitation geographical distribution and sea-
sonal cycle was done by Flato et al. (2013; see Figs. 9.4,
9.38, 9.39 in the main report). Despite model biases,
their figures suggest that the CMIP5 simulations of
large-scale precipitation characteristics in our focus
regions are sufficiently realistic for our purposes.
Examining variability, Fig. $6.5 shows the geo-
graphical distribution of low-frequency (>10 years)
(standard deviations of annual precipitation for the
observations (GHCN) versus the CMIP5 multimodel
ensemble standard deviations from the model con-
trol runs. To make the observed standard deviations
more comparable to control runs (which represent
intrinsic climate variability alone) we subtracted the
multimodel mean All-Forcing response from the
observed time series to create a residual intrinsic
variability estimate, which was then smoothed to
include primarily variability with time scales longer
than 10 years. The comparison shows (Fig. $6.5) that
the models’ standard deviation typically exceeds
the observed low-frequency standard deviation in
the U.S. regions where we are focusing. So, for our
trend detection, the models may overestimate the
intrinsic variability (i.e., the width of the green/pink/
purple bands in Fig. 6.2 b,e,h in the main report and
the widths of the distributions in Fig. 6.2 ¢,f,i in the
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Fic. S6.6. Asin Fig. S6.5, but comparing the >10 yr standard deviations of two different obser-
vational datasets for the shorter period (1979-2013). The two observational data sets are: (a)
GHCN as in Fig. S5a, and (b) GPCP v2.2 (see text for details). (c) and (d) are difference maps
and percent difference maps, respectively, for GHCN vs. GPCP. Note the different scales
used for Figs. $6.5 vs. $6.6 for panels (c) and (d).
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main report). Figure $6.6 also compares the observed
GHCN low-frequency (> 10 years) standard deviation
for the period 1979-2013 to that of an alternative
(combined satellite/rain gauge) dataset over the area
of common coverage (Global Precipitation Climatol-
ogy Project v. 2.2; Adler et al. 2003; http://www.esrl.
noaa.gov/psd/data/gridded/data.gpcp.html). This
shows that there are even substantial uncertainties in
estimating the precipitation standard deviations from
observations, which is an important further caveat to
our analysis and assessment. Also, comparison of the
GHCN standard deviation for the short (1979-2013)
versus full (1900-2013) data period (Fig. S6.5 versus
Fig. 56.6) shows that the standard deviation is con-
siderably larger for the full period, especially over the
Northern Hemisphere continents, which illustrates
the impact of the epoch considered for the decadal
variability in the GHCN data.

The models” high-frequency (unfiltered an-
nual means) intrinsic variability is also used in
our study for the FAR analysis. Therefore, we
also need to assess the models’ high-frequency
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variability. To assess this issue, we performed the
following auxiliary calculations. For each of the three
key regions where we found a detectable trend (north-
ern tier—ANN, upper Midwest—MAM, and eastern
U.S.—JJA) we compute an observed residual vari-
ability series by subtracting the multimodel ensemble
mean All-Forcing response from the observed series.
We remove the mean of these residuals and compare
their histogram to that from the multimodel control
run ensemble, which was obtained by combining
1000-member random samples from each of the 23
CMIP5 control runs into a 23000 member aggregate
control run distribution. The comparison of modeled
and observed distributions for each region (Fig. $6.7)
indicates that the multimodel ensemble provides a
fairly realistic distribution of intrinsic variability,
compared to the observed residual distribution. The
standard deviations of the control run distributions
for the northern tier—ANN and upper Midwest—
MAM series are close to but slightly larger (8% and
4%, respectively) than the standard deviation of the
observed residual series. This suggests that the mod-
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Fic. $6.7. Normalized histograms of annual- or seasonal-mean anomalies from the 23 CMIP5
model control runs (blue bars) vs. observed (GHCN) residuals (black bars). The observed
residuals are computed by subtracting the CMIP5 All-Forcing ensemble mean response
from the observed time series, and also subtracting the mean of these residuals (resulting in
residuals having zero mean). Observed values for 2013 and the alternative threshold value
are depicted by the thick black and gray vertical lines (see year labels).
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eled estimates are likely adequate for our climate
change detection purposes, although they will tend
to make it slightly harder to detect forced trends and
easier for the All-Forcing estimates to encompass the

observations. For the eastern U.S.—JJA region, the
observed residual standard deviation is slightly larger
(8%) than for the model control runs. Therefore, as a
sensitivity test, we amplified the control run anoma-

TasLE S6.1. Lists of CMIP5 models used in the study for All Forcing (top) and Natural-
Only Forcing (bottom) experiments. The lists include the short names of the models,
the number of ensemble members included in our analysis in [ ]’s, and a longer name
for the modeling center.

All-Forcing Experiments:

BCC-CSMI.I [3] Beijing Climate Center

CanESM2 [5] Canadian Centre for Climate Modelling and Analysis

CCSM4.0 [6] National Center for Atmospheric Research (U.S.)

CMCC-CM [I] Centro Euro-Mediterraneo per i Cambiamenti Climatici (Italy)

CNRM-CMS [I] Centre National de Recherches Meteorologiques (France)

CSIRO Mk3.6.0 [I] Commonwealth Scientific and Industrial Research Organisation (Australia)

FGOALS-g2 [5] State Key Lab. Numerical Modeling for Atmos. Sci. and Geophys. Fluid Dyn. (China)

GFDL CM3 [5] Geophysical Fluid Dynamics Laboratory (U.S.)

GFDL-ESM2M [I] Geophysical Fluid Dynamics Laboratory

GFDL-ESM2G [I] Geophysical Fluid Dynamics Laboratory

HadGEM2-ES [4] Hadley Centre (United Kingdom)

INM-CM4 [1] Institute of Numerical Mathematics (Russia)

IPSL-CMS5B-LR [I] LInstitut Pierre-Simon Laplace (France)

IPSL-CM5A-MR [3] LlInstitut Pierre-Simon Laplace

IPSL-CM5A-LR [6] Llnstitut Pierre-Simon Laplace

MIROCS [5] Model for Interdisciplinary Research on Climate (Japan)

MIROC-ESM [3] Model for Interdisciplinary Research on Climate, Earth System Model

MIROC-ESM-CHEM [I] Model for Interdiscipl. Res. on Climate, Earth Sys. Mod, Chemistry Coupled

MPI-ESM-MR [3] Max Planck Institute (Germany)

MPI-ESM-LR [3] Max Planck Institute

MRI-CGCM3 [3] Meteorological Research Institute (Japan)

NorESMI-M [3] Norwegian Earth System Model

NorESMI-ME [I] Norwegian Earth System Model

Natural-Only Forcing Experiments:

BCC-CSMI.I [I] Beijing Climate Center

CanESM2 [5] Canadian Centre for Climate Modelling and Analysis

CNRM-CMS5 [I] Centre National de Recherches Meteorologiques (France)

CSIRO Mk3.6.0 [5] Commonwealth Scientific and Industrial Research Organisation (Australia)

GISS-E2-H [5] Goddard Institute for Space Studies (U.S.)

GISS-E2-R [5] Goddard Institute for Space Studies (U.S.)

HadGEM2-ES [1] Hadley Centre (United Kingdom)

IPSL-CM5A-MR [3] Llnstitut Pierre-Simon Laplace (France)

IPSL-CM5A-LR [3] Llnstitut Pierre-Simon Laplace

NorESMI-M [I] Norwegian Earth System Model
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lies for this region by a factor of 1.08 and found that
this had only a modest impact on our FAR or occur-
rence ratio estimates in Fig. 6.2i in the main report
since this adjustment affects both the control and
All-Forcing distribution similarly. The FAR estimate
was 0.36 for the unadjusted anomalies versus 0.26 for
the amplified anomalies. For the FAR estimates, we
used 4000-member random samples from each model
for a total sample size of 92000. Also, the detection
results shown for the eastern U.S.—JJA in Fig. 6.2f in
the main report are robust to an order 8% increase in

| BAMS OCTOBER 2014

the 95th percentile of the control run trends, but as
mentioned previously, the trend detection results for
this region are sensitive to the inclusion/exclusion of
2013 observed values.

In summary, our variability assessments suggest
that the CMIP5 models can provide a useful as-
sessment of precipitation low-frequency variability
(trends) and annual or seasonal anomalies due to
intrinsic climate variability. This provides support
for using these models for our trend assessments and
FAR calculations.



S7. OCTOBER 2013 BLIZZARD IN WESTERN
SOUTH DAKOTA

LAURA M. EDWARDS, MATTHEW . BUNKERS, JoHN T. ABATZOGLOU,
DenNis P. Tobey, AND LAUREN E. PARKER

TasLE S 7.1. Names of CMIP5 models used in the analysis. The ensemble number used as well
as the number of years of preindustrial control runs for daily temperature and precipitation.
The number of model years for precipitable water is shown in parenthesis.
Model Name Modeling Center Ensemble Pl Years
Number
CanESM2 Canadian Centre for Climate Modelling and Analysis rlilpl 1096 (40)
CCSM4 National Center for Atmospheric Research r2ilpl 156 (20)
Centre National de Recherches Meteorologiques / Centre Eu- .
EXIRAERE ropeen de Recherche et Formation Avancees en Calcul Scientifique e )
CSIRO- Commonwealth Scientific and Industrial Research Organization in
MK3-6-0 collaboration with Queensland Climate Change Centre of Excel- rlilpl 500
e lence
GFDL-ESM2G | NOAA Geophysical Fluid Dynamics Laboratory rlilpl 500
Japan Agency for Marine-Earth Science and Technology,
MIROC5 Atmosphere and Ocean Research Institute (The University of rlilpl 670
Tokyo), and National Institute for Environmental Studies
NorESMIM Norwegian Climate Centre rlilpl 501 (29)
INMCM4 Institute for Numerical Mathematics rlilpl 500
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S8. MULTIMODEL ASSESSMENT OF EXTREME
ANNUAL-MEAN WARM ANOMALIES DURING
2013 OVER REGIONS OF AUSTRALIA AND THE

WESTERN TROPICAL PACIFIC

THoMas R. KNUTSON, FANRONG ZENG, AND ANDREW VWITTENBERG

e present here several auxiliary analyzes
Wand figures relevant to our study, which
were not possible to include in the main
report due to space limits. In Fig. $8.1, we show for
reference the seasonal mean anomaly maps and
seasonal-mean extreme occurrence maps for tem-
perature, which are analogous to Fig. 8.1 in the main
text but for the individual seasons. We also present
“sliding trend” analyzes like those in Fig. 8.2 in the
main report (c,d) but comparing 10-model Natural
Forcing ensembles with 10-model All-Forcing en-
semble subsets of the CMIP5 models. We describe
some background on our method and rationale for
estimating a Natural-Forcing-only ensemble mean
model response for 2013, and the sensitivity of our
results to this estimate. We assess the adequacy of
simulated internal climate variability in the model
for the focus regions in our study. Finally, we assess
certain observational issues.

‘Sliding trend’ analysis of Natural Forcing vs. All-Forcing
Ensemble. In Fig. $8.2 we present ‘sliding trend” analy-
sis of trends of varying lengths, all ending in 2012,
for the Australian and far western tropical Pacific
regions. These analysis are similar to those in Fig. 8.2
in the main report, but compare the All-Forcing trend
distributions from a 10-model subset of the CMIP5
models to the Natural-Forcing trend distributions
from the same 10 models. The trend analysis are done
through 2012 instead of 2013 (as in the main text)
because the Natural Forcing runs generally ended
in 2012 and we could also test the sensitivity of our
trend analysis to leaving out the highly anomalous
2013 values for the observations.
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The results show that for all start dates up until
about the late 1970s, the trends (to 2012) in the two
regions are detectable compared to the multi-model
Natural Forcing trend distributions (i.e., outside of
the blue envelope). The trends in the Australia re-
gion are consistent with the All-Forcing 10-member
ensemble (i.e., within the pink envelope) for virtually
all start dates examined up to 2000. The trends for
the far western Pacific region are consistent with the
All-Forcing 10-member ensemble for start dates up
to about the late 1970s.

Thus for most start dates beginning in the late
1800s and extending until at least as late as the late
1970s, the CMIP5 model simulations indicate that
there is a detectable anthropogenic influence on
temperature trends to 2012 in these two regions, ac-
cording to our testing methodology.

Estimating the Natural-Forcing-only response for 2013.
Since the CMIP5 models typically ended their
Natural-Forcing runs between 2005 and 2012, we did
not have a readily available 23-model estimate of the
Natural Forcing ensemble mean response for 2013.
However, 10 models had Natural Forcing runs avail-
able through 2012. Inspection of the Natural Forcing
ensemble time series from those 10 models, in Fig. 8.2
a,b in the main report, suggests that an approximate
Natural Forcing ensemble mean component for 2013
would be to reuse the value simulated for 2012 (“Mid
Natural”). As sensitivity tests, we also performed our
relative risk and fraction of attributable risk calcula-
tions assuming a “Low Natural” case of zero Natural
Forcing contribution and a “High Natural” case using
the maximum of the ensemble mean Natural Forcing
response occurring at any point in the time series
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Fic. S$8.1. Left column: Annual (a) or seasonal (c,e,g,i) mean surface air
temperature anomalies (°C) for 2013 (1961-90 base period) from the Had-
CRUT4 data set. The seasons are DJF (December 2012-February 2013);
MAM (March-May); JJA (June-August); and SON (September-Novem-
ber). Right column: Colors identify grid boxes with annual (b) or seasonal
(d,f,h,j) mean warm anomalies that rank Ist (dark red), 2nd (orange-red),
or 3rd (yellow-orange) in the available observed record. Gray areas did
not have sufficiently long records, defined here as containing at least 100
available annual or seasonal means, with a seasonal mean requiring at
least one of three months to be available, and an annual mean requiring
at least three of four seasons to be available. The percent values (right
side of figures in right column) denote the percent of analyzed area for
each category.

model control run variability
alone. The various estimates
used are shown as blue circles
on Fig. 8.2a,b in the main re-
port and listed in the first col-
umn of Table S8.1.

The results in Table S8.1
suggest that for all cases ex-
amined and for both regions
examined, essentially all of
the risk of the 2013 events is
attributable to anthropogenic
forcing, since anomalies as
large as those observed in 2013
are either completely outside
of the modeled distribution
for the Natural Forcing only
scenario or are an extremely
rare event within that distribu-
tion. The analysis is repeated
for a threshold temperature
anomaly based on an alterna-
tive year (1998 for the western
tropical Pacific region, which
was slightly warmer than 2013,
and 2009 for the Australia
region, which was essentially
tied for second-ranked year
but substantially below 2013’s
anomaly in magnitude). The
results (Table S8.1) are robust
in suggesting that essentially
all of the risk of warm anoma-
lies the size of those during
these years is attributable to
anthropogenic forcing.

Variance consistency test and
robustness of findings to stan-
dard deviation adjustment. We
evaluated the models’ control
run interannual variability
for the two focus regions for
consistency with the internal
variability estimated from the
observations. The latter was
estimated by subtracting the
intermodel mean ensemble
mean All-Forcing time se-

from around 1880 to 2012 as the estimate for 2013. ries from the observations, to produce an estimate
A “Low Natural” (and not conservative) estimate is  of the unforced observed residual. The standard
equivalent in this case to comparing the observed deviation, o, of this “observed” residual for the
2013 anomaly (relative to 1881-1920 baseline) against ~ Australia region is 0.272°C for observations com-
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TasLE S8.1. Estimates of observed and modeled temperature anomaly characteristics for 2013 and an
alternative similar year (e.g., Ist or 2nd highest) for the two focus regions. See text for description of
cases and the column entries. Anomalies for 2013 are relative to a baseline of 1881-1920. “Inf.”” indi-
cates cases where the observed anomaly is completely outside of the simulated distribution, so that
the relative risk ratio is undefined.

. Observed

Region/Case Observe:‘.l Percentile in Obst::ered Fraction of At- . .
(Natural Forc- Anomaly °C . Percentile in All- . . Relative Risk

. o Natural Dist. q . o tributable Risk

ing Estimate for 2013 or [%] (2013; Forcing Dist. [%] (2013; Alt. yr) (2013; Alt yr)

in °C) Alt. yr. IO\It. ) ’ (2013; Alt. yr.) ’ Y

Australia Region (unadjusted )
High Natural . . . . .
(0.304) 1.72; 1.17 Inf.; 99.9 99.3; 68.4 1.00; 1.00 Inf.; 376
Medium Natural
0.232) Inf.; 100.0. 99.3; 68.4 1.00; 1.00 Inf.; 1330.
Low Natural
(0.000) Inf.; Inf. 99.3; 68.4 1.00; 1.00 Inf.; Inf.
Western Tropical Pacific Region (unadjusted)
High Natural 0.97; 1.02 100.0; Inf 75.8; 84.1 1.00; 1.00 5130; Inf.
(0.212)
Medium Natural
(0.115) Inf.; Inf. 75.8; 84.1 1.00; 1.00 Inf.; Inf.
Low Natural
(0.000) Inf.; Inf. 75.8; 84.1 1.00; 1.00 Inf.; Inf.
Western Tropical Pacific Region (adjusted std dev)
High Natural 0.97; 1.02 99.9; 100.0 72.1; 799 1.00; 1.00 227; 582
(0.212)
Egeldl':)m Natural 100.0; 100.0 72.1; 799 1.00; 1.00 1370; 2790
Low Natural
(0.000) Inf.; Inf. 72.1;79.9 1.00; 1.00 Inf; Inf.

1

pared with 0.266°C for the multimodel sample
of control runs, indicating good agreement. The
standard deviation of the full observed time series
is 0.421°C. Thus, while the observed 2013 anomaly
of 1.72°C is about a 40 event in the observed record
(0 = 0.421°C), it represents an estimated 60 event
compared to modeled internal variability.

For the far western tropical Pacific region, the
estimated interannual standard deviation from the
observed residuals is 0.172°C or 16% higher than the
interannual standard deviation of the control runs.
The observed 2013 anomaly of 0.97°C is almost a 40
event in the total observed distribution of annual
temperatures but a 60 event compared to the esti-
mated internal variability. As a sensitivity test, we
scaled the western Pacific region modeled (control
run) anomalies up by a factor of 1.22, which slightly
exceeds the amount necessary to adjust for the es-
timated low variability bias. The results shown in
Table S8.1 (adjusted) do not change the basic conclu-
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sion that according to the models, the 2013 annual
warm anomaly in this region is essentially entirely
attributable to anthropogenic forcing in terms of its
risk of occurrence.

Assessment of observational uncertainties. Here we
consider some observational uncertainty issues.
Our sliding trend analyses (e.g., Fig. 8.2¢,d in the
main report; Fig. $8.2) show via the black shading
the 5th-95th percentile range of trends obtained us-
ing the 100-member HadCRUT4 observed ensemble
(Morice et al. 2012), giving one indication of the
observational uncertainty in these trend results.
These indicate that our basic findings are robust to
this estimate of observational uncertainty. A related
issue is whether our results could depend on the use
of the HadCRUT4 data, as opposed to an alternative
dataset from the Australian Bureau of Meteorology
(BOM) that is available for the relatively well-sampled
period 1910-2013. We downloaded an all-Australia
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Fic. S8.2. Trends [°C (100 yr')] in the area-averaged annual-
mean surface temperature series in Fig. $8.2 (a,b) as a
function of starting year, with all trends ending in 2012.
The black curves show trends from observations (Had-
CRUT4), indicating the 5th—95th percentile range for the
HadCRUT4 observed ensemble (Morice et al. 2012). The red
curves show the inter-model mean ensemble mean trends
from the 10-member subset of the CMIP5 All-Forcing en-
semble that provided natural forcing runs. The pink region
represents the ‘All-Forcing’ hypothesis—ie. the 5th-95th
percentile range of trends from the All-Forcing runs. The
blue-shaded region shows the 5th-95th percentile range
of the alternative 'Natural-Forcing-Only' hypothesis using
the same 10 models. Purple shading indicates where the
pink- and blue-shaded regions overlap. The white spaces in
the curves denote years where the initial “start year” was
missing due to inadequate spatial or temporal coverage.
Temporal coverage was assessed as in Fig. S8.1, and the
spatial coverage was assessed for each year by requiring at
least 33% non-missing annual means for the region.
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index of temperature anomalies from the BOM
data at: http://www.bom.gov.au/climate/change/
index.shtml#tabs=Tracker&tracker=timeseries.

First, we compare the BOM time series cited
above (1910-2013) to the HadCRUT4 data aver-
aged over roughly the same Australia region (not
the identical region because the HadCRUT4 is
available on a 5° x 5° grid). Figure S8.3 shows a
comparison of the seven-year running mean time
series derived from the BOM and HadCRUT4
data (reference period 1961-90). This shows that
the anomalies in these two datasets are very simi-
lar when averaged over the Australian region asa
whole. Our main analysis focuses on a sub-region
of Australia based on those areas with extreme
annual means as identified in Fig. 8.1 in the main
report, and for this, we use the HadCRUT4 data,
which seems appropriate based on the above
comparison.

Another observational issue is the use of dif-
ferent reference periods for estimating the magni-
tude of the 2013 anomaly relative to preindustrial
levels. In general, we would prefer to use as early
a reference period as is practical, since earlier
periods are closer to preindustrial conditions
and we are trying to estimate the anthropogeni-
cally forced departure from such conditions. We
find, using the HadCRUT4 data averaged over
the Australia sub-region in our study, that the
anomaly for the available years in 1881-1920 is
about 0.2°C lower than that for 1910-49. This
difference is much smaller than the 2013 anomaly
of 1.72°C. Even adjusting the 2013 anomaly down
by 0.2°C (i.e., using the years 1910-49 as the base
period), the resulting anomaly for 2013 (1.52°C)
remains outside of the range of anomalies in the
Natural Forcing distribution shown in Fig. 8.2e in
the main report. In addition, the Natural Forcing
response (for 2013, if assumed to be equivalent
to that simulated for 2012) is about 0.1°C smaller
using the 1910-49 base period than using the
1881-1920 base period (since the 1881-1920
period featured cooler temperature in the Natu-
ral Forcing runs). Taking this adjustment into
account implies that the required adjustments
for the observations versus the Natural Forcing
distribution is a net reduction in their separation
by only about 0.1°C. Again, we conclude that the
observed anomaly is not simulated in the large
multimodel sample of annual means for 2013
Natural Forcing conditions. In short, our find-
ing that the 2013 observed anomaly is outside of
the range of model simulated natural variability
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HadCRUT4 vs BOM Australia Surface Temperature Anomalies
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Fic. S8.3. Comparison of all-Australia timeseries of temperature
anomalies (relative to 1961-90 base period) for the HadCRUT4 vs.
Australian Bureau of Meteorology data set. See text for details. A
seven-year running mean was applied to all data sets. The green
dashed curve shows the HadCRUT4 data for the sub-region of Austra-
lia with near-record high annual-mean temperature anomalies during
2013 (see Figs. 8.1, 8.2 in the main report for region description).

(including Natural Forcing) remains robust to this
reference period issue as well.

Considering the far western tropical Pacific region,
the use of a later period (1910-49) versus an earlier pe-
riod (1881-1920) results in a lower observed anomaly
magnitude in 2013 by 0.12°C but also, coincidentally,
a lower estimated magnitude of the Natural Forcing
response in 2012 by almost the same magnitude
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(0.12°C). Thus, the estimated occurrence rate of
the 2013 anomaly in the Natural Forcing distribu-
tion would be essentially the same for the 1910-49
base period as for the 1881-1920 base period, due to
these offsetting effects, and our conclusions about
exceptional nature of the 2013 anomaly compared to
Natural Forcing simulations remain robust.



S9. THE ROLE OF ANTHROPOGENIC FORCING
IN THE RECORD 2013 AUSTRALIA-WIDE
ANNUAL AND SPRING TEMPERATURES

SopHIE C. LEwis AND Davib J. KArROLY

Table S9.1: List of CMIP5 climate models and ensembles used in this study. Further de-
tails of individual models can be found from the Program in Climate Model Diagnosis and
Intercomparison (PCMDI; http://cmip-pcmdi.linl.gov). Note that historicalNat contribu-
tions with HadGEM2-ES begin only in 1860 and hence provide 145 model years.

Experiment Major forcings Years Analyzed Baseline
Historical Anthropogenic (greenhouse gises aerosols, 1911-2005 191140
ozone) and natural (solar, volcanics)
RCP8.5 Anthropogen.lc (greenhouse gases, aerosols, 2006-20 1911-40
ozone scenarios) and natural (solar)
HistoricalNat Solar, volcanics 1850-2005 1911-40
piControl Non-evolving pre-industrial forcings All Long-term mean
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Table $9.2: CMIP5 model experiments analyzed, major forcings imposed, model years ana-
lyzed and climatology used to calculate temperature anomalies [modified from Lewis and

Karoly (2013)].

Model Realizations Historical RCP8.5 HistoricalNat piControl
bcc-csml-1 rlilpl, r2ilpl, r3ilpl rlilpl rlilpl rlilpl
CCSM4 rlilpl, r2ilpl, r3ilpl, r4ilpl, rlilpl, r2ilpl, r3ilpl, | rlilpl, r2ilpl, rlilpl,

r5ilpl, réilpl r4ilpl, r5ilpl, ré6ilpl | r4ilpl, réilpl r2ilpl,r3ilpl

rlilpl, r2ilpl, r3ilpl, r4ilpl, . . . rlilpl, r2ilpl,
CNRM-CMS5 r5ilpl, réilpl, r7ilpl, r8ilpl, rlilpl, r2ilpl, rdilpl, | 4iiop esitpl, rlilpl

Filpl réilpl, rl0ilpl r8ilpl

rlilpl, r2ilpl, r3ilpl, r4ilpl, :Lii'lpll’ rr?i'lp'l’ rr36ii||Plf rlilpl, r2ilpl,
CSIRO-Mk3-6-0 | r5ilpl, réilpl, r7ilpl, r8ilpl, 1IPLIOUPL TP | 3iipl, r4ilpl, rlilpl

r9ilpl, rlOilpl 7ilpl, r8ilpl, rdilpl, | ()

o rl0ilpl i

FGOALS-g2 ::Islilllzll, r2ilpl, r3ilpl, r4ilpl, lilpl Ir::ill|:)ll,r2llp|, Al

rlilpl, r2ilpl, r3ilpl, r4ilpl, rlilpl, r2ilpl,

r5ilpl, réilpl, rlilp2, r2ilp2, r3ilpl, r4ilpl, Flilol. rlilo2
GISS-E2-R r3ilp2, r4ilp2, r5ilp2, réilp2, rlilpl, rlilp2, rlilp3 | r5ilpl, rlilp3, rIiIPB’ P

rlilp3, r2ilp3, r3ilp3, r4ilp3, r2ilp3, r3ilp3, P

r5ilp3, ré6ilp3 r4ilp3, r5ilp3

rlilpl, r2ilpl, r3ilpl, r4ilpl, rlilpl, r2ilpl, r3ilpl, | rlilpl, r2ilpl, .
RECIEAR IS e r4ilpl r3ilpl, r4ilpl rlilp!

rlilpl, r2ilpl, r3ilpl, r4ilpl, rlilpl, r2ilpl, r3ilpl, | rlilpl, r2ilpl, .
IPSL-CMSA-LR 1l ciipl, réilpl r4ilpl r3ilpl rlilpl
NorESMI-M rlilpl, r2ilpl, r3ilpl rlilpl rlilpl rlilpl
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SI1. UNDERSTANDING AUSTRALIA’S HOTTEST
SEPTEMBER ON RECORD

JuLie M. ArBLASTER, EUN-PA LiM, HARRY H. HENDON, BLARR C. TREWIN,
MATTHEW C. WHEELER, GUO Liu, AND KARL BRAGANZA

Data and predictors. Monthly maximum tem-
peratures from the Australian Water Availability
Project (AWAP) gridded dataset (Jones et al. 2009)
were analyzed on a 0.25° grid over Australian land
points. Relative to the 1982-2011 base period, the
Australian-average maximum temperature anomaly
from the AWAP dataset is 2.75°C for September 2013,
which is slightly warmer than the 2.73°C anomaly
from the homogenized annual temperature dataset
of ACORN-SAT (http://www.bom.gov.au/climate/
change/acorn-sat/) used in Bureau of Meteorol-
ogy 2013. Note Bureau of Meteorology 2013 also
uses 1961-90 as the base period compared to the
1982-2011 used here. Relative to the 1961-90 base pe-
riod, the Australian average maximum temperature
anomaly is 3.32°C (AWAP) and 3.41°C (ACORN).
Observed sea surface temperatures from Reynolds
et al. (2002) were used for the ENSO index (based on
Nifio-3.4 SSTs: 5°N-5°S, 170°-120°W) and the Indian
Ocean Dipole mode index [western pole (10°S-10°N,
50°-70°E); eastern pole (10°S-0°, 90°-110°E); Saji et
al. 1999]. The SAM was calculated as the first EOF
of mean sea level pressure (MSLP) anomalies over
20°-75°S (e.g., Lim et al. 2011) from the ERA-Interim
reanalysis (Dee et al. 2011). Soil moisture estimates
are from Raupach et al. (2009) for the upper-layer (<
0.2m). The anomaly and regression patterns in Figs.
S11.2, S11.3, and S11.4 use Reynolds OI v2 for SST
(Reynolds et al. 2002) and ERA Interim reanalysis for
MSLP (Dee et al. 2011). For all observational analysis,
a climatological period of 1982-2011 is used, these
being the years in common across all the datasets.
The regression model was built separately for each
grid point (Fig. 11.1b-f in the main report) and for
the Australian average mean maximum temperatures
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(Fig. 11.11 in the main report). Similar Australian
average values were found from averaging the spatial
plots in Fig. 11.1 (in the main report) compared to
those displayed in the bar plot.

For Fig. 11.1 (in the main report) and Fig. S11.1 the
95% prediction interval was computed as £1.96Se,
where Se is the standard error:

1 n
Se=—=5Xi=1¢> (1)

where e is the residual [y—, where is the predicted y by
x]. To avoid overfitting, we required at least 10 degrees
of freedom (t — M — 1 > 10, where t is the sample size
and M is the number of predictors), with at least five
data points per predictor (M < t/5), following Mo and
Straus’s (2002) method.

POAMA experiments. The POAMA seasonal forecast
system is a fully coupled atmosphere-land-ocean
model used operationally at the Bureau of Meteorolo-
gy. Note it does not include changes in anthropogenic
or natural forcings, such as increasing greenhouse
gases, though much of the warming signal will be
contained in the initial conditions. Retrospective
forecast skill from POAMA (1981-2010) for predic-
tion of Australian average maximum temperatures at
zero lead time (i.e., initialized on 1 September for the
month of September) is 0.75 in September (e.g., White
et al. 2014). However, skill for month 1 at 10-day lead
time (i.e., initialized on 21 August) drops to 0.42.

In regard to the maximum temperature of Septem-
ber 2013, forecasts initialized on 1 September 2013
produced even stronger September warm anomalies
(not shown), but we focus on the earlier start in
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order to account for any atmospheric adjustment in
the scrambled runs. This allows a separation of the
roles of atmospheric/land initial conditions and SST
boundary forcing for generating the warm anomaly.

The scrambled experiments are performed by re-
placing the observed initial conditions for 21 August
2013 by sampling the initial states for 21 August from
30 previous years (Table 11.1 in the main report).
In so doing, the spread of the initial states in the

Australian Area-Mean Tmax

scrambled experiments is necessarily larger than the
spread provided by the coupled-ensemble generation
strategy used to create the original ensemble forecasts
(Hudson et al. 2013). We account for this additional
spread in significance testing for the difference of
two means by computing the standard deviation of
the individual ensemble members that contribute to
the ensemble mean forecast.

Reconstructed: r=0.73
1 1 1 L L 1 1 1 1 1 1 L L 1 1 1 1

3.0 L1 - | 1 1 | | [ | 1

1982 19886 1990 1994

1998 2002 2006 2010

FiG. Sll.1. Observed (navy), reconstructed (light blue) and residual (gray) Austra-
lian average maximum temperature anomalies over 1982-2013, with anomalies
formed from the 1982-2011 base period. The red dotted lines represent the 95%
prediction interval. The temperature anomaliesin 1982-2011 were reconstructed
in calibration mode (i.e, using the training data set that was used for constructing

the regression model).
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Fic. S11.2. Observed anomalies of (a) SST (°C) and (b) MSLP (hPa) for September
2013 relative to the 1982-2011 base period.
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lies at the 95% confidence level (based by a two-tailed Student t-test) are stippled.
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Fic. S11.4. Regression of (a) SST (°C) and (b) MSLP (hPa) onto the Australian-
average reconstructed maximum temperatures for September from the multiple
linear regression analysis over the 1982-2011 period. (c) and (d), same as (a) and
(b) but onto the residual time series.

AMERICAN METEOROLOGICAL SOCIETY OCTOBER 2014 BAIS | 29



September Tmax POAMA FCTS

1 M dim
] B 2013

Frequency (%)
o
o
|

Observed

-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Standardized Amplitude

o
o

Fic. S11.4. Histograms of POAMA forecasts of Australian-average September
maximum temperatures (in units of standard deviation) from the hindcast cli-
matology (blue bars) and for 2013 (red bars). All forecasts consist of 30-members
starting from the initial conditions of 21 August. The hindcast climatology is
1981-2010. The arrow indicates the observed standardized anomaly for September
2013 (=2.68). All POAMA forecasts were standardized by the 1981-2010 hindcast
standard deviation and the observed value was standardised using observations
from 1981-2010.
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S12. CLIMATE CHANGE TURNS AUSTRALIA'S
2013 BIG DRY INTO A YEAR OF

RECORD-BREAKING HEAT

ANDREW D. KING, DaviD J. KAroLY, MARKUS G. DONAT, AND LisA V. ALEXANDER

TasLE S12.1. List of the 35 CMIP5 mod-
els (historical and RCP4.5 runs) used
in this analysis.
Model Name
ACCESSI-0 GISS-E2-H
ACCESSI-3 GISS-E2-H-CC
bec-csml-| GISS-E2-R-CC
bcc-csml-I-m HadCM3
BNU-ESM HadGEM2-AO
CanESM2 HadGEM2-CC
CCSM4 HadGEM2-ES
CESMI-BGC INM-CM4
CESMI-CAMS5 IPSL-CM5A-LR
CMCC-CM IPSL-CM5A-MR
CMCC-CMS IPSL-CM5B-LR
CNRM-CM5 MIROC5
CSIRO Mk3-6-0 MIROC-ESM
FIO-ESM MIROC-ESM-CHEM
GFDL-CM3 MPI-ESM-LR
GFDL-ESM2G MPI-ESM-MR
GFDL-ESM2M MRI-CGCM3
NorESMI-M
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Fic. S12.1. PDFs of annual rainfall anomalies in model years
representing 1861-1901 (black curve) and 1993-2033 (red curve).
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S13. THE ROLE OF ANTHROPOGENIC CLIMATE
CHANGE IN THE 2013 DROUGHT OVER NORTH
ISLAND, NEW ZEALAND

Luke HARRINGTON, SuzANNE RosiER, SAM M. DEAN, STEPHEN STUART, AND ALICE SCAHILL
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Fic. S13.1. Ranking of July 2012-May 2013 potential evapotranspiration

deficit (PED) relative to the other 40 years in the NIWA Virtual
Climate Station Network (VCSN) data set (Porteous and Mullan
2013). Rank | (purple) means the highest PED in 41 years. Olive
colours signify the PED was not in the top five. Black diamonds indicate
locations used for the 4-station NIPI calculations.
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Fic. S13.2. Box plot comparing the observed distribution of extended
summer three-month dry day (3MDD) maxima over the North Island
NIPI distribution (bold) to 15 CMIP5 models, between 1960 and 2005.
Each box indicates the median and first and third quartiles, while the
whiskers extend to the last values that are 1.5 times the interquartile
range above or below the quartiles. The red asterisk marks the 2013
drought event.

® CSIRO-MK360
® NOAA-GFDL-ESM2M

® MRI-CGM3

Number of Dry Days in Three Month Period
\\\\I\\\\‘\\\\\\\\I‘\\\\\\\\\
v b b

N
N

NIPI Anomaly (hPa)

Fic. S13.3. Scatter plot showing the relationship between the
shift (ALL simulations minus NAT) in mean number of dry days
per month and the mean shift in NIPI for five CMIP5 models,
between 1960 and 2005. The chosen models accurately simulated
the observed distribution of both the NIPI and 3MDD, according to
the validation criteria outlined in the main text. A strong positive
correlation (R = 0.95) exists, with every | hPa increase in NIPI
corresponding to a mean increase of 0.6 dry days per month.
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S14. ASSESSING HUMAN CONTRIBUTION TO
THE SUMMER 2013 KOREAN HEAT WAVE

SeuNG-KI MIN, YEoN-HEE KiM, MAENG-KI KiM, AND CHANGYONG PARK

CMIP5 data processing. The “historical” simulations  Further details on SST projection method. The SST pro-
are divided into two periods: 1860-1919 (referred to  jection obtained based on linear regression described
as ALL_P0) and 1954-2013 (referred to as ALL_P1). in the main text represents an area-weighted sum
ALL_PO0isassumed to represent cold conditions close  of the regression coefficient multiplied by the SST
to the preindustrial period with a weaker human anomaly in each JJA. This approach is equivalent to
contribution. ALL_PI represents current conditions  carrying out a singular value decomposition (SVD)
with natural and anthropogenic forcings, and it is  analysis using Korean Tmin and East Asian SST
constructed by extending the historical experiment  patterns (see Fig. S14.2). The first SVD mode shows
(1954-2005) up to 2013 using the Representative a very similar spatial pattern to the SST regression
Concentration Pathways (RCP) 4.5 experiment pattern in Fig.14.2a in the main report. The resulting
(2006-13). Because RCP scenarios do not @
diverge appreciably until the near-term o
future (Moss et al. 2010), we chose RCP4.5 &N
data, which provides the largest number of ., ]
model samples, for this extension. We ob-
tained 102 and 105 ensemble members for
ALL_POand ALL_P1, respectively 