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Technology trends

A processor clock period is currently ~ 2-4 ns, Moore’s constant is 4 x/3
years.

DRAM latency is ~ 60 ns, Moore’s constant is 1.3x/3 years.

Maximum memory bandwidth is theoretically the same as the clock speed,
but far less for commodity memory.

Furthermore, since memory and processors are built basically of the same
“stuff”, there is no way to reverse this trend.



Concurrency

Within the raw physical limitations on processor and memory, there are algorithmic and
architectural ways to speed up computation. Most involve doing more than one thing at
once.
e Overlap separate computations and/or memory operations.
— Pipelining.
— Multiple functional units.
— QOverlap computation with memory operations.

— Re-use already fetched information: caching.

— Memory pipelining.

e Multiple computers sharing data.

The search for concurrency becomes a major element in the design of algorithms (and

libraries, and compilers).



Vector computing

Seymour Cray: if the same operation is independently performed on many
different operands, schedule the operands to stream through the process-
INng unit at a rate » = 1 per CP. Thus was born vector processing.

doi =1,n
a(i) =b(i) + c(i) sJ

enddo tioop =8+ 1N




Instruction-level parallelism

This Is also based on the pipelining idea, but instead of performing the
same operation on a vector of operands, we perform different operations
simultaneously on different data streams.

The onus is on the compiler to detect ILP.



In the multiple-processor model, processors may have access to a single
global memory pool, or independent memory units.

UMA architectures suffer from a crisis of aggregate memory bandwidth.
The use of caches may alleviate the bandwidth problem, but requires some
form of communication between the disjoint members of the system: pro-
cessors or caches.

In the NUMA model memory segments are themselves distributed and
communicate over a network. This involves a radical change to the pro-
gramming model, since there is no longer a single address space in it. In-
stead communication between disjoint regions must be explicit: message
passing.



More recently, with the advent of fast cache-coherency techniques, the
single-address-space programming model has been revived within the cc-
NUMA architectural model. Here memory is physically distributed, but log-
iIcally shared. Since it still involves message-passing (though perhaps hid-
den from the user), message-passing is still the correct lens through which
to view its performance.



Distributed Memory Systems: MPP

Processing elements (PEs), consisting of a processor and memory, are
distributed across a network, and exchange data only as required, by ex-
plicit send and receive.



Network Network

Tightly coupled systems: memory closer to network than processor.
Loosely coupled systems: processor closer to network than memory.

Loose coupling could include heterogeneous computing across a LAN/WAN/Internet.



A programming model for MPPs

The model we will be looking at here consists of:

Private, as opposed to shared, memory organization.

Local, as opposed to global, address space.

Non-uniform, as opposed to uniform, memory access.

Domain decomposition, as opposed to functional decomposition.
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Parallel programming model

A task is a sequential (or vector) program running on one processor using
local memory.

A parallel computation consists of two more tasks executing concurrently.

Execution does not depend on particular assignment of tasks to proces-
sors. (More than one task may belong to a processor.)

Tasks requiring data from each other need to synchronize and exchange
data as required. (We do not consider embarrassingly parallel problems
here, where there is no need for synchronization and data exchange.)
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Partitioning

Issues to consider in partitioning the problem into tasks:
e Data layout in memory.
e Cost of communication.
e Synchronization overhead.

e Load balance.



Communication model
A message consists of a block of data contiguously laid out in memory.

Communication consists of an asynchronous send() and a synchronous
recv() of a message. In loosely-coupled systems, PEs need to negotiate
the communication, thus both a send() and arecv() are required. In
tightly-coupled systems we can have a pure send() (put () ) and a pure
recv() (get() ). The onus is on the user to ensure synchronization.
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Communication costs: latency and bandwidth.

t; =t + Lty (1)

ts can include software latency (cost of negotiating a two-sided transmis-
sion, gathering non-contiguous data from memory into a single message).

Note that we have considered t; as being independent of inter-processor
distance (generally well-verified).

On T3E:

e SMA latency is essentially 0, bandwidth 350 Mb/s.

e MPI latency 500 usec, bandwidth 150 Mb/s.
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Global reduction

Sum the value of a on all PEs, every PE to have a copy of the result.
Simplest algorithm: gather on PE O, sum and broadcast.

programtest
real :: a, sum
a = ny_pe()
cal | BARRI ER()
i f( nmy_pe(). EQ O )then
sum = a
do n =1, numpes()-1
call SHVEM GET( a, a, 1, n)
sum = sum + a
enddo
do n = 1, numpes()-1
call SHVEM PUT( sum sum 1, n)
enddo
endi f
cal | BARRI ER()
print *, ’sum=’, sum ' on PE, ny _pe()
end
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Same code in MPI:
programt est

real :: a, sum
a = ny_pe()
I f( pe.NE.O )call MPI ISEND a, 1, ..., O, ... )
| f( pe.EQO )then
sum = a
do n =1, numpes()-1
call MPI_ RECV( a, 1, ..., n, ... )
sum = sum + a
enddo
do n =1, numpes()-1
call MPI ISEND( a, 1, ..., O, ... )
enddo
endi f
if( pe.NE.O )call MPI _RECV( &, 1, ..., O, ... )
print * ’sum=’, sum ' on PE, ny_pe(
end

This algorithm on p processors involves 2(p — 1) communications and p
summations, all sequential.
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Here’s another algorithm for doing the same thing: a binary tree. It exe-
cutes in l0og» p steps, each step consisting of one communication and one
summation.
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There are two ways to perform each step:

| f( nod(pe,2).EQO )then !execute on even-nunbered PEs
call SHVEM GET( a, sum 1, pe+l )
sum = sum + a
call SHVEM PUT( sum sum 1, pe+l )

endi f

| f( nod(pe,2).EQO )then !execute on even-nunbered PEs
call SHVEM GET( a, sum 1, pe+l )
sum = sum + a

el se  execut e on odd-nunbered PEs
call SHVEM GET( a, sum 1, pe-1)
sum = sum + a

endi f

The second is faster, even though a redundant computation is performed.
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do |l evel = 0,| ognpes-1 'l evel on tree
pedi st = 2**]| evel I di stance to sum over
b(:) = a(:) linitialize b for each level of the tree
call npp_sync()
| f ( nod( pe, pedi st*2). Gt pedist )then
call nmpp_transmt( b, c, size(b), pe-pedist, pe-pedist )
a(:) =c(:) +b(:) 'if c cane fromthe left, sumon the |eft
el se
call nmpp _transmt( b, c, size(b), petpedist, pe+pedist )
a(:) =a(:) +c(:) 'if c cane fromthe right, sumon the right
endi f
enddo

call npp_sync()

This algorithm performs the summation and distribution in log» p steps.
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In general it is better to avoid designating certain PEs for certain tasks. Not
only is a better work distribution likely to be available, it can be dangerous
code:

1f( pe.EQO )call npp _sync()
While this is not necessarily incorrect (you could have
1f( pe.NE.O )call npp_sync()

further down in the code), it is easy to go wrong.
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Advection equation

ou
— — =0 2
ot Te 8:13 (2)
In discrete form:
1 At
uf Tt =l e (ufy g — ) (3)

Assume P < N, and that P is an exact divisor of N.
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U1 U U3 U4 ——| U5 — UG —{UT UG

Assign each u; to a task. Assign each task by rotation to a different pro-
cessor (round-robin allocation).

real :: u(l:N)
doi =1,N
1 f( nmy_pe().NE pe(i) )cycle
l pass left, send u(i) to task i-1, receive u(i+1l) fromtask i+1
call nmpp_transmt( u(i), u(i+1), 1, pe(i-1), pe(i+l) )
l pass right, send u(i) to task i+1, receive u(i-1) fromtask i-1
call nmpp_ transmt( u(i), u(i-1), 1, pe(i+l), pe(i-1) )
u(i) =u(r) + a*( u(i+1)-u(i-1) )
enddo
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U1 UD U3 U4 = U5 — UG U7 ——|US

We could also choose to assign N/ P adjacent tasks to the same PE (block
allocation).

real :: u(l-1:r+1)
l pass left, send u(l) to task I-1, receive u(r+1) fromtask r+1
call nmpp_transmt( u(l), u(r+l1), 1, pe(l-1), pe(r+1l) )
l pass right, send u(r) to task r+1, receive u(l-1) fromtask I-1
call nmpp_transmt( u(r), u(l-1), 1, pe(r+1), pe(l-1) )
doi =1,
u(i) =u(i) + a*( u(i+1)-u(i-1) )
enddo

Communication is vastly reduced.
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l pass left, send u(l) to task |-1

call nmpp_transmt( u(l), u(r+l1l), 1, pe(l-1), NULL _PE )
l pass right, send u(i) to task i+1

call nmpp_transmt( u(r), u(l-1), 1, pe(r+1), NULL PE )

doi =1+1,r-1

u(i) =u(i) + a*( u(i+1)-u(i-1) )

enddo
| pass left, receive u(r+l) fromtask r+1

call nmpp_transmt( u(l), u(r+1), 1, NULL PE, pe(r+l) )
l pass right, receive u(l-1) fromtask |-1

call nmpp_transmt( u(r), u(l-1), 1, NULL PE, pe(l-1) )

u(l) =u(l) + a*( u(l+1)-u(l-1) )

u(r) = u(r) + a*( u(r+l)-u(r-1) )

The effective communication cost must be measured from the end of the
do loop.
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The computational domain is the set of gridpoints that are computed on a
domain. The data domain is the set of gridpoints that needs to be available
on-processor to carry out the computation.

The data domain may consist of a halo of a certain width, or it might be
global along an axis (e.g polar filter).

Computational domain: u(l : r) . Data domain: u(l-1:r+1).

The halo region could be 2 wide, e.g. 4th-order advection.
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Domain decomposition in 2D

There are different ways to partition N x N points onto P processors.

call npp_define domains( (/1,N 1, N), domains(l:P), XGOBAL, margins=(/0,1/) )
call npp_define domains( (/1,N 1, N), domains(l:P), margi ns=(/1,1/) )
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1D or 2D decomposition?
Assume a problem size N x N x K, with a halo width of 1.

Cost per timestep with no decomposition:
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Cost per timestep with 1D decomposition (IV X % x K):

K
te + 2ts + AN Kty (5)

t1p =

Cost per timestep with 2D decomposition (% X % x K):

N2K SNK
tC _I_ 4t8 + \/ﬁ tw

(6)

lop =

In the limit of asymptotic N, P (maintaining constant N2/P), trp < t1p.
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The case for 2D decomposition is the argument that the communication to
computation ratio is like a surface to volume ratio, which goes as 1/r.

The flaw in this argument: outside the textbooks, only DoE is in the limit of
asymptotic N and P!

For modest levels of parallelism, and realistic problem sizes, the additional
cost incurred in software complexity is often hard to justify.
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A second flaw, also serious, is that there is higher “software latency” asso-
ciated with 2D halo exchanges, to gather non-contiguous data from mem-
ory into a single message.

(ni,nj)

N

Nt

A~
N

wn

(11

N’
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Data layout in memory is a crucial issue (also for effective utilization of
cache). The best method is to lay out data in memory to facilitate message-
passing. In the limit, a N x N x K problem could be partitioned into N2
domains (tasks, columns), which are distributed over P processors:

call npp_define domains( (/1,N 1, N), domains(1l:N2), XGOBAL, margins=(/0,1/)
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The additional complexity is that rank of all arrays is increased by 1 when
NDOMAINS exceeds NPES:

do n = 1, ndonai ns
| f ( pe. NE. pe_of _domain(n) )cycle

do k = 1, nk
do ] =]s,je
doi =1s,ie
u(i,j,k,n) = ...
enddo
enddo
enddo
enddo

In this model, both cache and vector optimization are possible, by varying
NDOMAINS.
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Another feature of this style is that it permits the implementation of a global
task queue:

do n = 1, ndonai ns
| f( . NOT. queued(n) )cycle
ungqueue( n)

do k = 1, nk
do | =]s,je
doi =1s,ie
u(i,j,k,n) = ...
enddo
enddo
enddo
enddo

Global task queues (a shared-memory approach) is a potent solution to
load balance problems when NDOMAINS > NPES.
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Elliptic equations

Consider a 2D Poisson equation:

Veu(z,y) = f(z,y) (7)

The solution at any point to a boundary value problem in general depends
on all other points, therefore incurring a high communication cost on dis-
tributed systems.
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Jacobi iteration

n+1 n n
(+)_Z(z()1j+ z(—|-)1,]+ z(j)l—l_ fgzl—l_Afoij) (8)

ZJ

lterate until |u(”+1) (")| <e

This method converges under known conditions, but convergence is slow.
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Gauss-Seidel iteration
Update values on RHS as they become available:
n+1) 1 n—+1 n—+1 n n
ug ) = 4 (“g—l,j) + a1 il gy - A ij) ®)

(n+1) _

iterate until |u;’ u,g-")| <

This method converges faster, but contains data dependencies that inhibit
parallelization.
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lreceive halo fromsouth and west
call recv(...)
call recv(...)
'do conput ation
doj =js,je
doi =1is,ie

uCi,j) =uCi-1,))+u(i,j-1)+u(i+1,))+u(i,j+1)-a*f(i,])

enddo
enddo
' pass halo to north and west
call send(...)
call send(...)

RIN W~

N W S~ O

W b~ 01O

OO | N
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Red-Black Gauss-Seidel method

do parity = red, bl ack
| f( parity.NE. ny _parity(pe) )cycle
l'receive halo fromsouth and west
call recv(...)
call recv(...)
l'do red domai ns on odd passes, bl ack domai ns on even passes
doj =js,je

doi =1is,ie
uCi,j) =u(i-1,j)+uCi,j-1)+u(i+1,j)+u(i,j+1)-a*f(i,])
enddo
enddo

' pass halo to north and west
call send(...)
call send(...)

enddo

R INIFEIDN
NP IN|F

R INFPDN

NP IN|PF
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More sophisticated methods of hastening the convergence are generally
hard to parallelize. The conjugate gradient method accelerates this by
computing at each step the optimal vector in phase space along which
to converge. Unfortunately, computing the direction involves a global re-

duction.

In summary, if there are alternatives to solving an elliptic equation over
distributed data, they should be given very serious consideration.
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Conclusions

Considerations in implementing parallel algorithms:

e Uniformity of workload. Designated PEs for some operations can be
useful in certain circumstances, but in general a better division of work
can probably be found.

e Design data layout in memory to facilitate message passing and cache
behaviour. Sometimes redundantly computing data on all PEs is prefer-
able to communication.

e Be wary of asymptotic scalability theory. The cost of achieving maxi-
mal parallelism often includes a considerable complexity burden, with
dubious returns at modest levels of parallelism.
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An F90 module for domain decomposition and message passing is avail-
able for anyone who wishes to try it. It can accommodate most useful
features of both SMA and MPI-style message-passing, as well as versatile
decomposition, within a succinct set of calls:

npp_i nit()

npp_defi ne_donmai ns()

npp_updat e_donai ns()

npp_sun()

mpp_transmt (), npp_transmt_dyn()
mpp_sync()

npp_cl ose()
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A comment on elliptic equations

Low order models benefit from being formulated in terms of a series of bal-
ance assumptions that reduce the number of prognostic equations. In the
limit, atmospheric and oceanic dynamics could in principle be formulated
In terms of a single prognostic variable, the potential vorticity, and a bal-
ance model that allows us to recover the mass and momentum fields from
it. This would lead to a single parabolic equation to step forward in time,
and several elliptic equations to recover the other variables.

As we move to higher resolutions, it becomes less easy to justify balance
models, and models tend to solve more independent prognostic equations.

Happily, these are also the algorithms that lend themselves best to parallel

formulation.
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More conclusions

e Message-passing is a good model to understand distributed shared
memory as well. This is not to say that there are no algorithms that
can be devised that will perform better on shared memory machines,
but these involve taking advantage of complex protocols for memory
management, and can be machine and implementation-specific.

e T3Eis agood learning machine. Predictable performance, clean message-
passing programming interface.
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