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ABSTRACT6

Focusing on ENSO seasonal phase locking, diversity in peak location and propagation di-7

rection, as well as the El Niño-La Niña asymmetry in amplitude, duration and transition, a8

set of empirical probabilistic diagnostics (EPD) is introduced to investigate how the ENSO9

behaviors reflected in SST may change in a warming climate.10

EPD is first applied to estimate the natural variation of ENSO behaviors. In the obser-11

vations El Niños and La Niñas mainly propagate westward and peak in boreal winter. El12

Niños occur more at the eastern Pacific while La Niñas prefer the central Pacific. In a pre-13

industrial control simulation of the GFDL CM2.1 model, the El Niño-La Niña asymmetry14

is substantial. La Niña characteristics generally agree with observations but El Niños do15

not, typically propagating eastward and showing no obvious seasonal phase locking. So an16

alternative approach is using a stochastically forced simulation of a nonlinear data-driven17

model, which exhibits reasonably realistic ENSO behaviors and natural variation ranges.18

EPD is then applied to assess the potential changes of ENSO behaviors in the 21st century19

using CMIP5 models. Other than the increasing SST climatology, projected changes in many20

aspects of ENSO reflected in SST anomalies are heavily model-dependent and generally21

within the range of natural variation. Shifts favoring eastward propagating El Niño and22

La Niña are the most robust. Given various model biases for the 20th century and lack of23

sufficient model agreements for the 21st century projection, whether the projected changes24

for ENSO behaviors would actually take place remains largely uncertain.25
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1. Introduction26

ENSO behaviors in observations and models have shown rich diversity and asymmetry.27

El Niños can peak at both the eastern Pacific (EP) and the central Pacific (CP) (e.g., Larkin28

and Harrison 2005; Ashok et al. 2007; Weng et al. 2007; Kao and Yu 2009; Kug et al. 2009;29

Taschetto and England 2009; Lee and McPhaden 2010; Newman et al. 2011; Takahashi30

et al. 2011; Karnauskas 2013; Capotondi et al. 2015; Fedorov et al. 2015; Chen et al.31

2015a). Extreme El Niños propagate eastward while moderate El Niños and La Niñas tend32

to propagate westward (Fedorov and Philander 2001; McPhaden and Zhang 2009; Lengaigne33

and Vecchi 2010; Santoso et al. 2013; Kim and Cai 2014). Asymmetries between El Niño34

and La Niña have also been documented, e.g., El Niños often have larger amplitude than La35

Niñas, La Niñas are more durable than El Niños and La Niñas often tightly follow extreme36

El Niños but not vice versa (Kang and Kug 2002; Larkin et al. 2002; An and Jin 2004;37

Schopf and Burgman 2006; Ohba and Ueda 2009; Frauen and Dommenget 2010; Okumura38

et al. 2011; Choi et al. 2013; Dommenget et al. 2013). ENSO phase locked to the end of39

the calendar year has been found to be the outcome of several feedbacks and is subject to40

change when these competing influences change (e.g., Tziperman et al. 1995, 1997, 1998;41

Neelin et al. 2000; An and Wang 2001; Xiao and Mechoso 2009).42

Detailed ENSO behaviors matter for ENSO teleconnection and impacts. For example,43

El Niños peaking at the central or eastern Pacific have been shown with varying impacts on44

the United States winter air temperature and precipitation (Yu et al. 2012). Detailed El45

Niño-La Niña transition (e.g., whether El Niños persist longer or rush to the La Niña phase),46

has been linked to varying likelihood of US regional tornado in the spring (Lee et al. 2016).47

Usually individual ENSO behavior is investigated separately. To reach a large picture48

understanding, a comprehensive measure of various ENSO behaviors is required. In this49

study we introduce a set of empirical probabilistic diagnostics (EPD) to efficiently calculate50

the statistics for various ENSO behaviors, including ENSO seasonal phase locking, diversity51

in peak location and propagation direction, El Niño-La Niña (EN-LN) asymmetry in ampli-52
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tude, duration and transition. These diagnostics are first applied to the observed SST data53

and the results agree with many previous understandings, which indicate this new diagnostic54

framework is valid. One recent research focus is about ENSO in a changing climate (e.g.,55

Collins et al. 2010; Cai et al. 2015). So after characterizing the ENSO behaviors in the past56

∼ 150 years, we then assess how ENSO behaviors vary and change in the warming climate.57

ENSO varies from century to century, not only in amplitude and frequency (Wittenberg58

2009) but also in its diversity and asymmetry characteristics. For example, in the past 100-59

year epoch, El Niños mainly peak at the eastern Pacific. In the recent decade El Niños more60

prefer peaking at the central Pacific (Lee and McPhaden 2010). So the following questions61

arise: whether in the warming 21st century, El Niños may switch to prefer peaking at the62

central Pacific? If this change does happen, is it necessarily a result of the changing forcing,63

or could it be merely a natural variation? Newman et al. (2011) and Yeh et al. (2011)64

suggested that more occurrence of the central Pacific El Niño in the recent decade may be65

a part of the natural variation.66

Given only ∼150 years of observation, how can we estimate the natural variation of each67

ENSO behavior? All the aspects of ENSO behaviors are dynamically linked, so we apply68

the following two approaches to ensure a coherency between the estimate of each ENSO69

behavior. The first approach is using a long control simulation of a coupled GCM under70

a constant forcing without a trend. Here a 4000-year pre-industrial simulation from the71

GFDL CM2.1 coupled GCM (Delworth et al. 2006) is analyzed as one example. A second72

approach is using a long stochastic forced simulation of a data-driven model. A 4000-year73

simulation from an Empirical Model Reduction (EMR) (Kravtsov et al. 2005; Kondrashov74

et al. 2005, 2015; Chen et al. 2016) is analyzed as one example. Compared to GFDL CM2.1,75

EMR shows a slightly better overall performance for 9 aspects of ENSO behavior, therefore76

we mainly use EMR to estimate how these ENSO behaviors may vary without a changing77

forcing.78

As to ENSO’s response to the warming climate, it may not be merely reflected in its79
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amplitude but also in other ENSO characteristics. Here we mainly focus on SST climatology,80

ENSO amplitude, annual cycle and 9 aspects from EPD. We analyze 37 Climate Model81

Intercomparison Project phase 5 (CMIP5) models to investigate the following questions: If82

the models suggest that ENSO behavior will change significantly in the 21st century (21C)?83

Do models agree on the 21C change? Are the projected changes in ENSO behaviors more84

response to the changing forcing or mainly part of the natural variation? Since EPD measures85

various ENSO characteristics, we then have an opportunity to investigate which aspects are86

most responsive to the trend forcing and which aspects vary most so that the forced changes87

can not be easily distinguished from the range of the natural variation.88

All estimates no matter for the natural variation or the forced change of ENSO behavior89

have to be based on model simulations, so in this study, EPD is carried out with two90

purposes. The first is to assess ENSO’s variation and change and the second is to diagnose91

model performance/biases on ENSO behaviors. When we analyze GFDL CM2.1 and EMR92

models, we briefly investigate how the model biases on ENSO behavior may be related to93

the model nonlinearity. When we assess the CMIP5 models, we investigate whether models94

are able to represent realistic ENSO behavior in the 20C and thus reliable to project the95

21C. We also briefly investigate how the models biases on ENSO behaviors may be related96

to the model biases on the mean state.97

2. Data98

a. Observation99

The 1870-present monthly HadISST v1.1 (Rayner et al. 2003) and 1850-present monthly100

COBE v2 (Hirahara et al. 2014) datasets have relatively high spatial resolution (1◦×1◦) and101

capture the diversity of ENSO behaviors. The results using COBE are overall consistent with102

HadISST, so only the HadISST results, referred to as OBS, are shown hereafter. Tropical103

Pacific (108E-72W, 30S-30N) SST anomalies (SSTA) are calculated by removing the monthly104
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climatology based on the commonly-used 1950-2010 period. A linear detrending is applied on105

the SSTA at each grid point to remove the global warming trend. Then a 3-month running106

average is applied to SSTA to smooth the temporal noise.107

Leading modes of SST variability in the tropical Pacific region is depicted using Empirical108

Orthogonal Function (EOF) analysis (Fig. 1). The leading EOF shows the classic El Niño109

pattern, which is the dominant variability explaining 50% of the total variance in the tropical110

Pacific. The second EOF shows a zonal dipole pattern with a positive loading in the western111

Pacific and a negative loading in the eastern Pacific, which adds a central Pacific or eastern112

Pacific “flavor” to the main El Niño pattern and explains 8% of the total variance. Following113

the idea in the previous studies (e.g., Ashok et al. 2007; Takahashi et al. 2011), the first two114

EOF modes and their Principal Components (PC) are used to categorize ENSO diversity in115

the central or eastern Pacific. Takahashi et al (2011) showed that using PC1/PC2 as a basis116

is equivalent to many other indices used to define EP/CP behavior. Details are given in the117

method section.118

The third EOF depicts an equatorial cooling and extra-equatorial warming that is similar119

to the equatorial ocean dynamic thermostat pattern (Clement et al. 1996; Cane et al. 1997;120

Solomon and Newman 2012). EOF3 explains 7% of the total variance. Its eigenvalue appears121

not well separated from EOF2 (8%) in the observation. The sensitivity tests show that, EOF1122

and EOF2 are robust modes in that their PCs are not as greatly influenced by the varying123

climatology as EOF3/PC3, which has significant multidecadal variability. When we filter124

out low frequencies (> 40 year periods) in the original data, the eigenvalue of EOF3 (5%) is125

then well separated from EOF2 (9%).126

b. Coupled GCM: GFDL CM2.1127

Nature only provides one realization, thus the limited record of SST observations is an128

obstacle to investigate the variation of ENSO behavior on a centurial scale. Therefore, long129

simulations of coupled intermediate models like the Zebiak-Cane model (ZC; Zebiak and130
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Cane 1987) and fully coupled GCM with fixed external forcing are often used to investigate131

the natural variation of ENSO (e.g., Cane et al. 1995; Wittenberg 2009; Yeh et al. 2011).132

Here we analyze a 4000-year monthly control simulation from the GFDL CM2.1 coupled133

GCM (Delworth et al. 2006) with the forcings, including solar irradiance, land cover and134

atmospheric composition fixed at pre-industrial (1860) values. This simulation has been135

analyzed in various ENSO studies (e.g., Wittenberg et al. 2006, Wittenberg 2009; Kug et al.136

2010; Xie et al. 2010; Choi et al. 2013; Karamperidou et al. 2014; Wittenberg et al. 2014)137

and is shown to have a reasonable ENSO performance though with a too strong amplitude138

and too little seasonal synchronization. This simulation is referred to as “GCM” hereafter.139

Tropical Pacific (108E-72W, 30S-30N) SSTA are calculated by removing the monthly140

climatology based on the full length of the record. A linear detrending and a 3-month141

running average are applied. EOF analysis is then performed. The leading three EOFs from142

GCM explain 52%, 11% and 6% of the total variance in the tropical Pacific. GCM EOF143

patterns are overall consistent with OBS (Fig. 1), although sightly shifted west and narrower144

in the meridional direction as shown in Wittenberg et al. (2006).145

c. Data-driven modeling: EMR146

Since every coupled model has its own ENSO behavior that is to some extent biased147

away from the current climate, the natural variation of ENSO estimated by an individual148

GCM may be model-dependent. Long stochastically forced simulations from a data-driven149

model offer an alternative approach. The model dynamics are fit from the observations thus150

assuring that at least some of the statistics and features of the simulated ENSO resemble151

the observed ENSO closely.152

Here we apply the empirical model reduction (EMR) framework (e.g, Kravtsov et al.153

2005; Kondrashov et al. 2005, 2015; Chen et al. 2016). It is a regression model with quadratic154

nonlinearities constructed in a reduced EOF phase-space. It is fit from the observed SST155

anomaly field and allows for ENSO nonlinearity, seasonality and memory effect for prior156
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times. Given that many ENSO behavior features are tightly linked to the nonlinearity in157

the system (e.g., Choi et al. 2013; DiNezio and Deser 2014; Levine and Jin 2015; Chen et al.158

2016), a nonlinear model setting is necessary. The real climate is subjected to a changing159

forcing, so the detrended data are used to fit the model in order to produce a stationary160

simulation. Detailed settings are given in the Appendix. A 4000-year stochastic-forced161

EMR simulation is generated. For simplicity, this simulation is referred to as “EMR”. In162

later sections, we will show that a EMR fit from the SSTA observation is well-behaved and163

reproduces reasonably realistic ENSO statistics. EMR also has limitations, which will be164

also discussed.165

d. Crude check on GFDL CM2.1 and EMR166

Before investigating the detailed ENSO behaviors, we make a crude check of ENSO167

performance simulated by the EMR and GCM. First we check the main ENSO variability168

represented in the tropical Pacific SST PC1 (∼Niño-3.4). Both the EMR and GCM time169

series appear reasonably realistic (not shown). Similar to the GFDL CM2.1 run (Wittenberg170

2009), the long EMR time series has epochs with energetic ENSO events and epochs with171

very weak anomalies.172

Next we check the ENSO nonlinearity and diversity features represented in the skewed173

probability density function (PDF) and curved 2-dimensional probability density function174

(2dPDF) of two leading principal components (PC1-PC2). Kondrashov et al. (2005) and175

Kravtsov et al. (2005) showed that quadratic nonlinearity is able to overall reproduce the176

PDF and 2dPDF of a nonlinear system. Chen et al. (2016) further showed linear mod-177

els generate an elliptic (symmetric) shape in PC1-PC2 rather than a curved (asymmetric)178

shape. We follow the previous studies to coarsely check if these nonlinear features are re-179

produced. Both EMR and GCM simulations show consistency with OBS in the sign of the180

skewed distribution of PC1 and PC2, and resemble the curved 2dPDF seen in OBS (Fig.181

2). Takahashi et al. (2011) showed that the intermediate coupled model ZC also shows this182
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curved feature in PC1-PC2.183

Note that GFDL CM2.1 has a much stronger nonlinearity represented in a more skewed184

distribution than OBS. Later analysis using empirical probabilistic diagnostics will show that185

the strong nonlinearity in the GFDL CM2.1 may be one reason for the discrepancy between186

model and OBS as to some aspects of ENSO behaviors.187

e. CMIP5 models188

Assessment of the projected climate change relies heavily on the state-of-the-art coupled189

general circulation models (GCMs) (e.g., Capotondi et al. 2006; Guilyardi et al. 2003, 2009,190

2012; Yu and Kim 2010; Stevenson et al. 2012; Ham and Kug 2012, 2014; Kim and Yu 2012;191

Bellenger et al. 2013; Taschetto et al. 2014).192

In this study, we assess the potential ENSO behavior changes in the 21st century using193

37 CMIP5 models that participated in the Intergovernmental Panel on Climate Change194

(IPCC) Fifth Assessment Report (AR5) (Table 1). Model descriptions and experiment195

designs are given in Taylor et al. (2012). We analyzed three sets of simulation experiments:196

(i) pre-industrial control simulation (PI). (ii) the historical simulations which are integrations197

from around 1850 to at least 2005 using realistic natural and anthropogenic forcing. (iii)198

representative concentrating pathway 8.5 (RCP8.5) simulations from the end of the historical199

runs to 2100 when the radiative forcing reaches 8.5Wm−2. We concatenate on the historical200

runs (1900-2005) and the RCP8.5 runs (2006-2099) and then divide them into the 20th201

century runs (1900-1999, denoted as 20C) and the 21st century runs (2000-2099, 21C). In202

the 21C runs, 2000-2005 part is from the historical run and the rest part is from the RCP8.5203

run. All the PI runs are longer than 200 years. The length of the simulations vary for204

individual models (listed in Table 1). For PI, 20C and 21C runs, monthly anomalies are205

calculated by linearly detrending and subtracting the monthly climatology for the whole206

period of each run.207
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3. Method: Empirical Probabilistic Diagnostics208

The diagnostics are carried out in four steps. We first define the ENSO states. We209

then calculate the occurrence probability of ENSO states for each calendar month, and the210

transition probability between each ENSO state. After that, we derive a set of probability-211

based indices for ENSO seasonality (Iseason), diversity (Icp/ep, Ie/w) and EN-LN asymmetry212

(Iamp, Idur, Itra). These indices are further used to estimate the variation or change of ENSO213

behaviors.214

a. Definition of ENSO states215

We define a set of mutually exclusive ENSO states, so that we could categorize each216

monthly time step into one state and calculate the state transition probabilities. The states217

are determined using the full length of data in order to investigate ENSO behavior in shorter218

epochs without changing the definitions of states.219

We start from the usual 3 states: El Niño (EN), Neutral (NEU) and La Niña (LN). The220

normalized tropical Pacific leading PC (PC1) is almost identical to Niño-3.4 with correlation221

r = 0.97, so we define the 3-state category as follows: EN is PC1 > 0.7s.d.(PC1), where222

s.d. denotes one standard deviation. This threshold is generally consistent with the Niño223

3.4> 0.5◦C criterion used by the NOAA Climate Prediction Center. Similarly, La Niña is224

PC1 < −0.7s.d.(PC1); the remainder are defined as NEU.225

When ENSO flavors are considered, the 3-state category is expanded to 5 states. In order226

to keep consistency with the 3-state category, we use the same PC1 threshold for El Niño/227

Neutral/ La Niña. Since EOF2 is a zonal dipole pattern, we use the positive or negative PC2228

as the threshold to divide into EP/CP flavors (see Fig. 3). Note that in PC1-PC2 space,229

the upper right domain is for CPEN, while the lower left domain is for CPLN. In OBS, the230

normalized PC2 is highly correlated (r = 0.88) with the difference between normalized Niño-4231

and Niño-3 indices, so the zero PC2 threshold is generally consistent with the EP/CP ENSO232
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categorization using the difference between normalized Niño-4 and Niño-3 indices (e.g., Kug233

et al. 2009). Typical patterns of the EP/CP flavors of El Niño and La Niña categorized234

in this diagnostics (Fig. 3b-e) are overall consistent with the patterns defined using Niño235

indices (Kao and Yu 2009; Kug et al. 2009) or C/E indices (Takahashi et al. 2011). Table236

1 of Yu et al. (2012) listed the major El Niño events from 1950 to 2010 with classification237

of EP/CP flavor based on three methods. Fig. 3f in this study shows a time series of the238

normalized PC1 from 1950 to 2010, with each ENSO state color-coded to individual month.239

The comparison indicates that our definition agrees well with the previous studies.240

b. Seasonal occurrence probabilities241

Based on the above state definitions, the annual mean occurrence probability of each242

ENSO state is calculated, which gives a climatology probability distribution Dcli. For the243

3-state definition, Dcli3 = (PEN , PNEU , PLN) where PEN +PNEU +PLN = 1. Similarly for the244

5-state definition, Dcli5 = (PEPEN , PCPEN , PNEU , PEPLN , PCPLN) where PEPEN + PCPEN +245

PNEU + PEPLN + PCPLN = 1.246

We then measure the occurrence probability of ENSO state in each calendar month,247

which depicts the seasonal phase locking features. Full year data is used thus the sample248

size for each calendar month is equal. Only the 5-state result is shown in Fig. 4; 3-state249

results could be obtained given that PEN = PEPEN +PCPEN and PLN = PEPLN +PCPLN . In250

OBS (Fig. 4a), El Niños and La Niñas both have higher occurrence probabilities of peaking251

in winter, which agrees with the observed winter phase locking diagnosed in much prior252

work (e.g., Tziperman et al. 1995, 1997, 1998). In winter El Niños prefer to peak at the253

eastern Pacific while La Niñas prefer the central Pacific, in agreement with earlier studies254

on the EN-LN asymmetry (Kang and Kug 2002; Schopf and Burgman 2006; Frauen and255

Dommenget 2010; Dommenget et al. 2013). Turning now to the two simulations, EMR256

generally reproduces the observed winter phase locking for El Niños (PEN) and La Niñas257

(PLN), although Fig. 4b shows the CPEN seasonality is a couple of months off from OBS.258
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In GCM (Fig. 4c), La Niñas prefer winter, which agrees with OBS. But El Niños appear259

to have no seasonal preference (see PEPEN + PCPEN), which is largely due to the CPENs260

preferring to peak in winter while EPENs rather favoring summer.261

c. State transition probabilities262

We calculate the transition probability between each ENSO state by tracking their pre-263

cursors and successors. Given k El Niños for example, among the precursors τ months264

before there are m1 El Niños, m2 La Niñas and m3 Neutral states (m1 + m2 + m3 = k).265

Among successors τ months later, there are n1 El Niños, n2 La Niñas and n3 Neutral states266

(n1 + n2 + n3 = k). The transition probability from La Niña to El Niño at a τ month inter-267

val is calculated as the conditional probability PLN(t−τ)|EN(t) = m2/k, where t is the time.268

The transition probability from El Niño to La Niña at a τ month interval is calculated as269

PLN(t+τ)|EN(t) = n2/k. The self-transition probability of El Niño across a τ month interval270

is calculated as PEN(t+τ)|EN(t) = n1/k or PEN(t−τ)|EN(t) = m1/k, which are equal by default.271

The 3-state transition probabilities are shown in Fig. 5. Panel a shows the transition272

of El Niño in OBS. On the positive lead, EN persists (PEN(t+τ)|EN(t)) for several months273

and gradually migrates to La Niña (PLN(t+τ)|EN(t)) or neutral (PNEU(t+τ)|EN(t)) in about one274

year. At about three years or even longer interval τ → ∞, the transition converges toward275

the climatology distribution. In OBS, the asymmetry in transition between El Niño and La276

Niña is not substantial. In EMR, the transition characteristics agree with OBS. In GCM, the277

EN-LN transition asymmetry is much greater than OBS with a large discrepancy between278

PLN(t−τ)|EN(t) and PLN(t+τ)|EN(t) at τ ∼ 1-2 year.279

Similarly we calculate the 5-state transition probabilities. Here we mainly focus on the fa-280

vored zonal propagation direction of El Niño and La Niña (Fig. 6). In OBS, PEPEN(t−τ)|CPEN(t) >281

PEPEN(t+τ)|CPEN(t) across 0-6 months (Fig. 6a) indicates El Niños favor westward propaga-282

tion from EPEN to CPEN. PCPLN(t−τ)|EPLN(t) < PCPLN(t+τ)|EPLN(t) across 0-6 months (Fig.283

6b) indicates La Niñas also favor westward propagation from EPLN to CPLN. In EMR, the284
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zonal transition of El Niños and La Niñas both agree with OBS (Fig. 6c and 6d). In GCM,285

La Niñas favor the westward propagation, similar to OBS (Fig. 6f). But El Niños differ286

from OBS by favoring the eastward propagation (Fig. 6e).287

Probability measures show that individual ENSO behaviors have varying representative288

time scales. So we later define the indices based on the transition probabilities at their ac-289

cording time scales. In 3-state transition, we mainly focus on the persistence (self-transition)290

of El Niño and La Niña within 0-36 months and asymmetry in the EN-LN transition across291

0-18 months. In 5-state transition, we mainly focus on the zonal propagation of El Niño292

(asymmetry in EPEN-CPEN transition) and the zonal propagation of La Niña (asymmetry293

in EPLN-CPLN transition) across 0-6 months. Other transition probability results, e.g.,294

transition to/from NEU, self-transition of EP/CP ENSO states, and EN-LN transitions295

specifying EP/CP information like PEPEN(t−τ)|CPLN(t), are not included in the following set296

of ENSO behavior indices but left for future study.297

Here we use both forward and reverse conditional probability to characterize the transi-298

tion, which is based on the following consideration. In a stationary process, transition proba-299

bility across a long time interval converges to the climatology. Note that lim
τ→∞

PLN(t+τ)|EN(t) =300

PLN , while lim
τ→∞

PEN(t+τ)|LN(t) = PEN . To characterize the transition asymmetry, these two301

conditional probabilities need to be both normalized by their according occurrence proba-302

bility or one needs to be rescaled to match the other one. Here we use El Niño as the base303

state, the asymmetry is then calculated using the discrepancy dPEN−LN = PLN(t+τ)|EN(t) −304

PEN(t+τ)|LN(t)/PEN × PLN . Given Bayes’ rule, we obtain dPEN−LN = PLN(t+τ)|EN(t) −305

(PLN(t)|EN(t+τ)×PEN/PLN)/PEN×PLN = PLN(t+τ)|EN(t)−PLN(t−τ)|EN(t). So both the forward306

conditional probability PLN(t+τ)|EN(t) and the reverse conditional probability PLN(t−τ)|EN(t)307

are shown in Fig. 5 to illustrate the transition asymmetry. If using La Niña as the base308

state instead, dPEN−LN = (PEN(t−τ)|LN(t)−PEN(t+τ)|LN(t))/PEN ×PLN gives the same result.309

Similarly, we characterize the zonal transition of El Niño based on CPEN and the discrep-310

ancy dPCPEN−EPEN = (PEPEN(t+τ)|CPEN(t) − PEPEN(t−τ)|CPEN(t)). It could be also calcu-311
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lated based on EPEN, dPCPEN−EPEN = (PCPEN(t−τ)|EPEN(t)−PCPEN(t+τ)|EPEN(t))/PCPEN×312

PEPEN . For the zonal transition of La Niña, we calculate the discrepancy dPCPLN−EPLN =313

PCPLN(t−τ)|EPLN(t) − PCPLN(t+τ)|EPLN(t) based on EPLN. If based on CPLN instead, then314

dPCPLN−EPLN = (PEPLN(t+τ)|CPLN(t) − PEPLN(t−τ)|CPLN(t))/PEPLN × PCPLN gives the same315

result.316

d. A set of indices for ENSO behaviors317

Here we define a set of indices to measure various aspects of ENSO behavior in a period318

of 100 year. OBS is divided into 5 100-year overlapping epochs starting 10-years apart. The319

4000-year simulations of EMR and GCM are divided into 391 overlapping 100-year epochs320

also starting 10-years apart. We first summarize the ENSO behaviors in OBS and then321

discuss EMR and GCM.322

A seasonality index Isea is defined to identify the favored peak season for a given epoch.323

For El Niños, Isea is the total occurrence of El Niño in the summer half year (March-August)324

divided by the total occurrence of El Niño in the winter half year (Sep.-Feb.). Isea < 1325

(> 1) indicates El Niño preferentially peaks in winter (summer). The results (Fig. 7a and326

7d) show that both El Niños and La Niñas in OBS prefer winter. In EMR, El Niños and327

La Niñas also prefer the winter half year in all epochs. In GCM, La Niñas mainly prefer328

winter, consistent with OBS and EMR, but for El Niños, Isea is more centered around one,329

suggesting majority of epochs do not have notable seasonal preference. This agrees with the330

seasonal occurrence probability results in Fig. 4.331

A diversity index Icp/ep is defined for El Niños to diagnose the dominant peak location in332

a given epoch, calculated as the total occurrence of CPEN divided by the total occurrence333

of EPEN. Icp/ep < 1 (> 1) indicates El Niño prefers to peak at EP (CP). There is a similar334

definition for La Niña. The results (Fig. 7b and 7e) show that, EPENs and CPLNs dominate335

in OBS. In EMR, 91% of epochs are dominated by EPEN and 97% of epochs are dominated336

by CPLN. The GCM overall agrees with the OBS and EMR, with most epochs favoring337
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EPENs and CPLNs.338

Another diversity index Ie/w is defined to diagnose the dominant zonal propagation in a339

given epoch. For El Niños, Ie/w is the average of dPCPEN−EPEN within a 6-month interval.340

For La Niñas, Ie/w is the average of dPCPLN−EPLN within a 6-month interval. Ie/w < 0341

(> 0) indicates preferring westward (eastward) propagation. Figs. 7c and 7f show that342

OBS has more westward moving El Niños and La Niñas. In EMR, El Niños favor westward343

propagation in 74% of epochs while La Niñas favor westward propagation in all epochs. In344

GCM, more than half of epochs favoring westward propagating La Niñas, which is generally345

consistent with OBS and EMR. But all epochs favor eastward propagating El Niños, which346

is not realistic. This model discrepancy agrees with the 5-state transition results (Fig. 6).347

The asymmetry index Iamp, which diagnoses the relative amplitude of El Niño and La348

Niña in a given epoch, is calculated as the mean of PC1 value for El Niño months in 100349

years divided by the mean of PC1 value for La Niña months. Iamp > 1 indicates that the350

overall amplitude of El Niño is larger than La Niña. Fig. 7g shows that El Niños have larger351

amplitude than La Niñas in OBS. In EMR, 82% of epochs have Iamp > 1. GCM generally352

agrees with OBS and EMR.353

Another asymmetry index Idur diagnoses the relative duration of El Niño and La Niña in a354

given epoch. It is calculated as the mean of El Niño self-transition probabilities PEN(t+τ)|EN(t)355

within a 36-month interval divided by the mean of La Niña self-transition probabilities356

PLN(t+τ)|LN(t) within a 36-month interval. Idur < 1 indicates La Niña is more durable. Fig.357

7h shows that La Niña is more durable in OBS. In EMR 61% of epochs have more durable358

La Niñas. GCM agrees well with EMR and OBS.359

A third asymmetry index Itra, which diagnoses the transition asymmetry between El360

Niño and La Niña, is calculated as average of dPEN−LN within a 18-month interval. Itra > 0361

indicates La Niñas tightly follow El Niños more than vice versa. Fig. 7i shows that in OBS362

the asymmetry in transition is not substantial. For the 20th century epoch, it has a slightly363

positive asymmetry with Itra > 0 (shown in Fig. 12d along with CMIP5 models). In EMR,364
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55% of epochs have Itra > 0. Compared to OBS and EMR, GCM shows a much larger365

asymmetry in transition, with all epoch favoring La Niña tightly following El Niño. This366

discrepancy agrees with the 3-state transition in Fig.5. Our results is generally consistent367

with Choi et al. (2013), in which the EN-LN transition is defined based on individual events368

with the time range set to 12 months.369

4. Natural variation of ENSO behaviors370

In this section, we first summarize the performance of ENSO behaviors in two simulations.371

GFDL CM2.1 serves as one example for the fully coupled GCMs and EMR is one example372

for the data-driven models. We then discuss how the simulated ENSO behaviors depend on373

the model nonlinearity. We last overview the natural variation of the ENSO behaviors.374

a. GFDL CM2.1375

Fig. 4-7 show that, GFDL CM2.1 overall agrees with OBS and EMR as to some aspects of376

the ENSO behavior, e.g., the ratio of CP/EP ENSO (Fig. 7b,e), El Niño-La Niña asymmetry377

in amplitude (Fig. 7g) and duration (Fig. 7h). It is mainly biased from the OBS in three378

aspects, including the seasonality (Fig. 4; Fig. 7a, d), EN-LN transition (Fig. 5; Fig. 7i)379

and the zonal propagation (Fig. 6; Fig. 7c,f).380

We then briefly discuss these three biases. As to the seasonal phase locking, El Niños in381

GFDL CM2.1 do not show notable seasonal preference (Fig. 4), which is mainly due to the382

competing impacts of EPEN peaking in summer while CPEN peaking in winter. Overall,383

SST anomaly peaks when the collective positive feedbacks are balanced by the negative384

feedbacks (e.g., Tziperman et al. 1995, 1997, 1998; Neelin et al. 2000; An and Wang 2001;385

Xiao and Mechoso 2009; Stein et al. 2010). In GFDL CM2.1, the biases in positive and386

negative feedbacks may together alter the SSTA peak timing and location. Wittenberg et387

al. (2006) once showed that GFDL CM2.1 simulated events tend to peak either in summer388

15



or winter. This bias is likely tied to the semiannual cycle of the background convection and389

currents, which is associated with double ITCZ and the seasonal reversal of the meridional390

SST gradient and winds in the eastern Pacific.391

As to the EN-LN transition and the zonal propagation, all epochs of GFDL CM2.1 show392

a strong transition asymmetry with La Niñas tightly following El Niños (Fig. 7i) and all393

epochs favor eastward propagating El Niños (Fig. 7c). GFDL CM2.1 is largely biased so394

that its variation range does not even cover the observation. If only centennial-long rather395

than 4000-yr GFDL CM2.1 simulations are available, the biases in these two aspects might396

be the most distinguishable from OBS.397

In this study we do not have a special category for the extreme El Niños since only a398

few extreme El Niños occurred in OBS. The overall ENSO statistics in the observations are399

dominated by the moderate events. GFDL CM2.1 has overly strong El Niño with many400

extreme events (Wittenberg 2009; Takahashi and Dewitte 2015; Levine and Jin 2015). Ex-401

treme El Niños usually peak in the eastern Pacific, while moderate El Niños peak either in402

the central Pacific or in the eastern Pacific (Kug et al. 2009; Takahashi and Dewitte 2015).403

Extreme El Niños tend to propagate eastward and moderate El Niños propagate westward404

(Santoso et al. 2013; Kim and Cai 2014). Extreme El Niños are also associated with a405

large EN-LN asymmetry in transition (Choi et al. 2013). Thus the statistics in GFDL406

CM2.1 is largely shifted by extreme events to favor more eastward propagating El Niños and407

much strong asymmetry in EN-LN transition. These behavior biases could be further traced408

back to model’s overly strong nonlinearity, which is also manifested in, e.g., largely skewed409

probability density function of SSTA in Fig. 2.410

We also notice that GFDL CM2.1 does better with SSTAs associated with La Niña than411

El Niño, especially for seasonality and zonal propagation. Since the coupling only becomes412

nonlinear above a certain temperature threshold (Takahashi and Dewitte 2015; Levine and413

Jin 2015), El Niños (as a warming anomaly on top of the mean temperature) are more414

sensitive to the extent of nonlinearity in the system than La Niña (a cooling anomaly).415
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This may be one reason why La Niñas do not show as greater a diversity as El Niños in416

Kug and Ham (2011). A good performance on El Niño demands that the strength of the417

model’s nonlinearity resemble that in the real climate. On the contrary, La Niñas may still418

be simulated realistically even for a model with a too strong nonlinearity.419

b. EMR420

Fig. 4-7 show that, EMR overall agrees with OBS as to most aspects of ENSO behaviors,421

e.g., seasonal phase locking (Fig. 4; Fig. 7a, d), the ratio of CP/EP ENSO (Fig. 7b,e), El422

Niño-La Niña asymmetry in amplitude (Fig. 7g), duration (Fig. 7h) and transition (Fig. 5;423

Fig. 7i). It shows slight biases for zonal propagation (Fig. 6; Fig. 7c,f).424

The EMR is built to capture the transition from one month to the next, which includes425

some nonlinear dynamics, memory effects from a single prior time step, and annual periodic426

terms. On one hand, the results that EMR overall agrees with OBS as to the nonlinear427

measure 2dPDF in Fig. 2h and for the seasonal phase locking in Fig. 4 are expected. On the428

other hand, EMR does not explicitly build in different peak locations, different propagation429

directions, or the EN-LN asymmetry in amplitude, duration and transition. Its ability to430

capture these aspects is an implicit and non-obvious consequence of the model construction.431

Its extended behaviors in the long runs are at least as plausible as the GCM. Moreover, as432

a low-order empirical model, an EMR simulation is computationally efficient.433

c. ENSO behavior dependence on nonlinearity434

GFDL CM2.1’s biases on ENSO behavior suggest that simulated ENSO behavior is very435

sensitive to the model nonlinearity, especially the asymmetry between El Niño and La Niña.436

In this section, we fit a linear EMR model (EMR-L) to the observation (details in Appendix)437

and generate a 4000-year simulation. In total we compare the ENSO behaviors in four438

systems with varying levels of nonlinearity: EMR-L, OBS, EMR, and GFDL CM2.1. The439
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results are shown in Fig. 8.440

We first discuss the ENSO behavior simulated in the linear system, and then compare441

with other systems. In the linear model simulation, 2dPDF in PC1-PC2 space is centered442

at zero without a curved shape (Fig. 8b), which is as expected. There is also no notable443

EN-LN asymmetry in amplitude (Fig. 8e), duration (Fig. 8f) and transition (Fig. 8g). Both444

El Niño and La Niña prefer winter peaking (Fig. 8h). There is no EP/CP preference for445

peaking location (Fig. 8i). Both El Niño and La Niña favor west propagating (Fig. 8j). The446

distribution of El Niño and La Niña are almost identical. Overall, ENSO behaviors in the447

linear system lack of the EN-LN asymmetries, which indicates the nonlinearity is necessary448

to create the EN-LN asymmetry.449

Using the linear EMR as a reference, we then discuss the ENSO behaviors in the nonlinear450

EMR. It reproduces the curved 2dPDF in PC1-PC2. An EN-LN asymmetry appears in451

amplitude and duration, though it is still not notable for transition. As to the peak season,452

El Niño and La Niña starts to show a small discrepancy (Fig. 8k). As to the peak location,453

El Niño prefers the eastern Pacific and La Niña prefers the central Pacific (Fig. 8l), which454

asymmetry agrees with the observation. As to the zonal propagation, El Niños start to shift455

a bit toward favoring eastward while La Niñas shifting toward favoring westward (Fig. 8m).456

Then we discuss the ENSO behaviors in the strong nonlinear GFDL CM2.1. It reproduces457

the 2dPDF with a larger curvature. It shows a larger EN-LN asymmetry in amplitude,458

duration and transition. As to the peak season, El Niño and La Niña show a larger difference459

(Fig. 8n). Distribution of El Niño shifts toward favoring summer peaking. As to the peak460

location, El Niño prefers the eastern Pacific and La Niña prefers the central Pacific (Fig.461

8o). As to the zonal propagation, La Niñas still favor westward propagation while El Niños462

favor eastward propagation.463

We previously discussed that GFDL CM2.1 shows a better performance for La Niña com-464

pared to El Niño. Here the comparison between linear and nonlinear system also suggests465

that, when the system become more nonlinear, La Niñas better preserve its usual character-466
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istics, while El Niños are very sensitive so the characteristics may change quickly and exhibit467

a larger diversity.468

Model nonlinearity is influenced by many different physical processes. DiNezio and Deser469

(2014) addressed the nonlinear controls on the persistence of La Niña using 1300-year sim-470

ulation of the CCSM4 model. The authors fit a nonlinear delayed oscillation model which471

illustrates the nonlinearity in the delayed thermocline feedback plays a role for the persistence472

of La Niña. Takahashi and Dewitte (2015) have shown that, moderate and strong nonlinear473

ENSO regimes exist. They found that extreme El Niño events simulated by GFDL CM2.1474

has consistent temporal evolutions as the observed strong El Niños. So a GFDL CM2.1475

simulation is analyzed to reconstruct a robust evolution profile for SST, wind stress and476

the thermocline tilting. The authors also showed that the existence of these regimes is very477

likely due to the nonlinearity in the Bjerknes feedback.478

In summary, comparison between EMR-L, EMR and GFDL CM2.1 shows that, a non-479

linear model is necessary to reproduce the comprehensive ENSO behaviors including the480

EN-LN asymmetry. For a given nonlinear model, it is also important that this model has a481

proper extent of model nonlinearity that resembles the reality. The results also show that482

the nonlinearity mainly influences the ENSO behavior by controlling the extent of the EN-483

LN asymmetry. El Niños are more sensitive to the system nonlinearity and exhibit a larger484

diversity than the La Niñas.485

d. Overview of ENSO behavior variations486

GFDL CM2.1 may provide an reasonable estimate for variation of EP/CP ENSO flavors,487

but may not be suitable for the zonal propagation and the EN-LN transition. EMR is488

overall better for 9 aspects. Note that EMR’s nonlinearity may be also slightly larger than489

OBS, which might be further adjusted in the future study. Before a better model becomes490

available, the current EMR model is still useful to provide a relatively realistic estimate for491

ENSO behaviors.492
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We now summarize the natural variation of ENSO behavior given by EMR. Under the493

white noise forcing without a trend, epochs with ENSO peaking in summer and epochs494

favoring eastward propagating La Niñas are still not likely, but the following scenarios may495

occur with a certain likelihood, e.g., epochs with El Niño preferring central Pacific (9%),496

epochs with La Niña favoring eastern Pacific (3%), epochs preferring eastward propagating497

El Niños (26%), epochs with La Niña having larger amplitude than El Niño (18%), epochs498

with more persist El Niño than La Niña (39%) and epochs with a quicker transition from La499

Niña to El Niño (45%). Under stochastic noise, epochs with characteristics different from500

the past 100-year OBS could occur. One needs to be cautious when attributing the unusual501

ENSO variations for a certain period as a response to the changing external forcing.502

e. Uncertainty in estimates of the true distribution503

We have calculated a distribution of indices from overlapping 100-year epochs of a long504

(4000-year) model simulation. Note that model-reconstructed distribution is not constrained505

to be centered at the OBS samples. Usually such a match is built-in by resampling the506

data or sampling from an assumed distribution (e.g. Gaussian) with specified sample mean507

and standard deviation. Both the GCM and EMR distributions are based on 391 samples508

while the OBS distribution is based on only 5 samples. The OBS sample distribution, as509

an approximation to the unknown true distribution, is used as the metric to examine the510

modeled distributions. Given only a few available OBS samples, its distribution may not511

reflect the statistics of the true distribution (Wittenberg, 2009). The shortness of the OBS512

record also makes it difficult to establish that a model distribution is significantly different513

from OBS.514

We apply the Kolmogorov-Smirnov (KS) test to estimate whether or not two distributions515

are alike. KS tests show that among the 9 aspects in Fig. 7, the EMR and GCM distributions516

are significantly different for 8 of them with p < 10−3, while for I-dur p = 0.02. The GCM517

distributions of I-cp/ep-LN, I-amp, I-dur and I-season-LN are not significantly different518
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from OBS distribution while the GCM distributions of I-season-EN, I-cp/ep-EN, I-e/w-EN,519

I-e/w-LN and I-tra differ from OBS at greater than the 1% level (p < 0.01). With the same520

significance level, EMR distribution differs from the OBS distributions for I-season-EN, I-521

season-LN, I-e/w-EN and I-e/w-LN.522

Besides the uncertainty coming from the shortage of data to fit and constrain robust523

model coefficients for the data-driven models, another aspect of uncertainty comes from the524

model construction itself. We showed in Chen et al. (2016) that there are many different ways525

to formulate an EMR or other low order models. It is difficult to construct one particular526

model that captures every conceivable feature. Though the current version of EMR including527

nonlinearity, memory effect and seasonality is the overall best choice in the study, it fails to528

match OBS’s distribution closely for a few aspects. We use EMR as an example to illustrate529

both using a data-driven model and a GCM to estimate the natural variation of the ENSO530

characteristics. Both models are flawed and the bias correction is a potential topic for future531

study.532

5. ENSO behavior change in the 21st century533

In this section, we analyze whether the ENSO behaviors may exhibit notable changes from534

20C to 21C using CMIP5 projections under the RCP8.5 scenario. Besides the aforementioned535

ENSO behaviors, we also estimate the annual mean SST, annual cycle, the standard deviation536

and skewness of SSTA in Niño-3.4 region.537

When we analyze the CMIP5 models, we notice that the PC-based definition for ENSO538

diversity works well for the models with correct representations of EOF1 and EOF2, but539

this definition may not be optimal for the models with poor performance on ENSO diversity.540

So we will use a similar but Niño-based definition for CMIP5 model evaluation. Normalized541

Niño-3.4 replaces normalized PC1. Normalized Niño-4 minus normalized Niño-3 replaces542

normalized PC2. All are normalized to have standard deviation equal to one.543
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We will first evaluate whether 37 CMIP5 models could reproduce realistic statistics (as544

compared with the observation in the 20th century). The results from each model are sorted545

in an ascending order for individual aspects of ENSO behavior. Table 1 gives the model546

rank for each aspect. A multi-model mean (MMM) for 37 models is calculated to represent547

an overall performance of CMIP5 models. After that we compare the number of models548

projecting an increase or a decrease to assess whether the projected changes for the 21st549

century are supported with sufficient model agreement.550

We next identify if an apparent change is a significant response to the changing external551

forcing. For each individual model, the change from 20C to 21C is viewed as a significant552

change if satisfing one of the following: 1) I21C > I20C (increase) and I21C > 97.5th percentile553

of PI run, 2) I21C < I20C (decrease) and I21C < 2.5th percentile of PI run, where I20C(I21C)554

is the given index calculated for 20C(21C).555

Note that there is a large spread of the natural variation given by each model’s PI556

runs, so an additional estimate of the natural variation is provided as reference using the557

aforementioned 4000-year stochastic-forced EMR simulation fit from OBS.558

a. SST climatology and anomaly559

We first investigate whether these CMIP5 models reproduce a realistic tropical Pacific560

climatology. The time series of Niño-3.4 SST from 1900 to 2100 are shown in Fig. 9a. Niño-561

3.4 SST averaged in the 20th century (20C) and 21st century (21C) are shown in Fig. 9b.562

The averaged Niño-3.4 SST in sliding 100-year epochs for the pre-industrial control run (PI)563

is also provided as reference. There is a considerable spread compared to observations in564

20th century runs, and the MMM of 37 models slightly underestimates the 20C mean SST.565

All 37 models project a warming future for the RCP8.5 scenario with a ∼ 2oC temperature566

increase. The changes are significant in all models.567

The Niño-3.4 SST anomalies in 20C and 21C are obtained by linearly detrending and568

removing monthly climatology in each 100-year segment (Fig. 9c) and the standard deviation569
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(s.d.) of Niño-3.4 are shown in Fig. 9d. The natural variation range is provided by PI control570

runs of each model and the 4000-year stochastic-forced EMR simulation fit from OBS. The571

MMM for 20C overestimates the ENSO amplitude. There is large spread ranging from half572

the amplitude of OBS to nearly twice, consistent with the findings in Bellenger et al. (2013).573

For the 21C, MMM of 37 models projects an increase in Niño-3.4 s.d.. 20/17 models show574

a decrease/increase, among which 6/13 models are significant.575

b. SST annual cycle and seasonality576

The annual cycle of 20C Niño-3.4 SST of all CMIP5 models are presented in Fig. 10a.577

The structure of the annual cycle is measured using an index Iseacli defined as the averaged578

SST during winter half year (Sept.-Feb.) minus that during summer half year (Mar.-Aug.).579

Most models produce a reasonable annual cycle but some models show a semiannual cycle.580

MMM for 20C indicates a weaker annual cycle than observation. For 21C, MMM does not581

project an apparent change. 18/19 models project a decrease/increase, among which 15/10582

models are significant.583

The seasonal phase locking for El Niño and La Niña are shown using occurrence prob-584

ability for each calendar month (Fig. 10c and 10e). Most models produce a winter phase585

locking as in 20C OBS, consistent with Taschetto et al. (2014). But some models show no586

preferred peak season or peak in summer. Previous studies (e.g., Guilyardi et al. 2003; Ham587

and Kug 2014) suggested that the biased models in seasonality tend to also have biases in588

climatology and oceanic mean state. The seasonal locking for El Niño and La Niña measured589

by Isea are shown in Fig. 10d and 10f. Though there is large spread among models, MMM590

for 20C appears to overall match the observation. For 21C, MMM does not project much591

change for El Niño and only a slight change for La Niña. For El Niños, 21/16 models project592

a decrease/increase, among which 6/5 models are significant. For La Ninas, 22/15 models593

project a decrease/increase, among which 15/2 models are significant.594
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c. ENSO diversity in peak location595

For 20C simulation, 37 models show a large spread for the ratio between CP/EP ENSO596

Icp/ep (Fig. 11a and 11c). More than half of the models resemble the observation that El597

Niños favor the eastern Pacific though MMM slightly overestimates the value of Icp/ep. More598

than half of the models resemble the observation to favor La Niñas peaking at the central599

Pacific though MMM slightly underestimates the value of Icp/ep.600

For 21C projection, 20/17 models project a decrease/increase for El Niños, among which601

1/2 models are significant. For La Ninas, 15/22 models project a decrease/increase, among602

which 4/5 models are significant. MMM results show no notable change. Yeh et al. (2009)603

analyzed 12 CMIP3 models in which an increased frequency of CPEN compared to EPEN604

is suggested to be related to the flattening of the thermocline in the equatorial Pacific. Kim605

and Yu (2012) analyzed 16 CMIP5 models under the RCP4.5 scenario which suggest an606

increased ratio of CP to EP El Niño. Taschetto et al. (2014) used 27 CMIP5 models under607

the RCP8.5 scenario which suggest no notable enhancement of the ratio of CP/EP ENSO.608

Here we analyzed 37 CMIP5 models in RCP8.5 scenario and measure the projected change609

from 20C to 21C using the probability shift of relative occurrence (Icp/ep). The discrepancy610

among above studies suggests the projections heavily depend on the selected models and the611

uncertainty is large given varying performance of these models for the historical period.612

d. ENSO diversity in propagation direction613

For 20C simulation, more than half of the models favor westward propagating El Niños as614

the observation though MMM overestimates the value of Ie/w (Fig. 11b). Almost all models615

favor westward propagating La Niñas and MMM overall matches with the observations (Fig.616

11d). For El Niños, 13/24 models project a decrease/increase, among which 2/14 models617

are significant. For La Ninas, 12/25 models project a decrease/increase, among which 6/15618

models are significant. As suggested by Santoso et al. (2013), the projected weakening of the619
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westward mean equatorial currents may explain the projected shift toward more eastward620

propagating El Niños and La Niñas in a warmer world.621

e. ENSO asymmetry in amplitude, duration and transition622

The skewness of Niño-3.4 SST anomaly (Fig. 12a) coarsely measures the El Niño-La Niña623

asymmetry in amplitude, so it is discussed here together along with Iamp. For 20C, more than624

half of the 37 models show a positive sign of skewness in agreement with OBS, though MMM625

underestimates the value of skewness. For 21C, MMM shows a slight decrease of skewness.626

24/13 models project a decrease/increase, among which 8/2 models are significant.627

The amplitude asymmetry Iamp (Fig. 12b) shows that more than half the models agree628

with OBS in 20C with larger amplitude in El Niño than in La Niña, though MMM un-629

derestimate the asymmetry. For 21C, MMM projects a decrease in the asymmetry. 21/16630

models project a decrease/increase, among which 7/3 models are significant. The duration631

asymmetry Idur (Fig. 11c) shows that only half the models agree with 20C OBS in showing632

a more persistent La Niña. MMM also underestimates the asymmetry. For 21C, MMM633

does not show much change. 16/21 models project a decrease/increase, among which 5/2634

models are significant. As to the transition Itra, most models show much larger transition635

asymmetry than OBS in 20C and MMM also overestimate the asymmetry. For 21C, MMM636

does not show much change. 19/18 models project a decrease/increase, among which 3/5637

models are significant. For all three aspects of EN-LN asymmetry, the projected changes are638

largely within the natural variation range based upon the control run.639

Previous studies (e.g., Zhang and Sun 2014; Cai et al. 2015a) pointed out most CMIP5640

models underestimate the ENSO asymmetry. Here the results in our diagnostics show that,641

among these three aspects, the EN-LN asymmetry in amplitude and duration are underes-642

timated by most models, and the EN-LN asymmetry in transition is usually overestimated.643
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6. Discussion644

a. Which aspect may show a robust change in 21C?645

Now we would like to summarize, among all the ENSO behaviors we have analyzed in646

this study, which aspect may show a robust change in 21C. Increasing SST climatology, as647

the result of changing external forcing, is consistently predicted by all models. Other than648

that, changes in many SSTA aspects are not that robust, and the difference between 20C649

and 21C are largely within the range of the natural variation.650

We first estimate which aspects are most responsive to the trend forcing, in which case651

the changes could be readily detected from the natural variation in the model projection.652

For each aspect, we count the number of models (denoted as Nc) out of 37 models showing653

a significant change (no matter positive or negative changes). The results are as follows:654

SST climatology (Nc = 37), annual cycle Iseacli (Nc = 25), standard deviation of Niño-655

3.4 (Nc = 19), diversity in zonal propagation for El Niño Ie/w−EN(Nc = 16) and La Niña656

Ie/w−LN(Nc = 21), seasonality of El Niño Isea−EN (Nc = 11) and La Niña Isea−LN (Nc = 12),657

the EN-LN asymmetry in Iamp (Nc = 10), Idur (Nc = 7), Itra(Nc = 8), diversity in peak658

location for El Niño Icp/ep−EN(Nc = 3) and La Niña Icp/ep−LN(Nc = 9).659

Among these 12 aspects, SST climatology gives Nc = 37, suggesting that SST mean state660

quickly adjusts to the increasing greenhouse gas emissions so that all 37 models can readily661

capture this change. However, diversity in peak location Icp/ep only gives Nc = 3 for El Niño662

and Nc = 9 for La Niña. It suggests that El Niño peaking at eastern Pacific or central Pacific663

often varies even under a constant forcing. Therefore the large range of natural variation664

makes it difficult to detect the forced response.665

Although the change of the annual cycle is the very responsive (Nc = 25), 37 models666

still do not give a clear direction of change (18/19 models show a decrease/increase, among667

which 15/10 models show a significant decrease/increase). Therefore, it is difficult to argue668

whether the annual cycle would become weaker in the 21C.669
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The change of the standard deviation of Niño-3.4 is also very responsive (Nc = 19).670

20/17 models project a decrease/increase, among which 6/13 models project a significant671

decrease/increase. Chen et al. (2015b) investigated the physical mechanisms for four individ-672

ual models showing either increasing or decreasing ENSO amplitude in the warming climate.673

The authors found that models with a stronger (weaker) equatorial thermocline response to674

the zonal wind anomaly tend to project a strengthened (weakened) ENSO amplitude.675

A shift toward eastward propagation of El Niños and La Niñas are the responsive aspect676

with the most robust change supported by MMM and nearly 2/3rd of the models. Santoso677

et al. (2013) have shown that the westward mean current is one main reason for ENSO’s678

westward propagation. Therefore a shift toward favoring the eastward propagating El Niño679

may be the response to the weakened westward mean current as projected for 21C.680

By basing our metrics on SSTA we follow the practice in the vast majority of prior ENSO681

literature. However, based on observations (Karl et al. 1995), CMIP modeling results and682

theory (Allen and Ingram 2002), it is expected that with global warming the atmospheric683

water vapor content will increase along with the intensifying convective events. Thus we684

expect that the rainfall associated with ENSO events will increase, as has been found by685

Power et al. (2013), Cai et al (2014) and Cai et al. (2015b).686

b. Projection using a subset of models687

Studies on CMIP models often identify subsets of good models based on various metrics688

(e.g., Gleckler et al. 2008; Kim and Yu 2012; Bellenger et al. 2013). In this study, we689

would like to estimate if a subset of good models may give a more reliable projection for 21C690

with a better model agreement. Here we identify good models based on 13 aspects of ENSO691

behavior. Table 1 summarizes 37 CMIP5 model performances based on these 13 metrics.692

For each aspect, 10 models with the smallest errors in 20C are tagged with an asterisk. We693

then use the total number of asterisk to identify the overall best 10 models. After that we694

summarize the model performance in 20C and the projection for 21C using the MMM of all695
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37 models, the overall best 10 models (b10) and the best 10 models for individual aspect696

(c10) (Fig.13). Skewness is not shown in this summary since it is closely correlated with697

EN-LN asymmetry in amplitude.698

We note that the MMM using the subset of good models are closer to the 20C observation699

for each aspect, but the future projection based on these models still lack of consensus for700

most aspects. It is possible that (i) the external forcing for 21C may be implemented slightly701

differently in each individual model (ii) model dynamics are slightly different in each model702

so that they may drive different responses even under the same forcing. Therefore one needs703

to be cautious for the future projection even using a subset of “good” models.704

c. ENSO behavior biases in CMIP5 models705

Compared to the 20C observation, 37-model mean results (a37 in Fig. 13) show the706

CMIP5 model biases are reflected in many aspects, e.g., underestimated mean SST, overly707

weak annual cycle, overly strong SST variability, more CPEN and EPLN, more eastward708

propagating EN, underestimated EN-LN asymmetry in amplitude and duration and excessive709

asymmetry in transition.710

Do the biases in ENSO behavior have some relation with the biases in the simulated mean711

state of Niño-3.4? Fig. 14 displays the results for PI, 20C and 21C. Note that the scatter712

plot shows the overall spread when 37 earth-like systems respond given the same forcing. It713

may not be interpreted as a physical relation, since it does not come from one consistent714

system under a series of different mean states. For example, Fig. 13b shows that, among all715

37 models, models which simulate a relatively warmer mean state tend to also simulate a716

weak annual cycle with a small summer-winter difference in SST. But this apparent relation717

may not suggest that the annual cycle will become weaker in the warming climate. Previous718

section already showed that the change of the annual cycle from 20C to 21C varies in each719

individual model and the MMM shows no significant change.720
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7. Conclusion721

We introduced a set of empirical probabilistic diagnostics for ENSO behaviors, including722

variations in peak season, location and propagation direction as well as El Niño-La Niña723

asymmetries. The diagnostics applied to SST observations show that, El Niños and La Niñas724

are phase-locked to boreal winter. They both favor westward propagation. El Niños mainly725

occur at the eastern Pacific and La Niñas prefer the central Pacific. These results agree with726

current understanding and thus provide support for the validity of our new diagnostics.727

The diagnostics were applied to evaluate ENSO behaviors in two example simulations.728

The first is a 4000-year pre-industrial control simulation of the GFDL CM2.1 coupled GCM.729

The strong nonlinearity of this model is indicated by an exaggerated El Niño-La Niña asym-730

metry. Although modeled La Niñas generally behave like the observations, El Niños behave731

quite differently. El Niño’s winter phase-locking feature is largely missed since EPENs pre-732

fer peaking in summer while CPENs prefer winter. Eastward propagating El Niños are733

dominant. The overall statistics is largely dominated by extreme El Niños.734

The diagnostics were also applied to a 4000-year stochastic-forced simulation of a non-735

linear empirical model reduction (EMR) fit using SST observations. This simulation is736

reasonably realistic in broad aspects of ENSO behavior and thus may be considered as an737

extension to observations to help us assess the range of ENSO variation. Most epochs in a738

4000-year simulation agree well with observations. But epochs with more CP El Niños or739

epochs with more eastward El Niños do exist when stochastic noise is the only forcing. No740

forcing trend such as that due to greenhouse gases is required.741

The diagnostics were then applied to assess the potential change of ENSO behaviors in742

a warming climate using 37 CMIP5 models that participated in IPCC AR5. Evaluation743

of model performance used 20th century runs (20C, historical, 1900-1999) show that each744

model has pros and cons for varying aspects of ENSO behavior.745

As to the projected changes from the 20th century to 21st century (21C, RCP8.5 scenario,746

2000-2099), except for a consensus in tropical Pacific SST increase due to the forcing, changes747
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in other aspects are all model dependent. Except for the warming climatology, many 21C748

changes are within the bounds of the natural variation range produced by the pre-industrial749

control runs (PI) control run. Overall the multi-model mean (MMM) suggests that changes750

in many ENSO statistics measured in SSTA may not be significant, e.g., diversity peaking751

in eastern Pacific /central Pacific and El Niño-La Niña asymmetries. Although a few models752

do show significant changes, the degree of model agreement on the projected change is low753

for all aspects. A shift favoring eastward propagating El Niño and La Niña shows slightly754

more robustness.755

Projections for the future based on CMIP models often involve considerable uncertainty756

(Vecchi and Wittenberg 2010). Changes in ENSO are difficult to detect given large natu-757

ral variability present in each model (e.g., Wittenberg 2009) as well as the lack of model758

agreement (e.g., Guilyardi 2006; Collins et al. 2010; Stevenson 2012; Taschetto et al. 2014).759

In this study, various model biases for 20C ENSO behaviors leave little to confidently pre-760

dict the future of ENSO. Whether the projected changes could actually take place in the761

future remains largely uncertain. The ENSO behavior diagnostics introduced in this study762

and data-driven models (e.g., EMR) fit from the observation may be useful along with the763

development of CMIP models.764
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APPENDIX778

779

EMR methodology780

Empirical Model Reduction (EMR) is an empirical modeling framework, allowing nonlin-781

earity, seasonality and memory effect (Kravtsov et al. 2005; Kondrashov et al. 2005, 2015).782

The operational version of EMR (labelled as UCLA-TCD) participates in IRI’s ENSO pre-783

diction plume, and it is very competitive among both dynamical and statistical models784

(Barnston et al. 2012; http://iri.columbia.edu/our-expertise/climate/forecasts/785

enso/current/).786

The setting of EMR used in this study is as follows. The state vector x = {xi} is787

the leading 3 normalized PCs of detrended tropical Pacific SSTA. Quadratic nonlinearity is788

included in the main level:789

dxi = (xTAix + b1
ix + c1i )dt+ dr1i ; i = 1, ..., 3. (A1)

The model coefficients in matrices Ai, the vectors bi of matrix B, the components ci of vector790

c and the components ri of the residual r are determined by multiple polynomial regression.791

Seasonality is included by adding additional coefficients into the main level of the model:792

B = Bn + Bs sin(2πt/T ) + Bc cos(2πt/T ) (A2)

c = cn + cs sin(2πt/T ) + cc cos(2πt/T ) (A3)
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where the matrix Bn and vector cn are the original annually averaged (non-seasonal) terms793

as in Eq. (A1), matrices Bs and Bc add an multiplicative seasonality, vectors cs and cc794

add an additive seasonality. The period T =12 months to account for an annual cycle of795

seasonality. All these coefficients are determined simultaneously with the other coefficients796

in the main level.797

The ENSO memory effect is embedded in a 2 time-level model construction. An addi-798

tional level is added by fitting the temporal increment of the residual at the main level dr1799

using a linear function of an extended state vector [x, r1].800

dr1i = b2
i [x, r

1]dt+ dr2i ; i = 1, ..., 3 (A4)

where b2
i and r2i for the second level (i.e., one timestep back) are determined after the main801

level. Results from Kondrashov et al. (2005) and Chen et al. (2016) indicate that 2 time802

levels are sufficient to embed a memory effect for ENSO simulation. A stochastic simulation803

is forced using a spatially coherent multivariate white noise given by the residual covariance804

matrix estimated along with the model fitting. See more details in Kondrashov et al. (2005).805

In this study, EMR uses the same setting as the model 2L+S+NL in Chen et al. (2016),806

which is a nonlinear model with two time levels and an annual seasonality. To investigate807

the dependence of ENSO behaviors on the system nonlinearity, we also construct a linear808

model denoted as “EMR-L” for a comparison. It uses the same setting as the model 2L+S in809

Chen et al. (2016), which has two time levels and an annual seasonality. The only difference810

between EMR and EMR-L is with or without nonlinearity.811
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List of Tables1011

1 List of 37 CMIP5 models analyzed in this study. Due to the lack of availability1012

in certain models for temperature of ocean surface “tos”, we instead analyzed1013

monthly surface temperature “ts” in each model’s r1i1p1 run. 1st column is1014

the official model name. 2nd column is the length of pre-industrial control run1015

(year). 3rd to 15th columns are the model rank as shown in each individual1016

figure and panel, e.g., f9b indicating Fig. 9 panel b. According ENSO aspect1017

is labelled in 2nd and 3rd rows. Note that for individual ENSO behavior1018

models with * are 10 models with smallest error between each model’s 20th1019

century run (orange o) and the 20th century observation value (black line in1020

the panel). The last column is the total number of * for each model. There1021

are best 10 models with 5 and above *, which are indicated with + at the end1022

the model name in 1st column. Note that these relative better models are1023

only restricted to ENSO behavior aspects analyzed in this study, therefore,1024

it is not generally applicable to model performances on other phenomena.1025

Model center information and experiment designs see Taylor et al. (2012)1026

and CMIP5 website (http://cmip-pcmdi.llnl.gov/cmip5/) 431027
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Table 1. List of 37 CMIP5 models analyzed in this study. Due to the lack of availability in
certain models for temperature of ocean surface “tos”, we instead analyzed monthly surface
temperature “ts” in each model’s r1i1p1 run. 1st column is the official model name. 2nd
column is the length of pre-industrial control run (year). 3rd to 15th columns are the model
rank as shown in each individual figure and panel, e.g., f9b indicating Fig. 9 panel b.
According ENSO aspect is labelled in 2nd and 3rd rows. Note that for individual ENSO
behavior models with * are 10 models with smallest error between each model’s 20th century
run (orange o) and the 20th century observation value (black line in the panel). The last
column is the total number of * for each model. There are best 10 models with 5 and above
*, which are indicated with + at the end the model name in 1st column. Note that these
relative better models are only restricted to ENSO behavior aspects analyzed in this study,
therefore, it is not generally applicable to model performances on other phenomena. Model
center information and experiment designs see Taylor et al. (2012) and CMIP5 website
(http://cmip-pcmdi.llnl.gov/cmip5/)

name PI f9b f10b f9d f12a f10d f10f f11a f11c f11b f11d f12b f12c f12d num
cli seacli s.d. s.k. Isea Isea Icp/ep Icp/ep Ie/w Ie/w Iamp Idur Itra

EN LN EN LN EN LN
ACCESS1.0+ 250 23* 24* 8 13 5 3 4* 7 17 22* 12 33 11* 5
ACCESS1.3+ 500 26* 8 10 22 34 35 13* 6 6* 13 26* 12 7* 5
BCC-CSM1.1 500 22* 5 12 14 2 2 20 3 19 21* 13 13 3* 3
BCC-CSM1.1(m) 400 29* 9 32 29* 9* 5 18 24 29 6 23 3* 27 4
BNU-ESM+ 559 25* 11 36 9 11* 18* 5* 30* 35 32 14 5* 25 6
CanESM2 996 17 26* 28 17 14* 17* 19 5 5* 7 19 29 31 4
CCSM4 501 27* 23* 31 34 23 19* 26 37 27 1 35* 11 35 4
CESM1(BGC) 500 28* 14 24 20 29 26 6* 34* 23 11 24 22 30 3
CESM1(CAM5) 319 12 37 29 35 15* 7 36 27* 20 10 31* 17 34 3
CMCC-CESM 277 24* 22* 35 33 33 34 16 23 3 8 32* 21 23 3
CMCC-CM 330 32 27* 9 28* 24 23 8* 25 30 35 28* 19 24 4
CMCC-CMS+ 500 30* 29* 23* 16 28 27 14 31* 11* 15* 16 15 17 6
CNRM-CM5 850 19 28* 27 26* 1 1 22 15 34 30 25 18 26 2
CSIRO-Mk3.6.0 500 1 32 22* 4 31 36 34 1 7* 19* 2 31 14 3
FGOALS-g2 700 21 16 18* 7 8 9 12* 13 33 27 7 27 9* 3
FIO-ESM 800 34 6 33 3 18* 14* 3 18 37 31 3 36 2 2
GFDL-CM3 500 10 4 30 12 19 25 28 11 14 4 8 25 29 0
GFDL-ESM2G+ 500 5 30* 14* 23* 32 10* 35 26* 4* 5 15 34 13 6
GFDL-ESM2M 500 15 13 37 36 37 32 30 35* 36 20* 36 4* 37 3
GISS-E2-H 240 33 7 3 8 10* 12* 23 2 16 29 11 23 22 2
GISS-E2-H-CC 251 35 12 16* 2 3 13* 27 19 25 14 1 37 20 2
GISS-E2-R 300 36 21* 7 18 6 6 2 22 28 33 21 6* 10* 3
GISS-E2-R-CC 251 37 20 4 1 4 11* 7* 16 31 36 4 24 18 2
HadGEM2-CC 240 8 17 19* 5 20 20 15 14 26 28 6 20 32 1
HadGEM2-ES+ 239 9 18 17* 6 12* 8 29 29* 22 17* 5 26 4* 5
INM-CM4 500 13 3 6 24* 27 29 21 4 18 25 20 16 21 1
IPSL-CM5A-LR 1000 7 19 15* 15 30 30 17 21 2 12 18 1* 6* 3
IPSL-CM5A-MR 300 16 10 20* 25* 21 31 25 10 1 9 30* 2* 15 4
IPSL-CM5B-LR+ 300 31* 2 11 21 16* 28 1 28* 13* 23* 29* 9* 1 7
MIROC-ESM 531 2 36 1 32* 35 24 32 9 21 37 34* 32 12* 3
MIROC-ESM-CHEM 255 3 35 2 30* 25 21 24 17 15 34 33* 14 5* 3
MIROC5 200 11 31 34 37 22 16* 37 36 32 16* 37 35 36 2
MPI-ESM-LR+ 1000 4 34 21* 31* 26 33 11* 20 8* 18* 27* 28 28 6
MPI-ESM-MR 1000 6 33 13 19 36 37 33 12 24 26 17 10* 16 1
MRI-CGCM3+ 500 20 1 5 10 17* 22 10* 8 9* 24* 9 7* 8* 6
NorESM1-M+ 501 18 15 25 11 13* 15* 9* 33* 12* 3 10 8* 33 6
NorESM1-ME 252 14 25* 26 27* 7 4 31 32* 10* 2 22 30 19 4
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List of Figures1028

1 The first three normalized EOF patterns of Tropical Pacific SSTA in OBS1029

(1870-present monthly HadISST v1.1) (a, c, e) and GCM (4000-year monthly1030

GFDL CM2.1 pre-industrial control run) (b, d, f). Positive/negative values1031

are shown in solid/dashed contours. The zero value is highlighted in the thick1032

solid contour. 501033

2 Simulation evaluation: (a, d, g) for OBS, (b, e, h) for 4000 year EMR and (c,1034

f, i) for 4000-year GCM. (a, b, c) for Probability density function (PDF) of1035

PC1. (d, e, f) for PDF of PC2. (g, h, i) for decimal logarithm of the bivariate1036

probability density function (2dPDF) in PC1-PC2 space. In PDF panels,1037

OBS is divided into 5 overlapping 100-year epochs with 10 years apart. EMR1038

and GCM are both divided into 40 non-overlapping 100-year epochs. PDF1039

and according skewness are calculated in epochs and the average is shown. 511040

3 Definition of 5 ENSO states (a) (Eastern/Central Pacific El Niño/La Niña1041

and neutral patterns, denoted as EPEN/ CPEN/ EPLN/ CPLN/ NEU) are1042

shown using smoothed monthly PCs from 1870-present HadiSST v1.1. ±0.71043

s.d. (PC1), where s.d. is one standard deviation, is used to distinguish EN/LN1044

from NEU. Zero line of PC2 is used to distinguish EP/CP states. Each state1045

is assigned a color code for further analysis. (b-e) the SSTA patterns averaged1046

for eastern/central Pacific ENSO states. (f) normalized PC1 (1950-2010) with1047

each ENSO states color-coded. 521048
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4 Monthly occurrence probabilities for 5 ENSO state in OBS (a), EMR (b) and1049

GFDL CM2.1 GCM (c) are shown. Stacked bars along the vertical coordinate1050

are the occurrence probabilities of each color-coded state. The horizontal co-1051

ordinate is the calendar month from Jan to Dec. Full year data is used thus1052

the sample size for each calendar month is equal. In panel a, higher prob-1053

ability of EN/LN in winter months than summer months indicates observed1054

ENSO’s winter phase locking. Higher probability of EPEN over CPEN in-1055

dicates El Niño favor peaking in EP, and higher probability of CPLN over1056

EPLN indicates LN favor peaking in CP. 531057

5 State transition probabilities for EN (1st row), NEU (2nd row) and LN (3rd1058

row) in OBS (first column), EMR (2nd column) and GFDL CM2.1 GCM (3rd1059

column) are shown. The horizontal coordinate represents the transition from1060

the past (-3 years) to the future (+3 years) in monthly intervals, with zero in-1061

dicating the current state. Taking GCM EN transition (panel c) for example,1062

bars along the vertical coordinate at +1 year (+12 months) represent: the self-1063

transition probability PEN(t+τ)|EN(t) (upper bar), the PNEU(t+τ)|EN(t) (middle1064

bar) and the opposite-sign transition PLN(t+τ)|EN(t) (lower bar). The decay-1065

ing of PEN(t+τ)|EN(t) as function of lead time indicates EN’s duration. The1066

discrepancy between PLN(t−τ)|EN(t) (lead<0 side) and PLN(t+τ)|EN(t) (lead>01067

side) indicates the EN-LN asymmetry in transition. The transition probabil-1068

ities generally converge to the climatology, i.e., the nonseasonal occurrence1069

probability of each state (dotted line in each panel). 541070
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6 Zonal propagation asymmetry in OBS(a,b), EMR(c,d) and GCM(e,f). (a,c,e):1071

transition probabilities conditioned on CPEN state PEPEN(t−τ)|CPEN(t) (neg-1072

ative lead) and PEPEN(t+τ)|CPEN(t) (positive lead), which generally converge1073

to the occurrence probability PEPEN (dotted line) toward a large lead time.1074

(b,d,f): transition probabilities conditioned on EPLN state PCPLN(t−τ)|EPLN(t)1075

(negative lead) and PCPLN(t+τ)|EPLN(t) (positive lead), which generally con-1076

verge to the occurrence probability PCPLN (dotted line). 551077

7 Variation of ENSO behaviors in 4000-year EMR and GFDL CM2.1 GCM1078

simulation. Each index (see text for definitions) is calculated in 100-year1079

overlapping epochs 10 years apart. The probability density function (PDF) is1080

shown in the blue curve. Index values in epochs of OBS are shown in magenta1081

lines (five in total). ENSO diversity indices, including Isea, Icp/ep, Ie/w, are1082

shown in the top rows for El Niño and La Niña. EN-LN asymmetry indices,1083

including Iamp, Idur, Itra are shown in the bottom row. For each panel, the1084

percentage of epochs in the EMR satisfying the specified index range is shown.1085

Taking panel b for example, OBS have more EPEN than CPEN (Icp/ep < 1).1086

Among 391 100-year epochs in EMR, 91% of epochs have more EPEN than1087

CPEN. 561088

8 ENSO behaviors in OBS, a linear EMR (EMR-L), a nonlinear EMR and1089

GFDL CM2.1. (a-d) are decimal logarithm of the bivariate probability density1090

function (2dPDF) in PC1-PC2 space. (e-p) distribution is calculated in 100-1091

year overlapping epochs 10 years apart. (e-g) are Iamp, Idur, Itra, in which1092

observation is in magenta, EMR-L in solid black curve, EMR in dash-dot1093

curve, GFDL CM2.1 in dashed curve. (h, k, n) are Isea, (i, l, o) are Icp/ep, (j,1094

m, p) are Ie/w. El Niño in red and La Niña in blue. 571095
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9 Niño-3.4 SST climatology and anomaly in the 20th century (20C, historical1096

run, 1900-1999) and the 21st century (21C, RCP8.5 scenario, 2000-2099) in1097

37 CMIP5 models that participated in IPCC AR5. (a) The 20-year running1098

average Niño-3.4 SST with OBS in black, CMIP5 models in gray. (b) The1099

mean SST in the 20C and 21C for each CMIP5 model. The models are sorted1100

according to the 100-year averaged Niño-3.4 SST in the 20C runs. The black1101

vertical line marks the 20C OBS value. Multi-model mean (MMM) is shown1102

at the top, 20C in orange and 21C in blue. Pre-industrial control simulations1103

of each model are divided into 100-year sliding epochs to calculate the 100-1104

year averaged SST and the 2.5-97.5 percentile of the distribution are shown as1105

gray horizontal lines. The number of models with decreased/ increased change1106

is indicated in a number with < / >. Number in the brackets is the count1107

for significant changes out of the range given by the control run. (c) Niño 3.41108

SST anomaly time series from 1900 to 2099. (d) The standard deviation of1109

SSTA in pre-industrial, 20C and 21C runs. In addition here the 21C results1110

with an increased change are shown filled and those with decreased values1111

are unfilled. Meanwhile, the 2.5, 50, 97.5 percentile range estimated from the1112

distribution in the EMR simulation is shown in brown line at the bottom. 581113
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10 Annual cycle and ENSO seasonality change from 20th century (20C) to 21st1114

century (21C) in 37 CMIP5 models: (a) The 20C seasonal cycle of Niño-3.41115

SST, with OBS in black, CMIP5 models in gray. The horizontal axis shows the1116

calendar month. (b) The Niño-3.4 SST difference between the March-August1117

(summer half year) average and the September-February (winter half year)1118

average. The models are sorted according to the 20C value of this difference.1119

(c) 20C occurrence probability of El Niño PEN , (e) 20C occurrence probability1120

of La Niña PLN . (d) seasonality index of El Niño (Iseason−EN) defined using1121

summer half year averaged PEN divided by winter half year averaged PEN ,1122

thus Iseason−EN < 1 indicates El Niño in a given 100-year epoch prefers winter1123

phase locking. (f) Iseason−LN , defined the same way, but for La Niña event. 591124

11 ENSO peaking location and propagation direction in the 20th century (20C)1125

and 21st century (21C) in 37 CMIP5 models. (a) The location diversity index1126

Icp/ep for EN, defined as PCPEN divided by PEPEN . (c) Icp/ep for LN. Icp/ep > 11127

indicates El Niños or La Niñas preferentially peak in CP. (b) The propagation1128

diversity index Ie/w for EN. (d) Ie/w for La Niña. Ie/w > 0 indicates El Niños1129

or La Niñas prefer eastward propagation. 601130

12 EN-LN asymmetry in the 20th century (20C) and 21st century (21C) in1131

37 CMIP5 models. (a) the skewness of Niño-3.4 SSTA. (b) The amplitude1132

asymmetry index (Iamp) defined as EN amplitude divided by LN amplitude.1133

Iamp > 1 indicates El Niños have larger amplitude than La Niñas in a given1134

100-year epoch. (c) the duration asymmetry index (Idur). Idur < 1 indicates1135

La Niñas are more persistent than El Niños. (d) the transition asymmetry1136

index (Itra). Itra > 0 indicates El Niños are quickly followed by La Niñas but1137

not vice versa. 611138
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13 Summary of ENSO behaviors in the 20th century and the 21st century using1139

all 37 CMIP5 models (a37, blue), overall best 10 models (b10, yellow) and1140

best 10 models for individual aspect of behavior (c10, red). The 20th cen-1141

tury observation (obs, black) results are shown as a reference. A 4000-year1142

stochastically forced simulation of EMR model fit from the observation pro-1143

vides the natural variation range (the 2.5-97.5 percentile range is shown). In1144

each panel, a pair of numbers indicate the degree of model agreement. The1145

left one is the number of models showing a decrease from the 20th century1146

to the 21st century while the right one is the number of models showing an1147

increase. 621148

14 ENSO behaviors biases in CMIP5 models: (a) shows the Niño-3.4 SST clima-1149

tology in each model for the pre-industrial period (PI) (gray circle), the 20th1150

century (20C) (orange circle) to the 21st century (21C) (blue triangle). 20C1151

observation is shown in asterisk. (b-l) shows each individual ENSO behavior1152

varies at different mean states. Change from 20C MMM to 21C MMM is1153

shown in black line. 2.5-97.5 percentile of natural variation range by EMR is1154

shown in dashed line. 631155
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Fig. 1. The first three normalized EOF patterns of Tropical Pacific SSTA in OBS (1870-
present monthly HadISST v1.1) (a, c, e) and GCM (4000-year monthly GFDL CM2.1 pre-
industrial control run) (b, d, f). Positive/negative values are shown in solid/dashed contours.
The zero value is highlighted in the thick solid contour.
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Fig. 2. Simulation evaluation: (a, d, g) for OBS, (b, e, h) for 4000 year EMR and (c, f, i) for
4000-year GCM. (a, b, c) for Probability density function (PDF) of PC1. (d, e, f) for PDF
of PC2. (g, h, i) for decimal logarithm of the bivariate probability density function (2dPDF)
in PC1-PC2 space. In PDF panels, OBS is divided into 5 overlapping 100-year epochs with
10 years apart. EMR and GCM are both divided into 40 non-overlapping 100-year epochs.
PDF and according skewness are calculated in epochs and the average is shown.
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Fig. 3. Definition of 5 ENSO states (a) (Eastern/Central Pacific El Niño/La Niña and neu-
tral patterns, denoted as EPEN/ CPEN/ EPLN/ CPLN/ NEU) are shown using smoothed
monthly PCs from 1870-present HadiSST v1.1. ±0.7 s.d. (PC1), where s.d. is one standard
deviation, is used to distinguish EN/LN from NEU. Zero line of PC2 is used to distinguish
EP/CP states. Each state is assigned a color code for further analysis. (b-e) the SSTA
patterns averaged for eastern/central Pacific ENSO states. (f) normalized PC1 (1950-2010)
with each ENSO states color-coded.
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Fig. 4. Monthly occurrence probabilities for 5 ENSO state in OBS (a), EMR (b) and GFDL
CM2.1 GCM (c) are shown. Stacked bars along the vertical coordinate are the occurrence
probabilities of each color-coded state. The horizontal coordinate is the calendar month from
Jan to Dec. Full year data is used thus the sample size for each calendar month is equal.
In panel a, higher probability of EN/LN in winter months than summer months indicates
observed ENSO’s winter phase locking. Higher probability of EPEN over CPEN indicates
El Niño favor peaking in EP, and higher probability of CPLN over EPLN indicates LN favor
peaking in CP.
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Fig. 5. State transition probabilities for EN (1st row), NEU (2nd row) and LN (3rd
row) in OBS (first column), EMR (2nd column) and GFDL CM2.1 GCM (3rd column)
are shown. The horizontal coordinate represents the transition from the past (-3 years) to
the future (+3 years) in monthly intervals, with zero indicating the current state. Tak-
ing GCM EN transition (panel c) for example, bars along the vertical coordinate at +1
year (+12 months) represent: the self-transition probability PEN(t+τ)|EN(t) (upper bar), the
PNEU(t+τ)|EN(t) (middle bar) and the opposite-sign transition PLN(t+τ)|EN(t) (lower bar). The
decaying of PEN(t+τ)|EN(t) as function of lead time indicates EN’s duration. The discrepancy
between PLN(t−τ)|EN(t) (lead<0 side) and PLN(t+τ)|EN(t) (lead>0 side) indicates the EN-LN
asymmetry in transition. The transition probabilities generally converge to the climatology,
i.e., the nonseasonal occurrence probability of each state (dotted line in each panel).
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Fig. 6. Zonal propagation asymmetry in OBS(a,b), EMR(c,d) and GCM(e,f). (a,c,e):
transition probabilities conditioned on CPEN state PEPEN(t−τ)|CPEN(t) (negative lead) and
PEPEN(t+τ)|CPEN(t) (positive lead), which generally converge to the occurrence probability
PEPEN (dotted line) toward a large lead time. (b,d,f): transition probabilities conditioned
on EPLN state PCPLN(t−τ)|EPLN(t) (negative lead) and PCPLN(t+τ)|EPLN(t) (positive lead),
which generally converge to the occurrence probability PCPLN (dotted line).
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Fig. 7. Variation of ENSO behaviors in 4000-year EMR and GFDL CM2.1 GCM simulation.
Each index (see text for definitions) is calculated in 100-year overlapping epochs 10 years
apart. The probability density function (PDF) is shown in the blue curve. Index values in
epochs of OBS are shown in magenta lines (five in total). ENSO diversity indices, including
Isea, Icp/ep, Ie/w, are shown in the top rows for El Niño and La Niña. EN-LN asymmetry
indices, including Iamp, Idur, Itra are shown in the bottom row. For each panel, the percentage
of epochs in the EMR satisfying the specified index range is shown. Taking panel b for
example, OBS have more EPEN than CPEN (Icp/ep < 1). Among 391 100-year epochs in
EMR, 91% of epochs have more EPEN than CPEN.
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Fig. 8. ENSO behaviors in OBS, a linear EMR (EMR-L), a nonlinear EMR and GFDL
CM2.1. (a-d) are decimal logarithm of the bivariate probability density function (2dPDF)
in PC1-PC2 space. (e-p) distribution is calculated in 100-year overlapping epochs 10 years
apart. (e-g) are Iamp, Idur, Itra, in which observation is in magenta, EMR-L in solid black
curve, EMR in dash-dot curve, GFDL CM2.1 in dashed curve. (h, k, n) are Isea, (i, l, o) are
Icp/ep, (j, m, p) are Ie/w. El Niño in red and La Niña in blue.
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Fig. 9. Niño-3.4 SST climatology and anomaly in the 20th century (20C, historical run,
1900-1999) and the 21st century (21C, RCP8.5 scenario, 2000-2099) in 37 CMIP5 models
that participated in IPCC AR5. (a) The 20-year running average Niño-3.4 SST with OBS
in black, CMIP5 models in gray. (b) The mean SST in the 20C and 21C for each CMIP5
model. The models are sorted according to the 100-year averaged Niño-3.4 SST in the 20C
runs. The black vertical line marks the 20C OBS value. Multi-model mean (MMM) is
shown at the top, 20C in orange and 21C in blue. Pre-industrial control simulations of each
model are divided into 100-year sliding epochs to calculate the 100-year averaged SST and
the 2.5-97.5 percentile of the distribution are shown as gray horizontal lines. The number of
models with decreased/ increased change is indicated in a number with < / >. Number in
the brackets is the count for significant changes out of the range given by the control run. (c)
Niño 3.4 SST anomaly time series from 1900 to 2099. (d) The standard deviation of SSTA in
pre-industrial, 20C and 21C runs. In addition here the 21C results with an increased change
are shown filled and those with decreased values are unfilled. Meanwhile, the 2.5, 50, 97.5
percentile range estimated from the distribution in the EMR simulation is shown in brown
line at the bottom.
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Fig. 10. Annual cycle and ENSO seasonality change from 20th century (20C) to 21st century
(21C) in 37 CMIP5 models: (a) The 20C seasonal cycle of Niño-3.4 SST, with OBS in black,
CMIP5 models in gray. The horizontal axis shows the calendar month. (b) The Niño-3.4
SST difference between the March-August (summer half year) average and the September-
February (winter half year) average. The models are sorted according to the 20C value of this
difference. (c) 20C occurrence probability of El Niño PEN , (e) 20C occurrence probability
of La Niña PLN . (d) seasonality index of El Niño (Iseason−EN) defined using summer half
year averaged PEN divided by winter half year averaged PEN , thus Iseason−EN < 1 indicates
El Niño in a given 100-year epoch prefers winter phase locking. (f) Iseason−LN , defined the
same way, but for La Niña event.
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Fig. 11. ENSO peaking location and propagation direction in the 20th century (20C) and
21st century (21C) in 37 CMIP5 models. (a) The location diversity index Icp/ep for EN,
defined as PCPEN divided by PEPEN . (c) Icp/ep for LN. Icp/ep > 1 indicates El Niños or La
Niñas preferentially peak in CP. (b) The propagation diversity index Ie/w for EN. (d) Ie/w
for La Niña. Ie/w > 0 indicates El Niños or La Niñas prefer eastward propagation.
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Fig. 12. EN-LN asymmetry in the 20th century (20C) and 21st century (21C) in 37 CMIP5
models. (a) the skewness of Niño-3.4 SSTA. (b) The amplitude asymmetry index (Iamp)
defined as EN amplitude divided by LN amplitude. Iamp > 1 indicates El Niños have larger
amplitude than La Niñas in a given 100-year epoch. (c) the duration asymmetry index (Idur).
Idur < 1 indicates La Niñas are more persistent than El Niños. (d) the transition asymmetry
index (Itra). Itra > 0 indicates El Niños are quickly followed by La Niñas but not vice versa.
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Fig. 13. Summary of ENSO behaviors in the 20th century and the 21st century using all
37 CMIP5 models (a37, blue), overall best 10 models (b10, yellow) and best 10 models for
individual aspect of behavior (c10, red). The 20th century observation (obs, black) results
are shown as a reference. A 4000-year stochastically forced simulation of EMR model fit
from the observation provides the natural variation range (the 2.5-97.5 percentile range is
shown). In each panel, a pair of numbers indicate the degree of model agreement. The left
one is the number of models showing a decrease from the 20th century to the 21st century
while the right one is the number of models showing an increase.
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Fig. 14. ENSO behaviors biases in CMIP5 models: (a) shows the Niño-3.4 SST climatology
in each model for the pre-industrial period (PI) (gray circle), the 20th century (20C) (orange
circle) to the 21st century (21C) (blue triangle). 20C observation is shown in asterisk. (b-l)
shows each individual ENSO behavior varies at different mean states. Change from 20C
MMM to 21C MMM is shown in black line. 2.5-97.5 percentile of natural variation range by
EMR is shown in dashed line.
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