
Rockin’ in the FRE world

Amy Langenhorst, Lori Thompson, Fanrong Zeng and V. Balaji
with input from Technical Systems Group (Bernie, Tim, ...)

FMS Developers’ Forum
Princeton NJ
24 May 2005



Capsule history of FRE

The FMS Runtime Environment began life as the FMS Regression Test Suite
(RTS) in January 2003. Model development was in full swing, and experiments
were being entered at a breakneck pace into the FMS Model Development
database. The RTS offers a standard methodology for doing basic code in-
tegrity tests (restarts, PE counts) of new experiment configurations. The RTS
is expressed in XML and included checkout, compilation, run and resubmit in-
structions (rtsmake and rtsrun).

As IPCC runs began, we introduced rtspp, a post-processing section that
organized archive output in a manner reminiscent of the Climate group’s former
runscripts. It now included steps to interpolate atmospheric data onto standard
pressure levels (Bruce Wyman’s plevel.sh), time series and time average
creation.

At this point, the project had gone beyond regression testing and had become
a “CM2 production environment”, and was renamed FRE.

1



Elements of FRE
fremake Checkout an appropriate subset of the FMS source code for an experiment and

create an executable;

frerun run an experiment in multiple segments; resubmit if necessary;

frestatus check the status of an experiment that is underway;

frelist list available experiments;

frepriority switch a job sequence between queues;

frecheck run RTS checks for bitwise accuracy;

frepp FRE post-processing: create time series, time averages, and plots;

frescrub remove intermediate and redundant files;

freppcheck RTS checks on history and post-processing files.

freversion tool to upgrade the XML, should the syntax change.

URL: http://www.gfdl.noaa.gov/fms/fre

2



Why an overhaul?
• While it was always the intention to make FRE a general purpose environment, its initial

deployment quickly became central to the lab’s IPCC effort. Keeping the IPCC fires burn-
ing (or putting them out) became a full-time job. The time may now be right to consider a
major rewrite, to make this usable in a wider range of settings.

• Issues with /archive over the last year led us to take a fresh look at the way FMS/FRE
deals with large volumes of data;

• The earliest stage in model development – prototyping – requires a more nimble FRE
than the RTS and production environment.

• Delivery of model data for collaboration has become a key activity. In IPCC, we encoun-
tered several “post-frepp” steps that could become part of the assembly line.

• Our alumni and their colleagues often request a “portable FRE”. A minimal “portable FRE”
is part of our public release. There is also growing interest in the community in runtime
environments and “standard” expressions of model configuration.

• FRE’s many shortcomings.

3



FRE’s shortcomings
• The scripts FRE generates are too rigid: every runscript looks like a self-resubmitting,

post-processing CM2 script.

• Too much intermediate data is archived.

• Reliance on inefficient, serial external utilities (NCO);

• Too much reliance on run segment lengths: a lot of the post-processing is triggered on
month boundaries and so on.

• Every experiment generates a fresh checkout: shared codebase is not exploited where
appropriate.

• Does not save enough state: there is not enough checking of when model configuration
is altered.

• The XML, which most users edit by hand, is convoluted and verbose;

• The FRE perl scripts themselves could be more modular.

4



Goals of the overhaul
In general, each successive layer in software offers a reduced palette of choices with
respect to the layer below. This is good or bad depending on context. FRE-generated runs
are probably most useful for development that is shared by a community at least as large and
diverse as an MDT.

For such a community, FRE will offer:

• a development, testing and production environment for FMS-based models;

• that adequately serves the needs of CMDT, ESMDT, GAMDT, LMDT, OMDT and model
liaisons;

• generates scripts that are no more (and no less) complex than they need to be;

• monitors performance and offers choices to reduce resource usage;

• and all the above being met, is abstract enough to be adapted by external users of FMS
to their own needs.

Preliminary details of the design are being presented today. A more formal design document
will be drafted based on today’s feedback and subsequent discussions with interested parties.
Implementation will take advantage of the rudimentary “public FRE” branch: we will prototype
there and then merge into the current FRE trunk. Target delivery date is in late fall 2005, after
the M-release.

5



FRE’s pattern of overlays

<namelist file=".../input.nml"/>
<namelist name="foo_nml">...
</namelist> (1)

FRE often allows two ways of entering data: via a reference to an external
file, and directly embedded in the XML. The direct entries overlie the imported
elements.

This pattern is being extended to site configuration files. Many path names now
hardcoded are now in an external config.xml file. Individual elements can
be overridden in the <setup> section if required.

Everywhere where an external file is referenced, we will also permit a URL to
be referenced. This is principally intended for direct integration of the model
development database.

6



Inheritance and state
This pattern allows us to generalize FRE’s notion of inheritance. Currently, experiments inherit
within the same file:

<experiment name="foo">...
</experiment>
<experiment name="bar" inherit="foo">...
</experiment> (2)

We will now permit inheritance across files.

For all dependencies on external files, it is necessary to save one’s state. FRE currently
performs all inheritance and overlays and saves the state of an XML node in an internal data
structure (hash). We propose to write out each node hash as external well-formed XML as it is
processed. The next time the same XML is processed, if there are any changes in state, the
user will be alerted.

7



FRE’s model of storage resources
The current model of storage in FRE has two elements, scratch (<directory type="work">) and archive
(<directory type="archive">). Archive storage on HPCS almost always points to /archive, a linear
medium (tape). Linear media are markedly inefficient for non-linear use:

• random access patterns spanning non-contiguous regions of tape or multiple tapes;

• file deletion! (creates “holes” that are later filled in background tape defragmentation activity).

With a two-level storage resource model, it has been difficult to avoid non-linear use of linear media. We propose
instead a three-level model:

tmp scratch space that is not guaranteed to exist beyond the end of a job;

ptmp random access storage that is not guaranteed to be backed up;

archive backed-up storage that is modeled as though it were “remote”, i.e needing explicit fetch and store in-
structions.

During “prototyping” and “development” activities, there may be no need to archive much data. Even in production,
much of what we deem to be intermediate data may not be archived. A frearch script (a mirror image of
frescrub) will be provided to archive data in ptmp, should it become necessary. The use of frescrub on
/archive will be needed less than now, and will be discouraged.

8



Embedding custom script fragments
FRE currently allows a limited amount of embedded scripts:

<input>
...
<csh>...
</csh>

</input> (3)

We will extend and generalize this so that each XML node (<checkout>, <compile>, <input>, <run>, etc)
can have a <csh> node inside anchored at the top or bottom of the section:

<input>
...
<csh anchor="top">
...

</csh>
</input> (4)

Fragments can also be set to activate at, before or after a given value of model time:

<csh activateAfter="20050524103000">...
</csh> (5)

This can be used to set shell variables that are later expanded within namelists, for instance.

9



FRE’s awareness of model time

One source of FRE frustration in early development has been its reliance on
model segments, typically 1 or 6 months for AM2 and CM2 runs. As we expand
on the use of triggers based on model time, as illustrated above, we will make
this much more flexible. The syntax for this has not yet been developed.

FRE will not have too much knowledge of calendars: that is in the FMS
time_manager. It will rely on timestamps written by FMS.

10



Extended suite of FRE programs

FRE now has dependencies on several external binaries, some homegrown
and specialized (plevel, timavg), others more general (NCO utilities).

In general, we find that the NCO utilities take a kitchen-sink approach that is
more designed for interactive use than batch processing of large data volumes.
We seek to reduce our dependency on these by replacing with an equivalent
set of specialized functions.

An important new function that will be added to the post-processing is the
xyInterp attribute, to permit various subsampling and averaging options to
reduce data volume.

<component type="ocean" xyInterp="subsample:2">
<component type="ocean" xyInterp="average:2">
<component type="ocean" xyInterp="regrid:/path/targetGridSpec.nc">

(6)

11



Multiple compilation modes for a single
experiment

FRE’s interface to compile the same code in different ways is currently quite clunky.

• It has been a source of frustration for those running MOM scaling studies: MOM has a
different compilation template for running in DYNAMIC mode, and STATIC at each PE
count.

• FRE does not allow an easy switch to running a model under totalview.

• On Altix, regression testing requires an extra flag (-fltconsistency) that is turned off
in production.

The new interface rationalizes these procedures.

<experiment>
<executable>
<compile exec="dynamic">
<cppDefs>

<compile exec="static60">
<cppDefs>

<run exec="dynamic">
</experiment> (7)

12


